Series Solutions
of Differential Equations

Various analytical methods have been presented in pl:evious chapters f.or solv%ng
ordinary differential equations to obtain exact solutions. However, in applied
mathematics, science, and engineering applications, there are a large number of
differential equations, especially those with variable coefﬁcients,'that can.not t.>e
solved exactly in terms of elementary functions, such as .exponerftlal, l.o;';anthrfnc,
and trigonometric functions. For many of these differential equations, it is possible
to find solutions in terms of series.

For example, Bessel’s differential equation of the form

dy dy S

2 > -0

Lt i@@-Hy=o,

¥ a2 dx

where v is an arbitrary real or complex number, finds many applications in er'lgl-
neering disciplines. Some examples include heat conduction in a cylindrical ob)ec.t,
vibration of a thin circular or annular membrane, and electromagnetic waves 11;
a cylindrical waveguide. Bessel’s equation cannot be solved exactly in terms lc:

elementary functions; it can be solved using series, which were first defined )I
Daniel Bernoulli and then generalized by Friedrich Bessel and are known as Besse

functions.

The objective of this chapter is to present the essential techniq1.1es for so.lving
such ordinary differential equations, in particular second-order linear ordinary
differential equations with variable coefficients. -

Before explaining how series can be used to solve ordinary differentiz?l equatl.ons,
some relevant results on power series are briefly reviewed in the following section.
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9.1 Review of Power Series

Definition — Power Series

A power series is an infinite series of the form

o0
Z%)an (x—xp)" = ay + a; (x—x,) + a, (x—x)% + =2+ o0 ()
n=

where a, a;, a,, ... are constants, and X, is a fixed number.

This series usually arises as the Taylor series of some function f(x). If x,=0, the
power series becomes

o0

2 3
Zanx”=a0+a1x+a2x +azx’+--- .
n=0

Convergence of a Power Series

Power series (1) is convergent at x if the limit

N
lim Y a,(x—x,)"

N—o0 p=

exists and is finite. Otherwise, the power series is divergent. A power series will

converge for some values of x and may diverge for other values. Series (1) is always
convergent at x =x,,.

If power series (1) is convergent for all x in the interval lx—xol <r and is

divergent whenever Ix—xol >r, where 0<r<oo0, then r is called the radius of
convergence of the power series.

The radius of convergence r is given by

! a
r= lim
n—o00 an+1
if this limit exists.
Four very important power series are
1 o0
=1+x+x2+x3+...=2xn, —-l<x<1,
1-x n=0
2 3 00 ,.1
x x ¥
ex=1+x iy M R — —Oo<x<OO,
= 2! x 3! T ,g, n!
3 5 7 00 2n+1
X X X x
sinx=x——+ —— —+...= —1)'———, —oo<x<o00,
a8 A ,,Z=%,( ) (2n+1)!
2 4 6 00 2n
x x x &
COBK = 1 = e e i e b 1 -1)" » —00<X<00.
2 4! 6! b ,g)( ) (2n)!
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Operations of Power Series

Suppose functions f(x) and g(x) can be expanded into power series as

o0

flx) =Y a,(x—xp)", for |x—xo| 21
n=0
o0

gx) = )_b,(x—x)", for |x—xo| <7,
n=0

Then, for |x——x0‘ <r, r=min(r,7,),

o0

fx) £gx) = 3 (a,£b,)(x—x0)"

n=0
i.e., the power series of the sum or difference of the functions can be obtained by
termwise addition and substraction. For multiplication,

fx)gx) = [Z am(x—xo)m] [X:Obn (x—xo)”] Z Za b, (x —xq)™ ™"
m=0 n=

m=0n=
[0,0] n
=3 (Z ambn_m) (x—x0)",
n=0 \m=0

and for division,

sy o S "
(x) L2 T n—ocn (x—xO)
» Z:Obn (x—x)*

= ) a,(x—x)" = [Z b,,(x—xo)”] [Z cn(x—xo)"],
n=0 n=0 n=0

in which ¢, can be obtained by expanding the right-hand side and comparing
coefficients of (x —xy)",n=0,1,2,.

