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CHAPTER 4

Response of First-Order and
Second-Order Systems

4.1 INTRODUCTION

In Chapter 1 we discussed the response of linear systems in a general way by using a
generic differential equation to describe the system behavior, without actually
deriving the equation. In this chapter, we derive first the differential equations
governing the behavior of simple mechanical and electrical systems and then
produce their solution by the methods developed in Chapter 1. The discussion is
confined to first-order and second-order systems, In deriving the differential
equations describing mechanical and electrical systems, it becomes evident that
the equations for these two classes of systems are entirely analogous. Hence,
solutions obtained for mechanical systems are valid for electrical systems and
vice-versa. Although for the most part the various concepts introduced are com-
mon to mechanical and electrical systems, applications presented in this chapter
tend to favor mechanical systems.

The behavior of first-order systems is markedly different from the behavior of
second-order systems. Specifically, the free response of first-order systems tends
to have an aperiodic nature, in contrast to the response of second-order systems,
which tends to be oscillatory. Exceptions to the latter are mechanical systems
with relatively heavy damping and electrical systems with relatively large resistance.

Both first-order and second-order systems are mathematical idealizations of
actual physical systems. As far as mechanical systems are concerned, first-order
systems are less common. Nevertheless, on many occasions, first-order systems
can provide useful information concerning system behavior. Moreover, they are of
interest mathematically, as more complex systems can be formulated to resemble
first-order systems. Hence, their study is fully warranted. Second-order systems
are considerably more common, as they are used as mathematical models for a
large variety of systems. Refined models of engineering systems are often of high
order. In fact, distributed systems are of infinite order. However, in many instances
it is possible to gain substantial insight into the behavior of systems from low-
order models. Moreover, as shown later in this text, high-order systems can be
decomposed into a set of low-order ones.

Although the behavior of first-order systems is different from the behavior of
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94 Response of First-Order and Second-Order Systems

second-order systems, the mathematical techniques for obtaining their response
. are the same. For this reason, we choose to treat both first-order and second-
order systems in a single chapter and let the nature of the excitation dictate the

order of presentation of the material.

4,2 DIFFERENTIAL EQUATIONS OF MOTION
FOR MECHANICAL SYSTEMS

In Chapter 3, we presented a very fundamental discussion of particle dynamics,
beginning with Newton’s laws and ending with the motion of planets and satellites.
In the process, we introduced an entire spectrum of basic concepts, such as impulse,
momentum, work, and energy. In this section, we expand the discussion by deriving
the differential equations of motion for certain low-order mechanical systems of
particular interest in vibrations and control. Then, in subsequent sections, we
devote a great deal of attention to the solution of these equations of motion.

Before we can derive the system differential equations of motion, it will prove
convenient to introduce certain definitions and notations. We wish to distinguish
between variables and components, or elements. Variables refer to quantities
describing excitation and response, and they are functions of time. Components,
or elements, refer to parts of the system and they are identified with the system
parameters. Although they can depend on time, only constant parameters will be
considered here,

In the case of mechanical systems, the variables can be identified as the force and
the displacement. At times, the velocity or the acceleration can play the role of
variable. Mechanical components are of three types: two that store energy and
one that dissipates energy. In particular, masses store kinetic energy, springs store
potential energy, and dampers dissipate energy.

The relation between the excitation and response for the various mechanical
components can be derived by means of the free-body diagrams shown in Fig, 4.1.
Indeed, these relations are

Snlt)=ma(t)=m3(t) (4.1a)
Je(t)=clva() — vy ()] =c[X2(0) — %, ()] (4.1b)
Ju®) =k x2(t) — x4 (8)] (4.1¢c)

where the overdots represent derivatives with respect to time. Equation (4.1a) is
merely an expression of Newton’s second law of motion, and it states that a force

r-»a=f U= iy W =X X %2
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FIGURE 4,1
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Ju(?) causes the mass m to move with the acceleration a(t) = X(t), where x(t) is the
displacement of the mass. Equation (4.1b) states that a force f.(t) applied at two
terminal points 1 and 2 of a damper with the coefficient of viscous damping ¢ will
cause the two terminal points to separate with the relative velocity v,(t) —v(t)=
%5(£)— %1 (¢). The equation is an expression of the fact that forces causing smooth
shearing in viscous liquid are proportional to the relative velocity between the
shearing layers. Viscous dampers are also known as dashpots. Finally, Eq. (4.1c)
states that a force fi(f) applied at the two terminal points of a linear spring of
stiffness k causes an elongation of the spring equal to x,{t) —x,(t). The equation
reflects the fact that in linear elasticity displacements are proportional to forces.
The constant of proportionality k is also known as the spring constant. In SI units,
the unit of force is the newton (N), the unit of mass is the kilogram (kg), and the
unit of displacement is the meter (m). Of course, the unit of time is the second (s).
1t follows from Eqgs. (4.1b) and (4.1c) that the unit of the viscous damping coefficient
c is newton-seconds per meter (N-s/m) and that of the spring constant k is newtons
per meter (N/m).

