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which is clearly identical to Tas given in Equation ii, in view of Equation i.
The equivalence of T; and T, can be shown in a similar straightforward manner for
igher degree-of-freedom systems as well.

=

).13 Response Analysis and Simulation

\n analytical model, which is a set of differential equations, has many uses. In particular,
t can provide information regarding how the system responds when a specific excitation
nput) is applied. Such a study may be carried out by

~ 1. Solution of the differential equations (analytical)
2. Computer simulation (numerical)

In this section we will address these two approaches. A response analysis carried out
Ising either approach, is valuable in many applications such as design, control, testing,
alidation, and qualification of mechatronic systems. For large-scale and complex systems,
purely analytical study may not be feasible, and we will have to increasingly rely on
wmerical approaches and computer simulation.
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FIGURE 2.78 o
Impedance circuits of: (a) System in Figure 2.77(a); (b) System in Figure 2.77(b). ,,
2.13.1  Analytical Solution

esponse of a dynamic system may be obtained analytically by solving the associated

As a result, the motion transmissibility can be expressed as .
Ufterential equations, subject to the initial conditions. This may be done by

S/ TR U 7 (i)
"V I MZ+1|| Mg+ M,

=

1. Direct solution (in the time domain)

_ ] r 2. Solution using Laplace transform
It remains to show that T,, = T;. To this end, let us examine the expression for T,,. Sincé

Z =1/M,, T, can be written as

T = Z, _%ﬂl_
"\ Z+Z, || Mg+ M,

Consider a linear time-invariant model given by the input-output differential equation

n n-1
a, th +a, Zt"g +etay=u (2.148)
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At the outset, note that it is not necessary to specifically include derivative terms on the
RHS; for example, byu+b, %+-~-+ b, % because, once we have the solution (say, y,) for
Equation 2.148 we can use the principle of superposition to obtain the solution for the general
case, and is given by: by, +b, 2 +---+b, 2% . Hence, we will consider only the case of

174t m o drm
Equation 2.148.

2.13.1.1 Homogeneous Solution

The natural characteristics of a dynamic system do not depend on the input to the system.
Hence, the natural behavior (or free response) of Equation 2.148 is determined by the
homogeneous equation (i.e., the input = 0):

dn dn-l
L dt:z +a,, dt”_:? +otagy = 0 (2149)

a

Its solution is denoted by y, and it depends on the system initial conditions. For a linear
system the natural response is known to take an exponential form given by

o, =oe™ (2.150)

where c is an arbitrary constant and, in general, A can be complex. Substitute Equation 2.149
in Equation 2.150 with the knowledge that

%e’" = Ae* (2.151)

and cancel the common term ce*, since u cannot be zero at all times. Then we have
a X' +a, A7 +4a,=0 (2.152)

This is called the characteristic equation of the system.

NOTE the LHS polynomial of Equation 2.152 is the characteristic polynomial. Equation
2.152hasnroots A, A,, ..., A,. These are called poles or eigenvalues of the system. Assuming
that they are distinct (i.e., unequal), the overall solution to Equation 2.149 becomes

Yy = Cleﬂ"t + Czeht Ao v CTIEAY‘ (2.153)

The unknown constants ¢;, ¢,, ..., ¢, are determined using the necessary 7 initial conditions
y(0), ¥(0), ..., © 0,

2.13.1.1.1 Repeated Poles

Suppose that at least two eigenvalues are equal. Without loss of generality suppose in
Equation 2.153 that A, = A,. Then the first two terms in Equation 2.153 can be combined
into the single unknown (c; + ¢,). Consequently there are only n -1 unknowns in
Equation 2.153 but there are 7 initial conditions. It follows that another unknown needs
to be introduced for obtaining a complete solution. Since a repeated pole is equivalent
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to a double integration, the logical (and correct) solution for Equation 2.152 in the case
ﬂ’l = 2,2 is

y, =(c, +cyt)el + e+ c et (2.154)

2.13.1.2  Particular Solution

The homogeneous solution corresponds to the “free” or “unforced” response of a system,
and it does not take into account the input function. The effect of the input is incorporated
into the particular solution, which is defined as one possible function for y that satisfies
Equation 2.148. We denote this by y,. Several important input functions and the corre-
sponding form of y, which satisfies Equation 2.148 are given in Table 2.12.

The parameters A, B, A,, A,, B,, B,, and D are determined by substituting the pair u(t)
and y, into Equation 2.148 and then equating the like terms. This approach is called the
method of undetermined coefficients.

The total response is given by

Y=y,+Yy, (2.155)

The unknown constants cy, ¢,, ..., ¢, in this result are determined by substituting the initial
conditions of the system into Equation 2.155. Note that it is incorrect to first determine
¢y, Cy .-, C, Dy substituting the ICs into y,, and then adding y, to the resulting . Further-
more, when u =0, the homogeneous solution is same as the free response, initial condition
response, or zero-input response. When an input is present, however, the homogeneous
solution is not identical to the other three types of response. These ideas are summarized
in Table 2.13

TABLE 2.12

Particular Solutions for Useful
Input Functions

Input u(t) Particular Solution y,

o A
ct Bt + B,
sin ct A, sinct+ A, cosct
cos ct B, sinct + B, cosct
ect Dect
TABLE 2.13
Some Concepts of System Response
Total response (T) = homogeneous solution + particular integral
(H) P)

= free response + forced response
X) (F)
= initial-condition response + zero-initial-condition response
) (F)
= zero-input response + zero-state response
X) (F)
Note: In general, H # X and P # F
With no input (no forcing excitation), by definition, H = X
At steady state, F becomes equal to P.
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for any well-behaved time function f(t). The system response (output) to a unit-impulse
oxcitation (input) acted at time t = 0, is known as the impulse-response function and is