If the power series of f(x) is convergent in the interval |x x0| <r,, then f(x)
is continuous and has continuous derivatives of all orders in this interval. The
derivatives can be obtained by differentiating the power series termwise

o0
floy=7 a,n(x—xp)" ", for |x—x0| <.
n=1

The integral of f(x) can be obtained by integrating the power series termwise

00 a, (x xo)n—l—

/f(x)dx =) =

=0 n+1

By L 220)™ e Change the index
m ) of summation.

+C, for |x—x0|<r1,

n+l=m i

m=1
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Definition — Analytic Function

A function f(x) defined in the interval I containing x, is said to be analytic at x,
0

if f(x) can be expressed as a power (Taylor) series f(x)= Z a,(x—x,)", which
has a positive radius of convergence.

R

Determine the radius of convergence for

(1) Z = (x—l)" (71')3
0 2ty @ ,;(311)'
i 1
1 = — Sl ==t g
. 2 (n 1)’
gl
r = lim = lim 2n = lim w
n— 00 an+1 n—00 n—o00 2"n
2”+1(n+1)
. 1
- = =
anooz(1+n) =2
@ a = (n!)3, P (CE VI
(3n)! T B
(n1)3
r = hm a— =l &
n—oo|a, | n—=o0 [(n+1)-n!]?
(3n+3)!
- [(n1)3 (3n+3)(3n+2)(3n+1)(3n)!
n—oo | (3n)! (n+1)3(n!)3

= lim SEBOREDESL 27 (n+1)(n+3) (n+ 1)

n— 00 (l’l+l)3 = nleoo (n+1)3 =27
Example 9.2
E d :
Xpan Xt D) as a power series in x —1.

Letting t =x—1 yields

D : gl I 1 11

4l

=’§)(—t)n_%’§)(_i) Z( l)n( 2n+1)t"
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_z( 1" (1 = ) <=1

1
i — is —=1<t<1 and
Since the interval of convergence of the power series of T

that of : is —2 <t <2, hence the region of convergence of the power series
1+1/2
of is —1<t<lorO0<(x=t+1)<2.
x(x+1)
Example 9.3
1 A
d as a power series in Xx.
Expan e p
"
! _l( 1 )”=l<§x") , —l<x<l,
(1-x)3  2\l1-x 2\ et
= e oXo:n(n——l)x"_z, ~l<x<1,
2 =
Change the index
l;=> 3 Z (m+2)(m+ D", @ofsummation.
2 m=o

Example 9.4

Expand In(1+x) asa power series in x.

ln(1+x)=fﬁ;dx=/[2(—l)"x”] dx, —-l<x<l,

n=0

m

§LEET NG Z( ) e, —~lageE

00 " xn+
= Y -1
’g( )T =%

9.2 Series Solution about an Ordinary Point

Two simple ordinary differential equations with closed-form solutions are consid-

ered first as motivating examples.
Consider the first-order ordinary differential equation
y = y=0.

Let the solution of the equation be in the form of a power series

o0
Y = Sae, lxl<r,

n=0

2
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for some r > 0, where a,, are constants to be determined. Differentiating y(x) with
respect to x yields

o0 o0 .
Ty n—1 n-l=m - Change the index
§ix) = Z ¥ STIVEN mZ=:0am+1 e @ofsummation.

Substituting into the differential equation leads to

Zan+1(n+l)x —Za =0 = Z[(n+1)an+1—a] = 0.

n=0

For this equation to be true, the coefficient of x", n=0, 1, . . ., must be zero:

s a,—ay=0 = a,=a,

1. 1 1

i 2ay—a, =0 = B=70=75%

20! 1 1 1 1

X . 3a3—a2—0 == a3=§a2=g.5a0=§ao’

4 1 1 1 1

x: (n+la, ,—a,=0 —

a = a, =——: —(d, = ag.
TRl akl w0 e 0

Hence, the solution is

1 1
y(x)=a0+a0x+—a0x +§aox3+---+

1 2
—anX +...
n! 0
—a0(1+x+—-x+ x+ +—x+ )

= gy€”, a, is an arbltrary constant,

which recovers the general solution of y’— y=0.