In the above discussion, it was assumed implicitly that the excitation-response
relation is linear. This assumption is not always valid, and it is perhaps worth
examining in detail. Letting x; =0 and x, = x in Fig. 4.1¢, a typical force—-displace-
ment relation for the spring is as shown in Fig. 4.2. For relatively small spring
deflections, the deflections are proportional to the force, i.e., the spring is linear.
Beyond a certain deflection x=x,, however, small force increments produce
relatively large deflection increments, so that beyond x=x; the spring becomes
nonlinear. Such a spring is known as a softening spring. Note that a different type
of nonlinear spring is the hardening spring, for which deflection increments
require increasingly large force increments. Cleatly, the spring can be regarded
as linear provided the deflections satisfy the inequality x(f)] <x,. The range
—x;<x(t) < x; is known as the linear range.

In the above discussion, we have examined how various mechanical components
act separately. We are now in a position to derive the differential equations govern-
ing the behavior of the assembled system. We confine ourselves to one of the
simplest cases, namely, one in which only one variable is necessary to describe the
system behavior. In the case of mechanical systems, this variable is ordinarily the
displacement, referred to as a coordinate. -

—
l range

FIGURE 4,2
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Let us consider the system shown in Fig. 4.3a, which is known as a damper—
spring system. Figure 4.3b shows a free-body diagram of the system. We assume
that the bar transmitting the force f(¢) to the damper and spring is massless, so
that Newton’s second law, Eq. (3.4), reduces to

Y, Fy= f(t)—cx(t)— kx(t)=0 (4.2)
which can be rearranged as follows:
ex(t)+ kx(t)= f(t) 4.3)

Equation (4.3) represents an ordinary differential equation of first order, so that
the system is called a first-order system. The solution of Eq. (4.3) consists of two
parts, the first corresponding to f(t)=0 and the second corresponding to f(t)+0.
They are known as the homogeneous solution and the particular solution, respec-
tively. We shall discuss the solution of Eq. (4.3) later in this chapter,

Let us consider now the system of Fig. 4.4a. The system is commonly known as a
mass-—-damper—spring system and is a simplified physical model representative of a
large number of engineering systems, such as a piece of machinery on shock-
absorbing mounts, or a buoy in viscous liquid. The corresponding free-body
diagram is shown in Fig, 4.4b. Denoting the vertical displacement of the mass m
from the unstressed spring position by y(t), where the displacement is considered as
positive in the upward direction, and using Newton’s second law, we can write

Y Fy= [0~ £O) = il —mg=mj(t) (4.4)

Letting x, =0, x, =y in Egs. (4.1b) and (4.1¢), introducing the results into Eq. (4.4),
and rearranging, we obtain

mp(t)+ cy(t) + ky(t) + mg = f(¢) “4.5)
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FIGURE 4.4
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which represents the system equation of motion. The equation can be simplified
by eliminating the effect of the weight mg. Indeed, instead of measuring the dis-
placement of m from the unstressed spring position, we can measure it from the
static equilibrium position, the latter position being obtained from the former
position by letting the mass undergo the static deflection (Fig. 4.5)

S =mg/k (4.6)

o o f
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FIGURE 4.5

denoting the displacement from equilibrium by x(z), introducing the coordi-
nate transformation

y(t)=x(t) —d 4.7
into Eq. (4.5), and considering Eq. (4.6), we obtain
mxX(t) + cxX(t) + kx(t) = f(¢) 4.8)

so that by measuring the motion from the static equilibrium position, we can omit
the weight mg. The explanation for this fact is that in the process we omit not only
the weight mg but also a prestress in the spring with a resultant force equal to
kdy, because these two forces cancel each other out according to Eq. (4.6).

The time derivative of highest order in Eq. (4.6) is the second derivative. Hence,
the mass—-damper—spring system is a second-order system. It is commonly referred
to as a single-degree-of-freedom system,

Recalling the definition of linearity introduced in Section 1.3, we conclude that
the systems described by Eqs. (4.3) and (4.8) are linear. In Section 1.4 we gave an
example of a nonlinear differential equation and made the comment that it repre-
sented the equation of motion of a simple pendulum. At this point, it may prove of
interest to verify the statement by deriving this equation. To this end, let us consider
the simple pendulum shown in Fig. 4.6a. Using Newton’s second law, in conjunc-
tion with the free-body diagram of Fig. 4.6b, we can write the equation of motion in
the tangential direction

Y. Fy=—mg sin 0=q,=mL{ (4.9)

where g, = L# is the acceleration of the mass m in the tangential direction, in which
L is the length of the pendulum and § is the angular acceleration. Writing the
equation of motion in the tangential direction has the advantage that the string
tension T, which is in the normal direction, does not appear in the equation.
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(a) (b)
FIGURE 4.6

Note that we could have obtained essentially the same differential equation of
motion by writing the moment equation about 0. Equation (4.9) can be rewritten
in the form

mLO+mg sin §=0 (4.10)

which is a nonlinear differential equation. Comparing Eqgs. (4.8) and (4.10), we
conclude that the simple pendulum represents an undamped second-order system
with a nonlinear restoring force of magnitude mg sin 6. Moreover, comparing
Egs. (1.12) and (4.10), we conclude that Eq. (1.12) does indeed describe the motion
of a simple pendulum, provided c(£)=6(¢), ag=mL, and a, =myg.