>3
denoted by h(t).

u(t) u(t)

2.13.1.4  Convolution Integral

‘The system output in response to an arbitrary input may be expressed in terms of its
mpulse-response function. This is the essence of the impulse-response approach to deter-
‘mining the forced response of a dynamic system. Without loss of generality we shall
assume that the system input u(f) starts at ¢ = 0; that is,

T+ AT > t 0 T t
(a) (b)

u(t)=0 for t<0 (2.160)

For physically realizable systems, the response does not depend on the future values of

FIGURE 2.79 the input. Consequently,

Tlustration of: (a) Unit pulse; (b) Unit impulse.

y(t)=0 for t<O0 (2.161)
2.13.1.3 Impulse Response Function Ed
Consider a linear dynamic system. The principle of superposition holds. More specifically,
if y, is the system response to excitation (t), and y, is the response to excitation u,(f), W=D for §<0 (2.162)

then ay, + Py, is the system response to input au(t)+ pu,(t) for any constants & and
and any excitation functions u,(t) and u,(t). This is true for both time-variant-parameter
linear systems and constant-parameter linear systems.

A unit pulse of width A7 starting at time t=7 is shown in Figure 2.79(a). Its area is
unity. A unit impulse is the limiting case of a unit pulse for A7 — 0. A unit impulse acting
at time t=7 is denoted by §(t-7) and is graphically represented as in Figure 2.79(b). In
mathematical analysis, this is known as the Dirac delta function, and is defined by the two
conditions:

where y(t) is the response of the system, to any general excitation u(t).

- Furthermore, if the system is a constant-parameter system, then the response does not
depend on the time origin used for the input. Mathematically, this is stated as follows: if
the response to input u(t) satisfying Equation 2.160 is y(t), which in turn satisfies Equation
2.161, then the response to input u(t—7), which satisfies,

u(t—7)=0 for t<t (2.163)
o(t-7)=0 for t#7 (2139 is y(t-17), and it satisfies
—o at =7
y(t—7)=0 for t<z (2.164)
and
his situation is illustrated in Figure 2.80. It follows that the delayed-impulse input 6(t — 7),
aving time delay 7, produces the delayed response h(t—1).
A given input u(t) can be divided approximately into a series of pulses of width At
and magnitude u(7)-At. In Figure 2.81, for A7 — 0, the pulse shown by the shaded area
becomes an impulse acting at t =7, having the magnitude u(t)-dz. This impulse is given
by 6(t—7)u(t)dr. In a linear, constant-parameter system, it produces the response
'h(t—‘r)u(‘r)dr. By integrating over the entire time duration of the input u(t), the overall
response y(t) is obtained as

Jm S(t—1)dt=1 (2.157)
The Dirac delta function has the following well-known and useful properties:

[ woe-nat= o) (2.158)

and

() = j "Wt — () dz
’ (2.165)

") gy gy SO

(2.159)
L dr at"

t=t1

= j "Wt -1)dr
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Response to a delayed input.
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FIGURE 2.81

General input treated as a continuous series of impulses.
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~ Equation 2.150 is known as the convolution integral. This is in fact the forced response,
_under zero initial conditions.

2.13.2 Stability

Many definitions are available for stability of a system. For example, a stable system may
pe defined as one whose natural response (i.e., free, initial-condition response) decays to
zero. This is in fact the well-known asymptotic stability. If the initial-condition response
oscillates within finite bounds we say the system is marginally stable. For a linear, time-
invariant system of the type Equation 2.148, the free response is of the form Equation 2.153.
Hence, if none of the eigenvalues 4, have positive real parts, the system is considered
stable, because in that case, the response Equation 2.153 does not grow unbounded. In
particular, if the system has a single eigenvalue that is zero, or if the eigenvalues are purely
imaginary, the system is marginally stable. If the system has two or more poles that are
zero, we will have terms of the form c; + ct as in Equation 2.154 and hence it will grow
polynomially (not exponentially). Then the system will be unstable. Also note that, since
physical systems have real parameters, their eigenvalues must occur as conjugate pairs,
if complex. Since stability is governed by the sign of the real part of the eigenvalues, it
can be represented on the eigenvalue plane (or the pole plane or root plane). This is
illustrated in Figure 2.82.

.13.3  First Order Systems

Consider the first order dynamic system with time constant 7, input #, and output y, as
given by

I (2.166)
s-Plane
Im A (Eigenvalue Plane)
Ae
D
- (i
[::ifij: He
Ae
Ce
Es

FIGURE 2.82
Dependence of stability on the pole location (A and B are stable; C is marginally stable; D and E are unstable).
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Suppose that the system is starting from y(0) = y, and a step input of magnitude A ig
applied. The homogeneous solution is

. Due to linearity, using Equation 2.167 we can derive the response of the system to a
Wep input of magnitude A:

=i/T

Y, =ce Yaep = Yo " + Ak(1—e") (i)

The particular solution (see Table 2.12) is given by y, = A. Hence, the total solution is Now suppose that the unit step response of a first order system with zero ICs, was found

to be (say, by curve fitting of experimental data)

Y=y, +Y, =ce"+A

Yoep = 2:25(1 =€)

Substitute the IC: y(0) = y,. We get ¢ + A =y,. Hence
Then, it is clear from Equation ii that

Vi = =A™+ A = ye™ +AQ-e"7) (2.167)
=P s—hmgmm Partialar F‘“"ORPM Sy — k=225and 7=1/5.2 = 0.192

Vi e Yx Yy

The steady-state value is given by t — . Hence 2.13.5 Second Order Systems

A general high-order system can be represented by a suitable combination of first-order
and second-order models, using the principles of modal analysis. Hence, it is useful to
study the response behavior of second-order systems as well. Examples of second-order
systems include mass-spring-damper systems and capacitor-inductor-resistor circuits,
‘which we have studied in previous sections. These are called simple oscillators because
they exhibit oscillations in the natural response (free response) when the level of damping
is sufficiently low. We will study both free response and forced response.