Motivating Example 2

Consider the second-order ordinary differential equation

}’” i y = 0.
00
Suppose that the solution is in the form of a power series y(x)= Z: a, x" lxl<r,

for some r >0, where a, are constants to be determined. leferentlatmg y(x)
with respect to x twice yields

o0
y'(x) = Z a,nx""1,
n:

y"(x) = Za n(n—1)x"2 2=2=m_ Zam+2(m+2)(m+l)x

n=2
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Substituting into the differential equation leads to

o0
3 a +2(n+2)(n+1)x"+§anx"=0 — ) [(n+2)(n+1)an+1+an]x”=0_
n

n=0 n=0 n=0
For this equation to be true, the coefficient of x", n=0,1,..., must be zero:
1
x%: 2-lay+a;=0 = a2=—2—!a0,
x': 3-2a34+a;=0 = a3=—§a1,
' 1 1
x%: 4-3a,+a,=0 — a4=—Z§a2—Z!a0,
1 1
x*: 5-4as+a3;=0 = “5’:‘;_4“3—5“1’
1 1
o 6-5a5+a,=0 — a6=—§a4=—aa0,
1 1
In general, for k=1,2,3,...,
1 k
k = (1)) ——a,.
azk = (_1) (Zk)!a()’ a2k+1 ( ) (2k+1)! 1
Hence, the solution is
2k x2k+1

& oa o kX S kX
Y0 = 3" = a0 2 (D ot 5 @,

i i ants
= a,cosx + a; sinx, a, and a, are arbitrary constants,
. " ot
which recovers the general solution of y” + y=0.

These two examples show that it is possible to solve an ordinary
differential equation using power series.

Definition — Ordinary Point
Consider the nth-order linear ordinary differential equation

YP @) + 1 )YV + a0 YTV @) -+ po®) y() = f®).
A point x, is called an ordinary point of the given differential equation if each

of the coefficients p,(x), p;(x), ..., P,_1(x) and f(x) is analytic at. X=Xy L€
p;(x), for i=0,1 n—1, and f(x) can be expressed as power series about x;
1 > oo R b

that are convergent for |x —xo| <, r>0,

P,'(x) = io: pi,n(x—xo)", f(x) = an (x—xo)"-

n=0 n=0

|
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Theorem — Series Solution about an Ordinary Point

Suppose that x,, is an ordinary point of the nth-order linear ordinary differential
equation

Y HPua @y 4 py 1) YD 4 4 py(@)y = fo),
i.e., the coefficients Po(x) p1(x),..., p, ;(x) and f(x) are all analytic at x =X,
and each can be expressed as a power series about x, convergent for |x—x,| <,

r>0. Then every solution of this differential equation can be expanded in one
and only one way as a power series in (x — Xg)

o0
yx) =3 a(e—x)", |x—x,| <R,
n=0
where the radius of convergence R > r.

Example 9.5 — Legendre Fquation

Find the power series solution in x of the Legendre equation

(A=x)y" —2xy' +p(p+1)y =0, p>0.

The differential equation can be written as

'+ P10y +pox)y =0,

2x
pi(x) = — TTE Po(x) = ————=

Both p, (x) and Po(x) can be expanded in power series as

1 < 2 Ead 2n+1
pl(x)=—2x~l 5 ==2x) (A= -2 2" |x<1,
—X n=0 n=0

1 o0 o0
Po®) =p(pHD) 17— =p(p+D) 3 )" =p(p+1) 15, |x|<1.
- n=0 n=0

Hence, x =0 is an ordinary point and a unique power series solution exists
o0
yx) =Y a,x", |x|<l,
n=0

where a,, n=0, 1, .. ., are constants to be determined. Differentiating y(x) with
respect to x yields

o0 0
Y =3 na y'(x) =) n(n-1)a,x"2
n=1 n=2

Substituting y, y’, and y” into the differential equation yields

o0 o0 [0.0]
1-x% 3 n(n—1)a,x" 2 — 2x Z na,x""! +p(p+1) ) a,x" =0,
n=2 n=1 n=0
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or, noting that

i, o0 Change the index
io: n(n—1)a,x" > L 2 (m+2)(m+1)ay %", 2D of summation.
n=2 m=0

one has

o0 o0 o0
i (n+2)(n+1)a,,,x"— Y n(n—1)a,x"—)_ 2na,x"+ Zop(p+l)anx” =0.
n=0 n=2 n=1 n=