4.3 DIFFERENTIAL EQUATIONS FOR
ELECTRICAL SYSTEMS

Electrical systems are encountered frequently in everyday life. Some of the most
common ones are the light bulb, electric heaters, and toasters. They are also some
of the simplest. A more complex one is the radio. Although not immediately
evident, for the most part the behavior of electrical systems is analogous to the
behavior of mechanical systems. In fact, it is possible to simulate mechanical
systems by electrical analogs, and vice versa. Electrical systems are ordinarily
known as networks, or circuits, and consist of arrays of electrical components, or
elements. Quite often, electrical and mechanical elements are put together into so-
called electromechanical devices. Typical examples of systems involving both
electrical and mechanical elements are control systems (see Chapter 11). Before we
proceed with the derivation of the differential equations describing the behavior of
electrical systems, it is advisable to establish relations governing the behavior of
the individual elements,

Electrical elements can be divided into three basic types: inductors, resistors,
and capacitors (sometimes known as condensers). The inductors and capacitors
store energy, and the resistors dissipate energy. Note that light bulbs, heaters, and
toasters are mere resistors. Clearly, as in the case of mechanical elements, the
electrical elements can be identified with the system parameters. As variables, we
can identify the voltage v(t) and the current i(t).

The relations between the voltage and the current for the various electrical
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elements are as follows:

(=1, 220 (“.11a)
vg(t) = Rig(t) (4.11b)
vc(t)=é J ic(t) dt 4.11¢)

The elements are shown in Figs. 4.7a, 4.7b, and 4.7¢ and can be identified as in-
ductor, resistor, and capacitor, respectively. The parameters L, R, and C charac-
terizing them are known as inductance, resistance, and capacitance, respectively.
The units of voltage, current, inductance, resistance, and capacitance are volts,
amperes (amp), henrys, ohms, and farads, respectively. Note that Eq. (4.11b) is the
well-known Ohnt’s law.

v () ——up(t)—— U (t) —-—]
N L N R . ¢
o~V TY o~ o—AN—o0~ o—|}—o"
it inft) i)
(a) () (@
FIGURE 4.7

The analogy between the mechanical components and the electrical elements
can be brought out by introducing the charge g{t), which is related to the current by

i) =dq(t)/dt (4.12)

where the unit of charge is the coulomb. Introducing Eq. (4.12) into Eqs. (4.11),
the analogy becomes self-evident: The inductor is the electrical analog of the mass,
the resistor is the analog of the damper, and the reciprocal of the capacitor is the
analog of the spring, Moreover, a voltage source plays the role of a driving force.
The analogy is made complete by observing that the resistor is the only electrical
clement dissipating energy.

The behavior of electrical networks is governed by Kirchhoff’s laws. There are
two such laws: the voltage law and the current law. In this chapter, we consider
only the voltage law. The current law is introduced in Chapter 11.

The voltage law can be stated as follows: The sum of voltage drops in the elements
of aloop is equal to the sum of applied voltages. A loop is an array of elements forming
a closed circuit, such as the system shown in Fig, 4.8. This particular loop consists
of a resistor R, a capacitor C, and a voltage source v(t). Using Kirchhoff’s law,
we can write

vr(t) + ve(t) =v(?) (4.13)
Introducing Egs. (4.11b) and (4.11¢) into Eq. (4.13) and recognizing that the current
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FIGURE 4.8

is the same within a given loop, we obtain
Ri(t)+é J i(t) dt =v(t) 4.14)
Moreover, considering Eq. (4.12), we can rewrite Eq. (4.14) in the form
Ri(0)+5 4(0) =0(0) @15

which is entirely analogous to Eq. (4.3). Hence, the system of Fig. 4.8 is the electrical
analog of the mechanical system of Fig. 4.3a. The system of Fig. 4.8 is known as an
RC circuit.

Next, let us consider the electrical system shown in Fig. 4.9. It consists of an
inductor L, a resistor R, a capacitor C, and a voltage source v(f). We refer to this
network as an LRC system, Using Kirchhoff’s voltage law, we can write

oL (8)+ vg(6)+ v () = v(t) (4.16)
L
NE
o(t) D i) SR
c
FIGURE 4,9

Introducing Eqs. (4.11) into Eq. (4.16), and recognizing that the current i(t) is the
same within a given loop, we obtain

Lil-:i(t-t)+Ri(t)+é J i(e) de = () @17

Moreover, considerihg Eq. (4.12), we can rewrite Eq. (4.17) in the form
. , 1
L§0)+R4()+ () =v(t) (4.18)

which is entirely analogous to Eq. (4.8) describing a mechanical system.
From the above discussion, we conclude that the behavior of the damper—
spring system or of the mass—damper—spring system can be simulated by means of
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electrical analogs having the form of an RC network or of an LRC network,
respectively. The analogous quantities become evident if one compares the co-
efficients of like derivatives in Eqs. (4.8) and (4.18).

The analogy between mechanical and electrical systems carries the implication
that the response of the two types of systems to the same excitation is the same.
Hence, in discussing the system response, it is not necessary to distinguish unduly
between mechanical and electrical systems.

4.4 FREE RESPONSE OF FIRST-ORDER SYSTEMS

The fiee response is defined as the response of a system in the absence of external
excitation, Hence, the free response represents simply the homogeneous part of
the solution, which is due entirely to initial conditions. This definition is somewhat
artificial, because quite often initial conditions are produced by some form of
initial external excitation. Nevertheless, the definition is helpful, as in the case of
linear systems it permits the derivation of the homogeneous solution independently
of the particular solution.

In Section 4.3, we established an analogy between mechanical and electrical
systems that allows us to ignore the distinction between the two types of systems
and treat them as if they belonged to a larger single class. In view of this, we propose
to classify systems according to the structure of the governing differential equations
alone. This permits us to extend the analogy to a large variety of systems, as
many mechanical systems are governed by differential equations that are similar
in structure to Eq. (4.8), and the only difference lies in the system parameters. To
carry out the joint analysis of similar systems, it will prove convenient to introduce
certain groupings of parameters, some of them having the same units and some of
them being nondimensional.