!

Yo =A (2.168)

It is seen from Equation 2.167 that the forced response to a unit step input (i.e., A=1)is
(1-¢7""). Due to linearity, the forced response to a unit impulse input is 4 LA-etmy=1em
Hence, the total response to an impulse input of magnitude P is

2.13.5.1 Free Response of an Undamped Oscillator

We note that the equation of free (i.e., no excitation force) motion of an undamped simple
oscillator is of the general form

Yimpuise = Yo€ " + 26“” ‘ (2.169)

This result follows from the fact that

J F+wlx=0 (2.170)
E(Step Function) = Impulse Function

For a mechanical system of mass m and stiffness k, we have

o, = \/E (2.171)
m

For an electrical circuit with capacitance C and inductance L we have

and, due to linearity, when the input is differentiated, the output is correspondingly
differentiated.

Note from Equation 2.167 and Equation 2.169 that if we know the response of a first
order system to a step input, or to an impulse input, the system itself can be determined.
This is known as model identification. We will illustrate this by an example.

2.13.4  Model Identification Example

Consider the first order system (model) 0, =,7= (2172)

Ty+y=ku @) To determine the time response x of this system, we use the trial solution:

Note the gain parameter k. The initial condition is y(0) = y,. x=Asin(w,t+¢) (2.173)
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FIGURE 2.83
Free response of an undamped simple oscillator.

in which A and ¢ are unknown constants, to be determined by the initial conditions (for
x and x); say,

x(0)=x,, #0)=0, (2.174)

Substitute the trial solution into Equation (2.170). We get
(-Aw? + Ao})sin(,t+¢)=0

This equation is identically satisfied for all t. Hence, the general solution of Equation 2.170
is indeed Equation 2.173, which is periodic and sinusoidal.

This response is sketched in Figure 2.83 (the subscript in @, is dropped for convenience).
Note that this sinusoidal, oscillatory motion has a frequency of oscillation of @ (radians/s).
Hence, a system that provides this type of natural motion is called a simple oscillator. In
other words, the system response exactly repeats itself in time periods of T or at a cyclic
frequency f = (Hz). The frequency @is in fact the angular frequency given by o =27nf. Also,
the response has an amplitude A, which is the peak value of the sinusoidal response. Now,
suppose that we shift this response curve to the right through ¢/w. Consider the resulting
curve to be the reference signal (with signal value = 0 at t = 0, and increasing). It should
be clear that the response shown in Figure 2.83 leads the reference signal by a time period
of ¢/w. This may be verified from the fact that the value of the reference signal at time t
is the same as that of the signal in Figure 2.83 at time - ¢/w. Hence ¢ is termed the phase
angle of the response, and it is a phase lead.

The left-hand-side portion of Figure 2.83 is the phasor representation of a sinusoidal
response. In this representation, an arm of length A rotates in the counterclockwise direc-
tion at angular speed @. This is the phasor. The arm starts at an angular position ¢ from
the horizontal axis, at time t = 0. The projection of the arm onto the vertical (x) axis is the
time response. In this manner, the phasor representation can conveniently indicate the
amplitude, frequency, phase angle, and the actual time response (at any time f) of a
sinusoidal motion.
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2.13.5.2  Free Response of a Damped Oscillator

Energy dissipation may be added to a mechanical oscillator by using a damping element.
For an electrical circuit, a resistor may be added to achieve this. In either case, the equation
motion of the damped simple oscillator without an input, may be expressed as

¥ +200 % +@2x =0 (2.175)

Note that { is called the damping ratio.
Assume an exponential solution:

x=iCe® (2.176)

This is justified by the fact that linear systems have exponential or oscillatory (i.e., complex
exponential) free responses. A more detailed justification will be provided later.
Substitute, Equation 2.176 into Equation 2.175. We get

[lz +28w A+ a),f] Ce¥=p
Note that Ce* is not zero in general. It follows that, when 1 satisfies the equation:

P +2w A+ 0> =0 (2.177)

then, Equation 2.176 will represent a solution of Equation 2.175. As noted before,
Equation 2.177 is the characteristic equation of the system. This equation depends on the
natural dynamics of the system, not the forcing excitation or the initial conditions. Solution
of Equation 2.177 gives the two roots:

A=~lo £/ -1w

n

=A and 4,

n

(2.178)

These are the eigenvalues or poles of the system. When A, # 4,, the general solution is

x=Ceh +C,e™ (2.179)

The two unknown constants C, and C, are related to the integration constants, and can
be determined by two initial conditions which should be known.