For this equation to be true, the coefficient of x", n=0,1,. .., must be zero:

__pp+D)
%0 2:-lay+p(p+1)ag=0 F= g = 2

(P=D(+2)
e ks
3!

ag»
x': 3-2a;—2a,+p(p+)a;=0 = az=
For n = 2, the coefficient of x" gives

(n+2)(n+1)a,,, —n(n—-1)a, —2na, +p(p+a, =0
(p—m[p+(n+1)]

me—p an+2 T (n+2)(n+1) an'
Hence,
—2)(p+3) (p—=2)(p+3) 1 _pp+D)
# “4=—(—p_71-—3p_“2=_ 4.3 [ 2 “0]
—2)(p+3
— (-1)? p(p+1)(1;! ) (p )“o,
-3)(p+4) (p=3)(p+d1_(p-D(p+2)
x3: a5=_(P 55 —az = — .4 [ 3 al]
-1)(p+2)(p—3)(p+4)
B S A ",
—4)(p+5)
x4: a6 = —(P—6)—.(53—-a4
_ (p=9(p+5) [(_I)ZP(P+1)(p—2)(p+3)ao]
o 6-5 4!
— (=1)® p(p+D)(p—2) (p‘+3) (p—d(p+5) i
R 6!
(p—5)(p+6)
JCS: a7 = —L—7-.6——a5
_ (p=5)(p+6) [(_1)2(P—l)(p+2)(p—3)(p+4)al]
sl o 51
— (1)} (P—l)(P+2)(p—3)$p+4)(P—5)(p+6) i
— 7!
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In general,
_ k PP+ (P=2)(p+3)--- (p—2k+2)(p+2k—1)
ay = (1) )
(2k)!
_(=DF Lk : .
= (Z—k)!il;ll [(p—2i+2)(p+2i—1)] ay
— (kLD (@42 (p—3)(p+4) - - - (p—2k+1)(p+2k)
A1 = (=1) k+D)! a;
= @k L Lp— 2D 42D 4y
~ Thus, the power series solution of Legendre equation is
D =ay =1k IkI [(p—2i+2)(p+2i—1)] x%*
g YT
a3 O 2t pean] i, i<,
Yo Q1)

where a, and a, are arbitrary constants.

Example 9.6

Find the power series solution in x of the equation x Y +yIn(1—x)=0, |x|<1.

The differential equation can be written as

In(1-
}’”+ n( X)y= 0, |x|<1,
x
which is of the form
" ’ In(1—x)
Yy +pn (x)}’ +P0(x)}’ =0, P (x) =0, po(x) = .
Since
1 o0
— =) x" |x|<],
integrating both sides of the equation with respect to x yields
1 00 g 00 xn+1
l 1 — = — —_— d = — d = - > 1’
n(l—x) 9 rgx x ,g)n+1 lx| <
In(1—x) %0 i
= = — 5 1.
Po(x) x ,Z%,n+1 x| <

Hence, both p,(x) and p,(x) can be expanded in power series, leading to x =0
being an ordinary point. The solution of the differential equation can be expressed
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in a power series

o0
Y = S e, i<l

n=0
where a,, =0, 1 are constants to be determined. Differentiating y(x) with
n’ — bl 3 & ey
respect to x gives
o0 o0 n—2
= gl "x)=Y n(n-1)a,x""% |x|<l.
y’(x)—n;na,,x 5 i) n; .
Substituting into the differential equation results in
| o0 n o0
3 =2 X e x"=0.
LD - R
Noting that
o0 2= o0 &
Y n(n—1)a,x" "t == Y (m+2)(m+1)agHx"
n=2 m=0
o0 n m = o0 n an_m o
i al ‘i“ =32 ( R Ay X" "’)=Z (Zm)x
n=0n+l n=0 g n=0m=0 m+1 n=0 \m=0
one obtains o v a m] )
— — |x"=0.
n;) [(n+2)(n+1)an+2 mz::om+1
For this equation to be true, the coefficient of x", n=0,1,. .., must be zero:
1 N An—m
(n+2)(n+1) ,=om
Hence,
LN .
n=0: az_i—lao— 5’
: “_0) !
"_]:a3=?§<a1+2 276
5a a,
1 ) _l(f‘_O G G w2y L
=t a“zﬁ(aﬁ'z_ 3)—12 T N T
1/a a, 4a
1 a 4 0) ks (@+a_1)+_(_o)+_+_]
n=3:as=cyBtyt34y 20[ 2 6/ T2\2) 73T
7a, a,
=—4—
240 40
1 a; 4, 4 ao)
n=ti ag= ol TS 43a, a
| 1/a a, 4 ay , 4
L [r5ay 9y l(“_o ﬂ) _(_0)+_1_+_]=__+ :
~ 30 (72_+ZI)+2 276/ T3\2) T2 5] T 2700 80
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It is difficult to obtain the general expression for a,. Stopping at x5, the series