Let us consider a first-order homogeneous equation having the generic form

X +ax(t)=0 4.19)
where a is a parameter with the unit of reciprocal of seconds (s ~!). Equation (4.19)
is subject to the initial condition
x(0)=x, (4.20)
In the case of the mechanical system shown in Fig. 4.3a and described by Eq. (4.3),
x(¢t) is the displacement and
a=kfe (4.21)

where k is the spring constant and c is the coeflicient of viscous damping. In the
case of the electrical system shown in Fig. 4.8 and described by Eq. (4.15), x(t) is
the charge and

a=1/RC 4.22)

in which R is the resistance and C is the capacitance.
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The classical approach to the solution of Eq. (4.19) is to assume a solution in the
exponential form

x(t) = Ae" 4.23)
where A and A are constant scalars. Introducing Eq. (4.23) into Eq. (4.19), we obtain
(A+a)det =0 (4.24)
Because Ae’' cannot be zero for a nontrivial solution, Eq. (4.24) implies that
A+a=0 (4.25)
Equation (4.25) is known as the characteristic equation and has the solution
A=—a (4.26)
so that solution (4.23) becomes
x(t)=Ae ™ 4.27)

where A is a constant of integration that can be determined by invoking the initial
condition. Using Eq. (4.20) and introducing the notation

t=1/a (4.28)

where 7 is known as the system time constant, we can rewrite solution (4.27) in the
form
x()=xqe " e(t) (4.29)

and we note that the solution was multiplied by the unit step function «(f) in
recognition of the fact that the response is zero for £ <0. The solution of Eq. (4.29)
is plotted in Fig. 4.10 for several values of . We note that the response has an
aperiodic nature, as x(f) approaches zero asymptotically for all time constants 7.

For small time constants, it approaches zero faster.
The same solution can be obtained by the Laplace transform method (see

Appendix). Recalling Eq. (A.3), the transform of Eq. (4.19) can be written as
sX(s)—x(0)+aX(s)=0 (4.30)

where X (s) is the Laplace transform of x(t). Hence, using Eq. (4.20), we can rewrite
Eq. (4.30) in the form
1

X(s)=s+—a Xo 4.31)

FIGURE 4,10
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so that, using the table of Laplace transform pairs in Section A.7, we obtain the
inverse transform of X(s) in the form of Eq. (4.29). Note that the value s=—a is
known as a simple pole of X(s) and it coincides with the root of the characteristic
equation.

4,5 FREE RESPONSE OF UNDAMPED
SECOND-ORDER SYSTEMS, THE HARMONIC
OSCILLATOR

Consistent with the approach of Section 4.4, we wish to consider a generic differ-
ential equation, applicable to both mechanical and electrical systems, Nevertheless,
when the situation demands, we shall favor terminology more common to mechani-
cal engineering than to electrical engineering, Lack of damping implies that the
elements associated with energy dissipation, namely, the damper and the resistor,
are absent, so that there is no first-order derivative term in Eqgs. (4.8) and (4.18).
Hence, let us write the differential equation describing the behavior of a second-
order undamped system in the form

)+ 02x(f) =0 (4.32)

where w, is known as the natural frequency of the system. The meaning of the term
will become evident shortly. In the case of mechanical systems

W, = Jk/m (4.33)
and in the case of electrical systems
w,=J1/LC (4:34)

The behavior of a large number of diverse physical and engineering systems can
be described by Eq. (4.32). A classical example is the simple pendulum of Section
4.2, provided the motion is restricted to small angles, an assumption often referred
to as the small-motions assumption. Invoking the small-motions assumption,
which carries the implication that sin 60, we can rewrite Eq. (4.10) in the form

0 +w20()=0 (4.35)
where the natural frequency of the pendulum is simply
wn=~Jo/L (4.36)

Equation (4.32) is one of the simplest second-order differential equations. Its
general solution can be written in the form

x(t)=Ae (4.37)

Introducing Eq. (4.37) into Eq. (4.32) and using the same reasoning as in Section
4.4, we obtain the characteristic equation

At ?=0 (4.38)
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which has the roots
A ‘} = +iw, (4.39)
A2

Hence, the general solution (4.37) becomes
x(t)=Aget'+ Ayt = A &'t + Ao ot (4.40)

where A, and A, are constants of integration. They are complex quantities.
Because x(f) must be real, however, 4, must be the complex conjugate of A4,.
1t will prove convenient to introduce the notation

A, =%A¢““”, A, =4%AeY (4.41)
where 4 and Y are real. Inserting Eqs. (4.41) into Eq. (4.40), we obtain
x(t) =§ AL/t =¥) 4 o~ Hont=¥)] (4.42)

so that, recalling formula (1.20) and its complex conjugate, we can reduce Eq.
(4.42) to the real form

x(6)= A cos(w,t — ) (4.43)

where the constants of integration are now A and . It is easy to verify that the
solution of Eq. (4.32) can also be expressed as

x(t)=By sin w,t+ B, cos w,t (4,44)

where B, and B, are constants of integration. Then, comparing Eqs. (4.43) and
(4.44) and recalling that cos(e— ) =cos a cos ff +sin o sin §, we conclude that the
two sets of constants of integration, By, B, and A4, ¥, are related by

B=Asiny, B,=Acosy (4.45)

Equation (4.43) or Eq. (4.44) indicates that the free response of an undamped
second-order system consists of simple sinusoidal oscillation. Sine and cosine
functions are known as harmonic functions, and, consistent with this, Eq. (4.43)
is said to describe simple harmonic oscillation. Moreover, systems governed by
equations of the type (4.32) or (4,35) are called harmonic oscillators. The constants
A and  are known as the amplitude and phase angle of the oscillation, respectively.