If 2,=A,=24; we have the case of repeated roots. In this case, the general solution
Equation 2.179 does not hold because C; and C, would no longer be independent constants,
to be determined by two initial conditions. The repetition of the roots suggests that one
term of the homogenous solution should have the multiplier ¢ (a result of the double
Integration of zero). Then the general solution is,

x=Ce +C,te" (2.180)



184 Mechatronics: An Integrated Approach yynamic Models and Analogies 185

We can identify three ranges of damping, as discussed below, and the nature of the

Initial Conditions:
response will depend on the particular range of damping. T

- x(0)=x,, ¥(0)=1, as before. Then,
i

Case 1: Underdamped Motion ({<1) x =A, and v =—{w A+ A (2.187)
In this case it follows from Equation 2.178 that the roots of the characteristic equation are ot ! e
or,
A=—Clw +i1-C*w =—lw, *+jo,=A, and 4 2.181)
C n ] C n C n ] d 2’1 2 ( ) A2 _ _17—_*_ C(Onxo (2188)
o, o,

where the damped natural frequency is given b
§ SRy g y Yet, another form of the solution would be:

0, =1-{o, (2.182) x =A™ sin(w,t +¢) 2189
CaN

Here A and ¢ are the unknown constants with

Note that A, and A, are complex conjugates, as required. The response (Equation 2.179),
in this case, may be expressed as

(a2 a2 . A
x=e o[ Ce + Cye o | (2.183) b
Iso
The term within the square brackets of Equation 2.183 has to be real, because it represents A d A 2191
the time response of a real physical system. It follows that C, and C, as well, have to be P A2 4 A2 and. g A_z (2191)
1 2

complex conjugates.
Note that the response x — 0 as t— co. This means the system is asymptotically stable.

NOTE e/ = cosw t+jsinw,t )
&1 ! Case 2: Overdamped Motion ({>1)
In this case, roots A, and A, of the characteristic Equation 2.177 are real and negative.

—iwt .. - spe
e =cosw,t - jsinw,t Specifically, we have

So, an alternative form of the general solution would be A =—Lo, + /CZ -1 @,<0 (2.192)
x=e"[A cosw,t+ A, sinw 1] (2.184) A=—Llo,-C-1 o <0 (2.193)

and the response Equation 2.179 is nonoscillatory. Also, since both A, and A, are negative,
X = 0 as t — oo. This means the system is asymptotically stable.
From the initial conditions x(0)=x,, x(0)=0v, we get

Here A, and A, are the two unknown constants. By equating the coefficients it can be
shown that

A =C+C, |
A, =j(C-G) (2158 x,=C,+C, @)
Hence and
v, = 4G+ 4,C, (i1)
Cl = l(Al - jAz) i :
2 (2.186) Multiply the first IC Equation i by A;: Ax,=A4,C +AC, (i)
1 ; ] 1
G = E(Al +j4,) Subtract Equation iii from Equation ii: v, = Ax,=Cy (A, — 1)
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We get:

v, — A%
C =—0o "%
: A2—2'1

(2.194)

Similarly, multiply the first IC Equation i by A, and subtract from Equation ii. We get

v, — X, = C(4—4,)

Hence

= Uo - A’qu

Cl_ 2‘1 —;Lz

Case 3: Critically Damped Motion ({=1)
Here, we have repeated roots, given by

A=N,=-0,
The response, for this case is given by (see Equation 2.180)
x=Ce " +Cyte™
Since the term e " goes to zero faster than t goes to infinity, we have
te™" —0 as t—> oo

Hence the system is asymptotically stable.
Now use the initial conditions x(0)=x,, x(0)=1v,. We get,

Hence

C,=v,+ox,

(2.195)

(2.196)

(2.198)

(2.199)
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TABLE 2.14
Free (natural) Response of a Damped Simple Oscillator

System Equation:

X+20w,x+ wlx=0

Undamped natural frequency o, = \/z
m

b
Damping ratio { = ——
PIng EHap= -
Characteristic Equation: A”+2{w, A+ ®? =0

Roots (eigenvalues or poles): A and A, =—{w, /(> -1 o,
Response: x=C,e™ +C,e™ for unequal roots (1, # 1,)
x=(C, +C,t)e* for equal roots (1, = A, = 1)
Initial Conditions: x(0)=x, and x(0) = v,
Case 1: Underdamped ( {<1)
Poles are complex conjugates: —(w, +jw,
Damped natural frequency @, =+1-,
x= g %! [Clej’""' + Cze‘j”’ﬂ‘]
A, =C,+C,and A, =j(C,~C,)
= ¢e™[A cos w,t+ A, sin 0,t] C,=1(A,—jA,)and C, = 1(A, +jA,)
A
=, 2 2 S |
= Ae™' sin (0t +¢) A =yA; +A;and tan¢~A—2
vﬂ + Cwnxo

ICs give: A, =x,and A, =
[0}

d

Logarithmic Decrement per Radian: o= Llnr -_&

27n 1— ¢?

= decay ratio over n complete cycles. For small §: (=«

x(t)
x(t+nT)
Case 2: Overdamped (§ > 1)

Poles are real and negative: 1,, 4, =—(w, %+ [e2 = 1,

x=CeM +Ce™

where 7=

v, — A, X, v, — AX,
L 20 gpnd C,=22 10 s

) =1
1 2 2~ M

Case 3: Critically Damped ({=1)
Two identical poles: 4,=4,=1=-,

x=(C,+C,t)e™" with C,=x, and C,=0,+m,x,

sioverdamped). It follows that we may define the damping ratio as

damping constant

{ = damping ratio = - 7 o
damping constant for critically damped conditions

187

The main results for free (natural) response of a damped oscillator are given in Table 2.14.