solution is given by
- a a, a 5a, a
X)= ) a,x" =a,+a;x + 2 x? (—0 —1)x3+(—0 _1)x4
Ll T gl ¥ e 72 24

7ay ap\ s 43a, a, 6
Haatm)" + Gmta) e+
x2 x> 5xt 7x5 4346
=a0(1+7+ﬁ+72—+2—40' %6+)
¥ xt x5 &S
+a1(x+?+ﬂ+5+%+~-),
where a, and a, are arbitrary constants.

Example 9.7

Find the power series solution in x of the equation y"”' —xy”+(x—2)y'+y=0.

The differential equation is of the form
"

PP P10y +py )y =0, p(x)=—x, p(x)=x—2, po(x)=1.

Each of p(x), p,(x) and Py (x) can be expressed in power series. Hence, x =0 is
an ordinary point and there exists a unique power series solution

o0
(x) =) a,x", —oco<x<oo,
Yy n
n=0

where a,, n=0,1,.. ., are constants to be determined. Differentiating with respect

to x yields, for — oo < x < 00,

[0.°] o0 o0
y'=2na, ", yr=3y n(n—1a,x"2, y"=3" n(n—1)(n—2)a,x" 3.
n=1 n=2 n=3

Substituting into the differential equation results in

i n(n—1)(n—2)a,x" > — io: n(n—1)a,x"!

n=3 n=2

o0 o0 1 0
n n— n __
+ ) na,x" —25% na,x""' + a,x” =0.
n=1 n=1 n=0

Changing the indices of summations
o0

d_n(n—1)(n—2)a,x"3 23=m, f (m+3)(m+2)(m+1)a
n=3

m
m+3% >
m=0

o0

o0
Zn(n—l)anx”‘1 e, > (m+1)ma,, x™,
n=2 m=1
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o0 1=m 20 m

Znanxn—l e 1P > (m+1)a,  x"
=0

n=1 m

one obtains
s 0,0]

(n+3)(n+2)(n+1)a,, 3x" — 3 (n+Dna, X"

n=1
n=0 Lo 00 " [oe) el 0
+ > na,x" — 2) (n4Da, 1 x" + 2 apx" =0,
n=1 n=0 v
00

Y [n+3)(n+2)(n+Da, 3 —2(n+1Day,, +a,]x"

n=0

0 n
+> [—("+1)”“n+1+”“n]x =0.
n=1

i " u= ., must be zero. When
For this equation to be true, the coefficient of x", n=0,1,..., m

n=0, one has - ) =

For n = 1, one obtains
=0,
[(n+3)(n+2)(n+1) a3 —2(n+)a,,, +a,] +[-(+Dna,,, +na,]

a, Int1
Gty =7 (n+3)(n+2) n+3

Hence,
Gy g 0 f.Z,
n=1: a4=—z—3 4_ 12 4
1 a a IS )
az a3____a_2 _(__0+_1.)=——-—— e L
n=2: @g=—got ="t "3 3015 20
1 a az
a3 a4___i(__£Q ﬂ)-*——-(__l_-'-—)
n=3: a6=—-6-_'§+?— 30 6+3 6\ 12 4
_ B 4 &
T 180 40 24

i i 6, the series
It is difficult to obtain the general expression for a,. Stopping at x7, t

solution is given by

a, a,\ 4
00 2 EQ ﬁ) 3 (_ 1 z)x
y(x) = § anx"=a0+a1x+a2x +(— + x° + _12+_4
n=0

6 . 3
a
ag “0_“_2)5 (&_ﬁ+—l)x6+
+('%+T§ 20)" T80 20" 24
3 4 .5 .6
3 5 6 X X X X
X X X _____+____+...)
_ T & _+...)+a(x+
_ao(l c 30 180 - 3 125 156 40
4
T
+"2(x+4 20 2

i stants.
where a, a,, and a, are arbitrary con
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9.3 Series Solution about a Regular Singular Point