Solution (4.43) can be conveniently discussed by means of the geometric con-
struction shown in Fig. 4.11, The amplitude A4 is represented in Fig. 4.11a by a
vector A making an angle w,t— with the vertical axis. Hence, at any time ¢ the
projection of the vector A on the vertical axis represents the solution x(t), Eq.
(4.43). The constants A, and A, can be interpreted as the Cartesian components of
the vector A, so that A is the diagonal of the rectangle with sides A; and 4,, where
the angle between A, and A is constant and can be recognized s the phase angle i,
As time unfolds, the angle w,t — increases linearly with it, causing the vector A
to rotate in the plane with the angular velocity ,. In the process, the vertical
projection of A varies harmonically with time. This projection is shown in Fig,
4.11b. At t=0 the projection is 4,, and at t =y/w, the projection reaches its peak
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FIGURE 4,11

at a value equal to the amplitude 4. Hence, we conclude from Fig. 4.11b that the
phase angle ¢ is a measure of the shift of the cosine function to the right. The
solution x(t) reaches a peak value of A once again after the time

T=2n/w, (4.46)

has elapsed, and at every integer multiple of T thereafter, where T is known as the
period of oscillation. Hence, the period represents the time between two con-
secutive peaks, or the time corresponding to one cycle of motion. It is commonly
measured in seconds (s). From Eq. (4.46), we conclude that the frequency w, is
measured in radians per second (rad/s). The natural frequency can also be defined
as merely the reciprocal of the period, or

h=1l/T=w,/2n (4.47)

where f, has units of cycles per second (cps). One cycle per second is commonly
known as one hertz (Hz). Clearly, high frequencies imply short periods and vice
versa,

It will prove of interest to examine the factors determining the period of the
mass-spring system and of the simple pendulum. From Egs. (4.33) and (4.46),
we can write

T =2n/mik (4.48)

so that the period T varies as the square root of m and is inversely proportional to
the square root of k. Hence, the period T can be increased by increasing the mass
or by decreasing the spring stiffniess, or both. Similarly, using Eqgs. (4.36) and (4.46),
we obtain the pendulum period

T=2nLjg (4.49)

But the quantity g represents the acceleration due to gravity. It is commonly
assumed to be constant, although it varies with the altitude as measured from the
sea level. For a given location, g can be regarded as constant, so that the period of
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the pendulum is proportional to the square root of its length. Hence, the interesting
fact is that the period is affected not by the mass of the bob but only by the pendu-
lum’s length, a fact known to ancient Greeks.

Solution (4.43) indicates that no matter how the motion is initiated, free oscilla-
tion always occurs at the frequency w,. From Eqs. (4.33) and (4.36), we observe
that w, depends only on the system parameters and not on external factors (gravity
excluded), so that w, reflects a natural property of the system, which is the reason
for it being called the natural frequency. Consistent with this, the simple harmonic
oscillation at the natural frequency w, can be regarded as a natural motion of the
harmonic oscillator. ‘

The concept of harmonic oscillator represents a mathematical idealization
more than a physical reality. Indeed, according to Eq. (4.43), once a motion is
initiated, it will perpetuate itself ad infinitum. This is in contradiction to observed
behavior, which indicates that the motion of a mass—spring system, or of a simple
pendulum, will come to rest eventually if allowed to oscillate freely. This behavior
can be attributed to the fact that every real system possesses some measure of
damping. In the case of the pendulum, factors causing the motion to decay are air
resistance and friction at the point of support. Nevertheless, the concept of a
harmonic oscillator has its place. For some systems, damping is so small that the
behavior is very close to that of a harmonic oscillator. In particular, if the interest
lies in motion over a relatively short time interval compared to the period, then
small damping may not have any noticeable effect over that interval.

Although the motion of a harmonic oscillator is always sinusiodal and the
frequency of oscillation is always the natural frequency w,, the amplitude 4 and
the phase angle i generally differ from case to case. Hence, the question remains
as to what determines A4 and . As mentioned earlier, 4 and \/ in Eq.(4.43) represent
constants of integration. Mathematically, the determination of two constants of
integration requires two conditions to be imposed on the solution. These con-
ditions can be the value of the solution at two distinct times. More commonly,
however, the two conditions are chosen as the value of the solution and of its first
derivative at a given time, such as t=0. In this case, they represent physically the
initial displacement and initial velocity. We denote them by

x(0)=xo,  X(0)=0vo (4.50)
Introducing Eqgs. (4.50) into Eq. (4.43), we obtain
x(0)=A cos Y =x,, X%(0)=w, 4 sin iy =v, 4.51)
so that
A=x5+vo/w,)%,  Y=tan”'(vo/wyxo) (4.52)

As a matter of interest, we note that, by inserting Eqs. (4.51) into Egs. (4.45) and by
using Eq. (4.44), we can write the solution directly in terms of the initial conditions

in the form

) x(t)=x, cos cu,1t+Bg sin wyt (4.53)

n

|
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Before considering the free vibration of damped systems, let us consider a
solution of Eq. (4.32) by the Laplace transformation method. Transforming Eq.
(4.32), we obtain