= itically d ed response because below this value, the ‘
B e e i s b The response of a damped simple oscillator is shown in Figure 2.84.

response is oscillatory (underdamped) and above this value, the response is nonoscillatory
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Free response of a damped oscillator: (a) Und

2.13.5.3 Forced Response of a Damped Oscillator

The forced response depends on both the na

erdamped; (b) Critically Damped; (c) Overdamped.

tural characteristics of the system (free respons

‘ Dynamic Models and Analogies 189

' : ; ;
We will consider the response of this system to three types of inputs:

1. Impulse input
2. Step input
3. Harmonic (sinusoidal) input

. Impulse Response: Many important characteristics of a system can be studied by ana-
lyzing the system response to a baseline excitation such as an impulse, a step, or a
sinusoidal (h ic) input. Characteristics which may be studied in thi

sinusoidal (harmonic) input. Characteristics which may be studied in this manner may
include system stability, speed of response, time constants, damping properties, and nat-
qural frequencies. As well, an insight into the system response to an arbitrary excitation
can be gained. Responses to such test inputs can also serve as the basis for system
‘comparison. For example, it is possible to determine the degree of nonlinearity in a system

conveniently determined by the Laplace transform approach (See Appendix A). However,
in the present section we will use a time-domain approach, instead. First integrate
quation 2.200, over the almost zero interval from =0~ to t=0". We get

7(0%) = §(07) — 2¢w, [(0%) - y(0)] - oo J‘ y dt + @ J u(t)dt (2.201)
0" 0~

Suppose that the system starts from rest. Hence, y(07)=0 and 7(07)=0. Also, when an
impulse is applied over an infinitesimally short time period [07,0"] the system will not
pe able to move through a finite distance during that time. Hence, y(0%)=0 as well, and
ermore, the integral of y on the RHS of Equation 2.201 also will be zero. Now by
ition of a unit impulse, the integral of u on the RHS of Equation 2.201 will be unity.
ce, we have y(0")=w?. It follows that as soon as a unit impulse is applied to the
ystem (Equation 2.200) the initial conditions will become
y(0)=0 and y(0")=w? (2.202)
Iso, beyond f=0" the excitation u(t) =0, according to the definition of an impulse. Hence,
impulse response of the system (Equation 2.200) is obtained by its homogeneous
Olution (as carried out before, under free response), but with the initial conditions given
y Equation 2.202. The three cases of damping ratio ({<1,{>1, and { =1) should be
Onsidered separately. Then, we can conveniently obtain the following results:

wn

i ically, as noted before, the total response is the su
and the nature of the input. Mathematically, a Yy o by

i icular soluti
of the homogeneous solution and the partic : :
lator, with il;gput u(f) scaled such that it has the same units as the response y; thus

ij+28,y+ o5y = @u(®) @2

Yimpuise () = H(t) = Wexp(—g“wnt) sinmt for {<1 (2.203a)
)

Yimpuise (£) = h(t) = ﬁ[exp Mt—expA,t] for {>1 (2.203b)

Yimpuise () = (1) = @}t exp(-w,t)  for (=1 (2.203¢c)
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FIGURE 2.85

Impulse-response function of a damped oscillator.

An explanation concerning the dimensions of h(t) is appropriate at this juncture. Note that
y(t) has the same dimensions as u(t). Since h(t) is the response to a unit impulse 6(f), it
follows that these two have the same dimensions. The magnitude of 4(t) is represented
by a unit area in the u(t) versus ¢ plane. Consequently, 8(t) has the dimensions of (1/time)
or (frequency). It follows that h(t) also has the dimensions of (1/time) or (frequency).

The impulse-response functions given by Equation 2.203 are plotted in Figure 2.85 for
some representative values of damping ratio. It should be noted that, for 0 < § <1, the
angular frequency of damped vibrations is @, which is smaller than the undamped natural
frequency w,.

The Riddle of Zero Initial Conditions: For a second-order system, zero initial conditions
correspond to y(0) =0 and (0) = 0. Itis clear from Equations 2.203 that 1(0) =0, but h(0) =0,
which appears to violate the zero-initial-conditions assumption. This situation is charac-
teristic in a system response to an impulse and its higher derivatives. This may be explained
as follows. When an impulse is applied to a system at rest (zero initial state), the highest
derivative of the system differential equation momentarily becomes infinity. As a result,
the next lower derivative becomes finite (nonzero) at t =0". The remaining lower deriva-
tives maintain their zero values at that instant. When an impulse is applied to the mechanical
system given by Equation 2.200 for example, the acceleration j (f) becomes infinity, and
the velocity 7/ () takes a nonzero (finite) value shortly after its application (t = 0%). The
displacement y(f), however, would not have sufficient time to change at t= 0*. The impulse
input is therefore equivalent to a velocity initial condition in this case. This initial condition
is determined by using the integrated version (Equation 2.201) of the system Equation 2.200,
as has been done.

Step Response: A unit step excitation is defined by
Uut)=1 for t>0

(2.204)
=0 for t<0
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Unit impulse excitation §(f) may be interpreted as the time derivative of U(t):

o(t)= % (2.205)

Note that Equation 2.205 re-establishes the fact that for nondimensional j(t), the dimen-
sion of &(f) is (time)™. Since a unit step is the integral of a unit impulse, the step response
can be obtained directly as the integral of the impulse response; thus

Yaep(t) = Lth(r)dr (2.206)

This result also follows from the convolution integral (2.165) because, for a delayed unit
step, we have

Ut-7)=1 for t<t
(2.207)
=0 for 72>t

Thus, by integrating Equations 2.203 with zero initial conditions the following results are
obtained for step response:

Ysep()=1- -z exp(—¢w, Hsin(w,t+¢) for & <1 (2.208a)
Yatep = 1= 2—1——52'%[/11 expAt—A,expAt] for {>1 (2.208b)
Ysep =1 (@t +Dexp(-0,t) for {=1 (2.208¢)
with
cos p=¢ (2.195)

The step responses given by Equations 2.208 are plotted in Figure 2.86, for several values
of damping ratio.