Definition — Singular Point

Consider the nth-order linear homogeneous ordinary differential equation
1P 4P, 0y D g Pra®) Y™ 4+t pyx)y = 0.

" A point x, is called a singular point of the given differential equation if it
is not an ordinary point, i.e., not all of the coefficients 2olx)s p, 00, -, .,
Pp—1(x) are analytic at x =X,.

A point x, is a regular singular point of the given differential equation if it is
not an ordinary point, i.e., not all of the coefficients Py (x) are analytic, but
all of (x—xo)""kpk(x) are analytic for k=0,1,...,n—1.

" A point x, is an irregular singular point of the given differential equation if
it is neither an ordinary point nor a regular singular point.

Consider the second-order linear homogeneous ordinary differential equation
»'+Px)y +Qx)y = o.

If x=0 is a regular singular point, then xP(x) and x*Q(x) can be expanded as
power series

n=0

[.°] o0
xP(x) =} P,x", x*Qx) =Y Qx", |x|<r,
n=0

which leads to

o0 o0

P@)= ) Px", Q@ =3 Q"% |xj<r %0,
n=0 n=0
Seek the power series solution of the differential equation of the form
o0 o0
yx®) =x%-3 a,x" =Y a,x", 0<x<r,
n=0 =0

which is called a Frobenius series solution. Differentiating with respect to x yields

y'(x) = f (nt+a)a,x" 71, y'(x) = f (n+a)(n+a—1)a,x"r*=2,

n=0 n=0

Substituting into the differential equation results in

o0 o0 o0
> (nta)(nta—1)a,x"te-2 4 2P Y (n4a)a e
n=0

n=0 n=0

o0 o0
+ ) Q" 2.Y g x"te —,
n=0

n=0
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Noting that
o0 o0 o0 n o o
P x" 1Y (nta)a, k"t =) Y Pypx -(m+a)a,
nzz:() " n=0 " n=0m=0
00 n ol
=Y [Z (m+a)Pn_mam] piitt %
n=0 Lm=0
o0 (0.°] n ag
io: Q xn—z. Z anxn+a = Z (Z Qn—mam) S
n=0 2 n=0 n=0 \m=0
one obtains
! n+oa—2 __
i {(n+ot)(n+ot —a,+ Y [(m+a)P,_, + Qn_m]am} x =0.
n=0 m=0
. =2 _ :
For this equation to be true, the coefficient of x"9=2, n=0,1,..., must be zerg

For n=0, one has
[a(@—1) +aPy+ Qo]ao =0,

which implies either a;=0 or a(a—1)+aPy+ Q,=0. For n>1, one obtains

(n+a)n+a—1a,+ 3. [(m+a)P,_,, + Qu_p]ay =0.
m=0

1 n—1

= Z [(m+a)Pn—m + Qn—m]am'
= Tt a)(nta—1)+ (nta) Py+Qp o

Case 1. If a,=0, then a, =a, = - - - =0, resulting in the zero solution y(x) =0.
. If ay=0,

Case 2. If a, #0, then
a(@—1)+aPy+Q, =0,

: 3 y . .
which is called the indicial equation. Solving this quadratic equation for a, on

obtains two roots «; and a,. o
i . i
Hence, in order to have a nonzero solution, it is required that a;, 70 an
>

root of the indicial equation.