§2X () — sx(0) ~ X(0) + w2 X (5) =0 (4.54)
which yields the transformed response
s 1
X(5)= ¢
() =gz 7 XO+ 5 %0 (4.55)

The inverse transformation o0f X(s) can be obtained by the method of partial
fractions described in Section A.3. If we were to expand X(s) in terms of partial
fractions, then we would factor out the denominator as follows:

s*+ ol =(s—8;)(s — 52) = (5 — i, )5+ icw,) (4.56)

where s, =iw, and s, = —iw, are simple poles of X(s) (see Section A.3), Hence,
from Bqgs. (4.38) and (4.56), we conclude that the simple poles of X(s) are precisely
the roots of the characteristic equation. Because the functions s/(s*+w?) and
1/s% +w?) are listed in the table of Laplace transform pairs given in Section A.7,
expansion into partial fractions is actually not necessary. Indeed, using the table
of Section A.7, we obtain directly

x(t)=x(0) cos wnt+%0—) sin @, t (4.57)

n

- Equation (4.57) represents the response x(f) expressed in terms of the initial dis-

placement x(0) and initial velocity %(0), obtained earlier in the form of Eq. (4.53).

4.6 FREE RESPONSE OF DAMPED
SECOND-ORDER SYSTEMS

Letting the external excitation be equal to zero, we can write the differential
equation governing the free response of a damped second-order system in the form
%(6)+ 2Ly %(t) + wZx(t) =0 (4.58)

where { is a nondimensional parameter. Comparing Egs. (4.8) and (4.58), we
conclude that in the case of mechanical systems

{

¢
2mw,

(4.59)

in which thg natural frequency o, is given by Eq. (4.33). The nondimensional

parameter { is known as the viscous damping factor. On the other hand, comparing

Eqs. (4.18) and (4.58), it follows that for electrical systems
R

C—2Lwn

{4.60)
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where the natural frequency w, is given by Eq. (4.34). The solution of Eq. (4.58)
is subject to the initial conditions (4.50) and can be obtained by the approach of
Section 4.5.
Let us assume a solution of Eq. (4.58) in the exponential form
x(t)= Ce* (4.61)

where C and A are constant scalars, Introducing Eq. (4.61) into Eq. (4.58) and using
the same argument as for undamped systems, we conclude that the characteristic

equation for damped systems is

A2 2w A+ wi=0 (4.62)
Equation (4.62) has the roots
il}=(~¢’ + /=D, (4.63)
2

so that the roots depend on the viscous damping factor {. We distinguish the
following cases:

i. If¢ > 1, the roots are real, negative, and distinct, They are in the form given
by Eq. (4.63).
ii. If (=1, the roots are real, negative, and equal to one another, or
2’1 = ,12 = -—(,()n (4.64)

ifi. If { <1, the roots are complex conjugates with negative real part, or

M}=(—Cii\/1—cz)wn (4.65)

A2
The nature of the motion in each case depends on the roots A, and 4,, and hence

on the viscous damping factor {. We now discuss the above three cases separately.
For { > 1, the solution becomes

x(t)= Cle;'l'+ Cze)'zt

=Cy exp(—{+ 2= Dw,t+ C; exp(—{ =/ — Doyt

:__(Cle\/(1~l(o“l+Cze—vt,’2~lwn()e—§wnl (4.66)

where the constants of integration C, and C, depend on x, and v,. Because
{>J{2~1, the response x(t) decays exponentially with time, The motion is
aperiodic, ie., it approaches zero without oscillation. When {>1, the system
is said to be overdamped.

For { =1 the two roots coincide, 4, =1, = - w,. In this case, the solution can be
verified to have the form

x(6)=(C+ Cyt)e™ (4.67)

where C, and C, depend on x4 and v,. Once again, the motion can be shown to be
aperiodic, approaching zero asymptotically. The case {=1 is known as critical
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damping. From Eq. (4.59), we conclude that in the critical damping case the
coefficient of viscous damping has the value

Cor = 2mav, =2k ‘ (4.68)
For { <1, the solution becomes
x()=C eMt + C e*? =(C, &% 4 C e~ 0ut)p = font (4.69)

where the notation

wg=J1-Cw, (4.70)

has been introduced. Because x(f) must be real, C, must be the complex conjugate
of Cy, C,=Cy, so that Eq. (4.69) reduces to

x(t)=2 Re C,ei®dle™ton 4.71)

But /¢ represents a complex vector of unit magnitude rotating counterclockwise
in the complex plane with the angular velocity wy, as demonstrated in Section 1.6.
Hence, 2 Re C, ¥ represents the projection on the real axis of a rotating complex
vector of magnitude 2|C,|. Recalling Fig. 4.11a, we conclude that 2 Re C,e'*
varies harmonically with time, On the other hand, e *“ represents a function
decaying exponentially with time, approaching zero asymptotically. Letting

2C, =de™ W 4.72)
where A and { are real quantities, we can reduce Eq. (4.71) to
x(t) = Ae "t cos{wyt — ) 4.73)

Equation (4.73) permits a simple interpretation of the motion, Indeed, Ae ™ %“»
can be regarded as a time-dependent amplitude, modulating the harmonic function
cos(wgt —¥), where wy can be interpreted as the frequency of the damped free
vibration, Moreover, i is merely a phase angle. Hence, Eq. (4.73) represents damped
harmonic motion, with the oscillation being bounded by the envelope + e,

" Because the width of the envelope approaches zero asymptotically as t—co, the

system comes to rest eventually. The case { <1 is commonly known as the under-
damped case. Example 4.2 presents a typical response of an underdamped system.