Note that, since a step input does not cause the highest derivative of the system
equation to approach infinity at ¢ =07, the initial conditions which are required to solve
the system equation remain unchanged at ¢=0%, provided that there are no derivative
terms on the input side of the system equation. If there are derivative terms in the input,
then, a step will be converted into an impulse (due to differentiation), and the situation
can change.

It should be emphasized that the response given by the convolution integral is based
on the assumption that the initial state is zero. Hence, it is known as the zero-state response.
In particular, the impulse response assumes a zero initial state. As we have stated, the
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y(t) TABLE 2.15
- Useful Concepts of Forced Response
.l =
Convolution Integral: Response yzt (I) h(t—t)u(t)d =] h(t)u(t—r)dz
0
where 1 = excitation (input) and & = impul: i i
i pulse response function (response to a unit
%’ Damped Simple Oscillator: §/+2{0, 7 + 7y = 0u(t)
o
é {=05 Poles (eigenvalues) A,,4, =—(w, +/{*-1w, for{=1
(% 1 - =—{o, *jo,for (<1
E @, = undamped natural frequency, @, = damped natural frequency
(=20 { = damping ratio.
Note: @, =1-w,
Impulse Response Function: 9]
(zero ICs) h(t)= 1—"52 exp(~¢w, f)sinw,r  for <1
; ! - ' : ; : "
0 \ . n . =2 2_1[c:xp/'th—f;:xp/'th] for{>1
Time (non-dimensional) @t
=wltexp(—w,t) for{=1
Unit Step Response: 1
FIGURE 2.86 W s
Unit step response of a damped oscillator. (zero ICs) tep [1_e2 p(~{w,b)sin (wt+¢) for {<1
o 1
1 42 \/{2_—150" [A expA,t—A,expAt] for{>1
. . " & . ¥ A b B 1 - (wnt+1 : t -
zero-state response is not necessarily equal to the particular solution” in mathematical epred o et
analysis. Also, as t increases (t — o), this solution approaches the steady-state response oS0
denoted by y,,, which s typically the particular solution. The impulse response of a system Note: Impulse R d
is the inverse Laplace transform of the transfer function. Hence, it can be determined using T Koty eepras
Laplace transform techniques (See Appendix A). Some useful concepts of forced response
are summarized in Table 2.15. ‘ Th ticul i
e particular solution x, that satisfies Equation 2.210 is of the form (see Table 2.12)
2.13.5.4 Response to Harmonic Excitation x, =a,coswt+a,sinwt {Except for the case: {=0and 0 =0,} (2.211)
. ;

In many engineering problems the primary excitation typically has a repetitive period
nature and in some cases this periodic input function may even be purely sinusoid
Examples are excitations due to mass eccentricity and misalignments in rotational comp
nents, tooth meshing in gears, and electromagnetic devices excited by ac or periodic electr
signals. In basic terms, the frequency response of a dynamic system is the response toap
sinusoidal excitation. As the amplitude and the frequency of the excitation are changed,

response also changes. In this manner the response of the system over a range of excitati
frequencies can be determined, and this set of input-output data represents the frequen
response. In this case frequency (w) is the independent variable and hence we are deali
with the frequency domain.

Consider the damped oscillator with a harmonic input, as given by

there the constants 4, and 4, are determined by substituting Equation 2.211 into the system

i+wlx=acoswt with w#o, (2.212)

:‘: I .
Flomogeneous solution:

#4200, %+ wlx = acosot = u(t) (2.210) ~ _
x,=A coswt+A,sinw t (2.213)
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Particular solution: This is a “stable” response in the sense of bounded-input bounded-output (BIBO) stability,

@s it is bounded and does not increase steadily.

X, = ﬁcos ot (2.214)

> NoTE If there is no forcing excitation, the homogeneous solution H and the free response
n

X will be identical. With a forcing input, the natural response (the homogeneous solution)

NOTE It can be easily verified that x, given by Equation 2.214 satisfies the forced system will be influenced by it in general, as clear from Equation 2.218a.

Equation 2.210, with {'= 0. Hence it is a particular solution.

9. Undamped Oscillator with ® =, (Resonant Condition):

This is the degenerate case. In this case the x, that was used before is no longer valid
pecause, otherwise the particular solution could not be distinguished from the homoge-
neous solution and the former would be completely absorbed into the latter. Instead, in
view of the “double-integration” nature of the forced system equation when w =w,, we
use the particular solution (P):

Complete solution:

x=A cosw,t+A,sinw,t +%cos ot (2.215)
G

H

P
Satisfies the homogeneous  Satisfies the equation with input.

equation. at

x,=_——sinwt (2.219)
2w

Now A, and A, are determined using the initial conditions (ICs):

This choice of particular solution is strictly justified by the fact that it satisfies the forced

system equation.

H0)=x, and x0)=o, (2218 Complete solution:
Specifically, we obtain
3 # x=A, cosot+ A, sincot+2a—tsina)t (2.220)
0]
a
x,=A + pr (2.217a) ics:
v,=A,0, (2.217b) x(0)=x, and x(0)=v,.
Hence, the complete response is By substitution we get
x,=A (2.221)
x= [xn —%{ICOS ,t+ Zo gin ot +— 2 > cos @t (2.218a)
(0;-07) On i Wy v, = 0A, (2.222)
~ b
Homogeneous solution. Particular solution. The total response:
0, .
=x,cosW,t+ ;ﬂsmwnt + (a’,f g [cos wt—cos a)nt] (2.218b) X=X, cos@t + %sinwt +%sina)t (2.223)
2 ZSthsm(”’"‘z_“’)t ¥ %
F Free response (Depends on ICs) Forced response (Depends on Input)
Free response *Forced response (depends on input) *Sinusoidal with frequency . *Amplitude increases linearly.