. . . ed

If a series solution about a point x=x,70 is to be determllr:‘ )
i n

one can change the independent variable to t =x —x, and then solve the ves i dg

differential equation about ¢ =0. If a solution valid for x <0 is to be determined,

let t = —x and then solve the resulting differential equation.
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Fuchs’ Theorem — Series Solution about a Regular Singular Point

For the second-order linear homogeneous ordinary differential equation

Y"6) + P@)y'(x) + Q@) y(x) = 0,
if x=0 is a regular singular point, then
o0 o0
xP(x) =Y P,x", x*Qx) =) Q" |x|<r.
n=0 n=0

Suppose that the indicial equation
a(a—1) +alh4.0,=0

has two real roots ; and a,, @) = a,. Then the differential equation has at least
one Frobenius series solution given by

o0
NE)=x113 a.x", a,#0, 0<x<r,
n=0
where the coefficients a,, can be determined by substituting y,(x) into the differ-
ential equation. A second linearly independent solution is obtained as follows:

1. If &, —a, is notequal to an integer, then a second Frobenius series solution
is given by
o0
7,(x) =x%2Y"b x", O0<x<r,
n=0
in which the coefficients b, can be determined by substituting y,(x) into
the differential equation.

2. If o, =a,=a, then
o0
P2(X) =p@)nx+x*Y b x", 0<x<r,
n=0
in which the coefficients b, can be determined by substituting y,(x) into
the differential equation, once J1(x) is known. In this case, the second
solution ¥,(x) is not a Frobenius series solution.

3. If &y —a, isa positive integer, then
o0
Y@ =ay)nx+x23 b x", 0<x<r,
n=0
where the coefficients b, and a can be determined by substituting y, into
the differential equation, once 1 1s known. The parameter a may be zero,
in which case the second solution ¥,(x) is also a Frobenius series solution.

The general solution of the differential equation is then given by

yx) =G y1(x) + C, y,(x).
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Example 9.8

Obtain series solution about x = 0 of the equation

2y +x2x+1)y —y=0.

The differential equation is of the form

2x+1

¥ +Px)y +Qx)y =0, Px)= = Qx) = ——

Obviously, x =0 is a singular point. Note that

2x+1
xP(x)=-—x2L— +x+0-x>4+0-x% +- -=>p0=%’
x*Q(x) = —%———+0x+0x+0x+ E =>Q0=—%.

Both xP(x) and x>Q(x) are analytic at x =0 and can be expanded as power series
that are convergent for |x| < co. Hence, x =0 is a regular singular point.

The indicial equation is o (¢ —1)+aPy+Q,=0:

al@a-)+a-5—5 = =0 = (¢+73 )(a D=0 = a;=1, «a = -
2 1 2 2

Thus the equation has a Frobenius series solution of the form
o0 o0
y©) =x1Y a,x" =Y a, ", ag#0, 0<x<oo,
n=0 n=0

where a,, n=0,1,..., are constants to be determined. Differentiating with respect
to x yields

o0 o0
Yix) = Y (n+Dax", yx) =Y (n+na,x""!
n=0 n=1
Substituting y,, ¥;,and y/ into the differential equation results in
o0
Z 2(n+1)na,x"t' + Z 2(n+1)a,x"* + Z (n+1a,x"1 = a, 2" =
n=1 n=0 n=0 n=0

Changing the indices of the summations

o0
Y 2(n+1)na,x"t LE2 LN Z 2m(m—1)a,,_,;x",

n=1 m=2

o0
Y 2(n+1)a,x"+? Atiom, Z 2(m—1)a,,_,x",
n=0 m=2

o0

1=m
Y na,x"t! =5 Z(m Da, %",
n=0
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one obtains
o0 o0
f_:z[Zn(n—l)an_1 +2(n—1)a, ,]x"+ > (n—1)a,_;x" =0.
n= n=1
For this equation to be true, the coefficient of x”, n=1, 2, ..., must be zero. For
n=1, one has

0-ap=0 == a,#0 isarbitrary; take a,=1.