An interesting picture can be obtained by examining how the roots 4, and 1,
change with {. Such a picture is shown in the complex A-plane of Fig. 4.12. In the
undamped case, { =0, the roots 4, =iw, and A, = —iw, lie on the imaginary axis.
As { increases, the roots move along a circle of radius w,,, until they coalesce on the
real axis, when { reaches unity. As { increases beyond { =1, the two roots split
once again, moving along the negative real axis in opposite directions. Because the
case { =1 represents merely a point in the A-plane, critical damping should be
regarded as being primarily of academic interest and representing the borderline
case between overdamping and underdamping. Figure 4.12 represents a root-
locus plot, a subject discussed extensively in Chapter 11,

In all three cases discussed above, the motion is fully determined as soon as the
constants of integration are evaluated in terms of the initial conditions. We do
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not pursue this approach here. Instead, we obtain the solution by the Laplace

transformation method. _
Transforming Eq. (4.58), we can write the transformed response X (s) in the form

s+2Lw, 1
= 4.74
5 Aogstor 0 T 1 2lwpstwp O “4.74)

X(s)

where x, = x(0) and v, = %(0). The simple poles of X(s) are the roots of the charac-

teristic equation, Eq. (4.62), or
Sp=(—{—=J* - 1w, (4.75)

51 =(—C+\IC2_1)wn)

and we note once again that the poles s, and s, coincide with the roots 4, and 4,
of the characteristic equation. But from Section A.3 we can write

1 s+ 2w, _5 +2{w, es.:+32+2cwn ot
82+2cwns+w£ S$1—95, S2— 5
—_-..____CJ“ ng"__l o=tV Dont _ (i -1 iV~ Doyt
2JE -1 2./ —1 :
1
=——({ sinh \J{* ~ 1wt
-1
+JC? =1 cosh J{? — 1w, t)etont (4.76)
and '
1 1 |
-1 = s|l+ 82t
o 2+ 22w,s+w? 51—, T ¢
1
= e % sinh J{* —lw,t  (4.77)
{2""10)" -

so that the response to the initial displacement x, and initial velocity v is
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x(t)‘—‘—io*f(é’ sinh \/{? — Lot + /{2~ 1 cosh \J{2 — Lw, f)e 5!

.\/22—

% pmtont inh {2 —lw,t 4.78)

LY} CZ - 1a)n
The response in all three cases, { > 1, {=1, and { < 1, can be derived from Eq. (4.78).

Example 4,1
‘The damped system described by Eq. (4.58) has the following parameters:

{=12, w,=5 rad/s (a)
Plot the response to the initial excitation
=01 m,  0,=0 (b)
Introducing Eqgs. (a) and (b) into Eq. (4.78), we obtain
x(£)=(0.1809 sinh 3.3166¢+ 0.1 cosh 3.3166¢)e~ 5 (c)

The plot x(t) versus ¢ is shown in Fig. 4.13; it confirms the aperiodic nature of the
motion for this overdamped case.

Example 4,2
The damped system described by Eq. (4.58) has the following parameters:

(=01, w,=5 rad/s (a)
Plot the response to the initial excitation
xo=0, =02 m/s (b)
Because { < 1, we wish to introduce the notation
SO 1wy =iJ1-Cw, = iw, ©

0.10
0.08
0.06
0.04
0.021

| H(s)

] i i 1 ] I
0.1 0.2 0.3 0.4 0.5 1.0 1.5

FIGURE 4.13
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where wy is the frequency of the damped oscillation. Introducing Eq. (¢) into
Eq. (4.78), we can write

U0 —rwf et s 00 —rwg
x(¢)=7a%d e~ %nt ginh zwd£=w—(: e~ sin wyt (d)

Hence, inserting Eqs. (a) and (b) into Eq. (d), we obtain
x(t) =0.0402¢ %% sin 4.9749¢ (e)

The plot x(t) versus ¢ is shown in Fig. 4.14, and it represents the damped oscillatory
motion characterizing an underdamped system.

4,7 THE LOGARITHMIC DECREMENT

Quite often the amount of damping in a system is not known and must be deter-
mined experimentally. This can be done by disturbing the system initially in some
fashion and measuring the response, so that the question reduces to how to deter-
mine the amount of damping from the observed response. We are interested in a
viscously damped system, and in particular in an underdamped system, so that
the response has the form of an exponentially decaying oscillation, such as the one
shown in Fig, 4.15. Clearly, the rate of decay depends on the amount of damping.
Hence, we propose to determine the damping by relating it to an established

measure of the decay.
Let us denote the time at which the response reaches a peak by ¢, (Fig. 4.15).