D . .
(Depends only on ICs) Comies from bofh. %, and &, Since the forced response increases steadily, this is an unstable response in the bounded-

input-bounded-output (BIBO) sense. Furthermore, the homogeneous solution H and the

Comes from x,; Sinusodal at @, *Will exhibit a beat phenomenon for
free response X are identical, and the particular solution P is identical to the forced

small o, —w;ie., ©,+0) wave response F in this case.
2 Note that the same system (undamped oscillator) gives a bounded response for some
“modulated” by (0, ~) wave. excitations while producing an unstable (steady linear increase) response when the
2 excitation frequency is equal to its natural frequency. Hence, the system is not quite
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| 9
Response 3. Damped Oscillator:
The equation of forced motion is
04 i X+2lw x+@ix =
‘ Time t o, % +o}x = acos ot (2.224)
) 'Particul'ar Solution:_ Since derivatives of both odd order and even order are present in
Y ;ﬂus_ qua’aon, the part.lcular solution should have terms corresponding to odd and even
derivatives of ﬂ'_‘e forcing function (i.e., sin @t and cos wt). Hence, the appropriate partic-
qular solution will be of the form: ' 3 part
Response N T ) .
’ . y x, =a,coswt +a, sinwt (2.225)
; {\ (\ % A (\ ﬁ Substitute Equation 2.225 into Equation 2.224. We get
" | M \
VV \l \} /N Time t ) L,
\ ; | —w*a, coswt —wa, sinwt+2{w, [-wa, sin wt + wa, cos wt]
A B | +w; [a, coswt +a, sinwt] = acos wt
(b) . -
Equate like coefficients:
Response .
R D
__________ o’a, +2{w, wa, + a)ﬁal =
T —n%g — 9. _
0 A_\Q/\_ /\ /\ /\ . , wa, - 200,00, + 0,0, =0
“““““ \/ N \/ V Time ¢ Hence, we have
__________ i
------------- (@2 - a)z) a,+2 e
) . \+20w,00,=a (2.226a)
(©
— 2 2
FIGURE 2.87 240,00, +(0; - 0?) 2,=0 (2.226b)
Forced response of a harmonic-excited undamped simple oscillator: (a) For a large frequency difference; (b) For R
a small frequency difference (beat phenomenon); (c) Response at resonance. This can be written in the vector-matrix form:
(@2 -0?) 200 [al} {a
_ 2 9 = (2.226¢
unstable, but is not quite stable either. In fact, the undamped oscillator is said to Dt 2o,0 (0,-0%) & 0 )
marginally stable. When the excitation frequency is equal to the natural frequency i '_
reasonable for the system to respond ina complementary and steadily increasing ma Solution is
because this corresponds to the most “receptive” excitation. Specifically, in this case,
excitation complements and reinforces the natural response of the system. In 0 5 g
words, the system is “in resonance” with the excitation, and the condition is calle ! =l (0, -0°) -20o.0 ||q
resonance. Later on we will address this aspect for the more general case of a dampec 4, D|2tw o (@2—a?)||0 (2.227)
oscillator. n n
Flg}lre 2.$7 s.hows typical forced responses of an undamped o'scﬂlator f'or a 1;.arge‘ d With the determinant
ence in excitation and natural frequencies (Case 1); for a small difference in excitation '
natural frequencies (also Case 1), where a beat-phenomenon is clearly manifested; and f0
= {2 2
D=(o} - ) +(2o,0) (2.228)

the resonant case (Case 2).
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TABLE 2.16
Harmonic Response of a Simple Oscillator

Undamped Oscillator: F+@ix=acos ot x(0) = x,, x(0) =7,

For o#®,:

Uy a
X =x,C080,t+—-sin®, t+—5— [cos ot —cos @, t]
n a)l’l - w
e %
X F

x = Same X+£—sinwt
2w

For o = ®,(resonance):

Damped Oscillator: ¥ +20,%+ w*x =acoswt

Z=H+ cos(wt—0)

a
‘w,z, —0®+2jl0,0

2l »
where, tan ¢ = 5 s
W, —®

Particular solution P is also the steady-state response.

¢ = phase lag.

Homogeneous solution H = At + At
where, A, and A, are roots of A +28w, A+ ®2=0 (characteristic equation)

A, and A, are determined from ICs: x(0) = x,, x(0) =7,
Resonant Frequency: ©, =1-2¢ ‘o,
The magnitude of P will peak at resonance.

Aw 0,0 .
Damping Ratio: 80 _ %1 for low dampin
ping ¢ 20, ©,+0; ping

where, Aw = half-power bandwidth = @,—@;

Note: Q-factor = Z)Z) -1 for low damping

e

On simplification, we get

Transfer function concepts were discussed in previous
are outlined in Appendix A. Once a transfer function

2
&= (a) I;CU )a
a, = Zana)a

This is the method of “undetermined coefficients.”
Some useful results on the fre
Table 2.16.

2.13.6 Response Using Laplace Transform

quency response of a simple oscillator are summar

sections, and transform techniques
model of a system is available, 1
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response can be determined using the Laplace transform approach. The steps are:

1. Using Laplace transform table (A di )
(U(s)) of the input. (Appendix A) determine the Laplace transform

(0 JN6] talIl th.e La IaCe tIallSl()[”l ()i t}le
3- COIH/ eIt tlle eXpIeSSIOIl m Step 2 llltO aconv enleIlt fOIIIl (e.g., by paI tlal fI'aCtl()nS).