For n =2, one has

20(n—D)a, ; + 21y + (=1)a, s =0 = gy mi L D2
2n+1

Hence,
n=2: a, = - 249 _2’

2:2+41 5

2

n=3 a2 = — 2a1 — (— )22_’

2:34+1 7-5

2

T PRI AP . . SR 2" s

where (2n+3)!!=(2n+3)(2n+1)---5-3-1 is the double factorial. The first
Frobenius series solution is

n 1
1 0<x<oo.

o0 32n
x) =) a, N
nx n};Oa " EO( 1) e T

: 3 : >
Since o —a, = 5, according to Fuchs’ Theorem, a second linearly independent
solution is also a Frobenius series given by

o0 o0
4
yz(x)zx"‘ZX;)bnx": Y b,x""2, by#0, O0O<x<oo,
n= n=0

/ _ < 1 S o0 1
Ya(x) = ngo(n—i)bnx" 7, yﬁ'(x) - rg(n_f)(n_%)bnxn_%-

Substituting y,, 5, and y} into the differential equation leads to

223 (n=1)(n=2)b,x" + @240 Y (=L b} = 3 bt =,
Lt n=0 n=0
2 {Po-2)e-3) + -3) 1]t 42y, 0
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L
Multiplying this equation by x? yields
(&)
b3 [n(zn —3)b,x" + (2n—1) bnx"+1] =0.

n=0

Changing the index of the summation

o0
3 @n—1)b,a"! 2= 3 om—3)b,, 2",
n=0 " m=1
one obtains
' o0 o0 " 2
Y n@n-3)b,x" + ) (2n—3)b, x" =0.
n=0 =1

For this equation to be true, the coefficient of x", n=0, 1, ..., must be zero. For
n=0, one has
0-(—=3)by =0 ==> by#0 isarbitrary; take by=1.

For n>1, one has

n—1
n(2n—3)b, + 2n—3)b,_, =0 = b,= S
Hence,
b 1
b 1 Byl __ b L
et Radi L et el T S il
1
—] n
b,=—— = (-1 2
Thus, a second linearly independent solution is
13 = x 33 (- "x—n=x-%e_".
Polx) =% 2';)bnx ='y 2';)( I
The general solution of the differential equation is
- i n+1 —% X
y(x) = Cy (%) + Cyy,(x) = Clrg(—l)”mx + C,x" 2e

9.3.1 Bessel’s Equation and Its Applications

9.3.1.1 Solutions of Bessel’s Equation
Bessel’s equation of the form
2y +xy + (P —1vH)y=0, x>0,

. . . . . and
where v >0 is a constant, is of great importance in applied mathematlcs1 :
) . . . . . Vm
has numerous applications in engineering and science. Furthermore, in so A g
: s hi L O ; - aa
Bessel’s equation using series, it exhibits all possibilities in Fuchs’ Theorem
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result, it is an excellent example to illustrate the procedure and nuances for solving

a second-order differential equation using series about a regular singular point.
Bessel’s equation is of the form

" y 1 %%~ 2
Yy +Px)y +Qx)y =0, PEyE =, * LK) = % gt

It is obvious that x =0 is a singular point. Since
xP(x) =1=140-x4+0x*+... = P =1,
Q) =x"—1= -2 40 x+x2+0- 83+ 0 x4+ ... —s Q= —1%

both xP(x) and x2Q(x) are analytic at x=0 and can be expanded as power series
convergent for |x| < co. Hence, x =0 is a regular singular point.

The indicial equation is a(e—1)+aPy+Q,=0:
a(a—1)+a-l—v2=0 = og—-12=0 = o=V, a;=—0.

Bessel’s equation has a Frobenius series solution of the form

o0 (©.°]
NnE=x"3Y a,x"=3Y a,x"", a;#0, 0<x<oo.
n=0 n=0

Differentiating with respect to x yields

.5 00
@ =Y (n+v)a,g™l Y = (n+v)(n+v—1)a,x"-2,
=0 n=0

Substituting y,, y;, and y/ into Bessel’s equation results in

[o.°] 2] o0
xZZ(n-i-v)(n+v—l)anx"""’—2 +x) (n+v)a,x"l 4 (x2—1?) D a,x"tV =o.

n=0 n=0 n=0

Changing the index of the summation

o0

o0 o0
nt+v42 N+2=m m+v _ n+v
apx s o B T B U AT
n=0 m=2

n=2

one obtains

x¥ { > [(n+v)(n+v—1)+(n+v)—v2]anx” & Zan_zx"} =0,
n=2

n=0
8] o0
x"#£0 = Y n(n+2v)a,x" + D a, ,x"=0.
n=0 n=2
For this equation to be true, the coefficient of x", n=0, 1,. . ., must be zero:

P 0-(0+2v)ay =0 == ay # 0 is arbitrary,