4. Using Laplace transform table, obtain the i
which gives the response y(t). 2 inveree Laplage teanuiarm of Yis],

Let us illustrate this approach by determining again the step response of a simple oscillator.

2.13.6.1 Step Response Using Laplace Transforms

Consider the oscillator system given b i :
i ; y Equation 2.200. Since LU(t) = 1/s, the uni
;'esponse of the dynamic system (Equation 2.200) can be obtained(t)) takjn, teh i ¢ step
Laplace transform of i g the inverse

1 o,
s (2.230a)

Y. == n
step (5) (Sz + zé»wns + wi)

To facilitate using the Laplace transf i i i
St thegform p ransform table, partial fractions of Equation 2.230 are

a a,+a,s

in which, the constants a,, a,, and i i
- e 1 0y, a, are determined by comparing the numerator poly-

2 . 2
W, = al(s +20w, s+ (D:) +5s(a, +a,5)

Then, a,=1,a,=-2{0,, anda, =-1.
Hence,

—S — é’wn
2+ 2w, s+ w,f)

1
Yoep(9)= S+ ( (2.230b)

Next, usin
! g Laplace transform tables, the inverse transform of E i i i
and verified to be identical to Equation 2.208. B

2.13.7 Computer Simulation

ijIIl 5 .

k- ;lgstocr; of thg response of a dynamic system by using a digital computer is perhaps

L g nvenient and Popular app_)roach to response analysis. An important advantage
y complex, nonlinear, and time variant system may be analyzed in this manner
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200
:n disadvantage is that the solution is not analytic and valid _only for a specific a. Human body: neuroelectric pulses
zrgt:?;l\ Olf course, symbolic approaches of obtaining analytical solutions usur:ig a digital p. Company: information
computer. are available as well. We will consider here rfmr(r:l\_ef?cal :I?th\(;; ;)1 of}lhe N b Powen plant: fuel rte
. ; . : : entia
The digital simulation typ1ca11y involves integration of a differ q 4. Automobile: steering wheel movement
e. Robot: voltage to joint motor
7= flyu,) (2.231) : ge fo Joit
f. Highway bridge: vehicle force
ation of this equation is by using 2.2 Real systems are nonlinear. Under what conditions a linear model is sufficient in

The most straightforward approach to digi.tal integr
trapezoidal rule, which is Euler’s method, as given by

a.
b.
c.
d.

Y1 =Y +f(yn,u",tn)At n=0,1,... (2.232)

Here ¢, is the nth time instant, 1, = u(t,), ¥, = y(t,); and At is .the inteéghratrilc;r;utrlznifst ,
(At_tn —t). This approach is generally robust. But depending on the n 1 ,"
func—ti(;g f, the integration can be ill behaved. Also, At has to be chosen sitflﬁc;{ent y SI]? :
: i iti digital integration is the Runge-Kutta

lex nonlinearities, a better approach of g : e
mﬁflfocc(i)mlf\ et)I:JI; approach, in each time step, first the following four quantities

computed:

gl = f(yn’ un/tn) (2233 2.3

At At 2.233b)
g2=f{(yn+gl—2—),un+%,(tn+ 2)] ( f

af At 2.2858
g3=f[(yn+g2—2—)’un+%’(tn+ 2 j} ( \,

"I g4 = f[(yn + gBAt)’ un+1’ tn+1]

2.4

; Then, the integration step is carried out according to

Af 2.234)
“ Yo=Y+ (& 28+ 288D (

At
Note that u_, = u(tn +7). .
Other sop}:izsticated approaches of digital simulation are available as we(lil. lP'ergaps' 7
| ‘ most convenient computer-based approach to simulation of a dynamic model 1s by

: i geveral such environments are cOmMY €
.c environment that uses block diagrams. g :
a graphi at is widely used is SIMULINK, which is an extension to MA

1.
th

cially available. One th
(See Appendix B).

2.14 Problems

studying a real systems?

Consider the following system equations:

¥+ (2sinwt +3)y + 5y = u(t)

3y -2y =u(t)

33 +21° +y = u(t)

51+ 2y + 3y = 5u(t)

i. Which ones of these are linear?

ii. Which ones are nonlinear?

iii. Which ones are time-variant?

Give four categories of uses of dynamic modeling.

List advantages and disadvantages of experimental modeling over analytical
modeling.

What are the basic lumped elements of
i. a mechanical system
ii. an electrical system?

Indicate whether a distributed-parameter method is needed or a lumped-parameter
model is adequate in the study of following dynamic systems:

vehicle suspension system (motion)

elevated vehicle guideway (transverse motion)
oscillator circuit (electrical signals)
environment (weather) system (temperature)
aircraft (motion and stresses)

large transmission cable (capacitance and inductance).

: Variables/parameters of interest are given in parentheses.

Write down the order of each of the systems shown in Figure P2.5.

Give logical steps of the analytical modeling process for a general physical system.
Once a dynamic model is derived, what other information would be needed for
analyzing its time response (or for computer simulation)?

A system is divided into two subsystems, and models are developed for these
subsystems. What other information would be needed to obtain a model for the
overall system?

2.7 Various possibilities of model development for a physical system are shown in
Bure P2.7. Give advantages and disadvantages of the SM approach of developing an
PProximate model in comparison to a combined DM+MR approach.

isa” ic” ial case of any general system?
2.1 What is a “dynamic” system, a specia .
A typical input Vaz,ir;ble is identified for each of the following examples of d

systems. Give at least one output variable for each system.