Because the motion is periodic, albeit damped, the subsequent peak is reached at
the time t,=t, + T, where T is the period given by

T =2n/wy 4.79)
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From Eq. (4.73), the corresponding peak responses have the expressions

X(t1)=Ae " cos(wat, — ) (4.80a)
X(t5)= Ae ™42 cos(wat, — ) = Ae ™4+ D) cos[ay(t, 4 T)— V] (4.80b)
where T is given by Eq. (4.79). But, recalling Eq. (4.70), we obtain
e—(a)“(il +7T) - e~(wnt‘e-—(w"7‘ - e—(wnl|e— 2nlwp/wg
=g {ontip— 2001 —12)1/2 (4.81)
Moreover,
cos[wy(ts + T)—p]=cos(wqyt; — ) cos Wy T —sin(wgt; — ) sin w, T
=¢08(wqt; — ) cos 2z —sin(wyt, —,) sin 2n
=cos(wqty — i) (4.82)
Using Egs. (4.80)-(4.82), we can write the ratio between two peak values
x(ty)  Ae™* cos(wyt, — i)
x(ts)  Ae™ 2 cos(agt, — )

In view o.f the exponential form of the above ratio, it is convenient to introduce
the notation

e2M(L g 1/2 (4.83)

x(ty) 2nt
o=In"—L=_ 27>
x(t) (=)™ @89
where 6 is kI'IOWIl as the logarithmic decrement. Clearly, the logarithmic decrement
can be obtained from .the response curve by taking the natural logarithm of the
ratio of two consecutive peak values, not necessarily the first two. Then, the

viscous damping factor can be calculated by solving E
posous dampin y g Eq. (4.84) for {. The result can

d
For damping sufficiently small that § << 2m, the viscous damping factor can be

{= (4.85)
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approximated by
o
{~ o (4.86)

The viscous damping factor { can be determined by measuring peaks separated
by any number of periods. Indeed, it is easy to verify that

x(tl)zx(tz)zx(fs)z . (4.87)
x(tz) x(t3) x(tq)
so that considering peaks at t; and at f,+, =t,; + kT, where k is a given integer, we
conclude that

(e s) x(t3) x(t3) X(ta)  X(tgs 1) [ X(t2)
Hence, inserting Eq. (4.88) into Eq, (4.84), we obtain the logarithmic decrement

x(t1) _ x(t) x(t2) X(83)  x(ta) ___[x(tl)]” 488)

in the form _
x(ty) [ x(ty) ]”‘ 1 x(ty)
o=lnh—==Ih|—=] =-In—""-— (4.89)
x(¢5) X(tk+1) ko x(tyr 1)
Then, the viscous damping factor { can be determined from Eq. (4.85) or from Eq.
(4.86).

It should be pointed out that Eq. (4.83) remains valid even when ¢, and ¢, are
any two instants separated by a period T and not necessarily corresponding to
peak values for x(t). Measuring peak values, however, is more convenient than
measuring arbitrary amplitudes.

Example 4.3
After two complete periods the peak amplitude of a viscously damped second-
order system has fallen by 60%,. Calculate the viscous damping factor by using
both Eqs. (4.85) and (4.86), compare results, and draw conclusions.

Using Eq. (4.89) with k=2, we obtain the logarithmic decrement

1 X(tl) 1 1
== In~—==-In-—=045815
o= 204" ®
so that, from Eq. (4.85), we can write
3 045815 — 00727 )

¢= [(2m)? +5%]1/2 - [(27)% +0.45815%]1/2
and, from Eq. (4.86), we have

0 045815
Comparing Egs. (b) and (c), we conclude that in the case under consideration
Eq. (4.86) yields a value for the damping factor differing by about 0.27%; from the
value given by the more accurate Eq. (4.85), so that Eq. (4.86) is entirely adequate.
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In fact, it is easy to verify that the logarithmic decrement can reach the value
d=0.9 and the error arising from using Eq. (4.86) is still only about 1.

4.8 RESPONSE OF FIRST-ORDER SYSTEMS TO
HARMONIC EXCITATION, FREQUENCY RESPONSE

Let us consider now the case in which the first-order system described by Eq. (4.3)
is subjected to the harmonic excitation given by

S(O)=foe'' = Ake (4.90)

where A is a real constant having units of displacement and k is the spring constant.
The notation fo= Ak has the advantage that it permits expressing the response in
terms of a nondimensional ratio, as we shall see shortly. Moreover, because
"' =cos wt +i sin wt, the notation of Eq. (4.90) enables us to derive the response
to focoswt and fy sin wt simultaneously. Inserting Eq. (4.90) into Eq. (4.3) and
dividing through by ¢, we can write the equation of motion in the form

X+ ax = Aae"™ 4.91)

where, according to Eq. (4.21), a=k/c. The response of a general linear system
whose dynamic characteristics are described by a differential operator D(¢) to the
excitation given by Eq. (4.90) was virtually evaluated in Section 1.7. Indeed, the
response was given by Eq. (1.27), so that letting ¢(t)=x(t) and ro = Ak in Eq. (1.27)
we have

x(t) = X (i)™ 4.92)
where
X(iw):'z% (4.93)

in which Z(iw) is the system impedance. Note that the particular solution given by
Eq. (4.92) represents a steady-state solution,
For the first-order system at hand, the impedance is

Z(iw)=a+iw (4.94)

Dividing the top and bottom of the right side of Eq. (4.93) by a and recalling the
definition (4.28) of the time constant, namely, t=1/a=c/k, we obtain

X(iw)= .
. (ie0) 1 +iwr (4953)
It will prove convenient to introduce the nondimensional ratio
, X(iw 1 1—i
Gliw)y=2 1) _ il (4.96)

A 1tior 1+w?t?

where G(iw) is recognized as the frequency response (Section 1.6). Inserting Eqs.
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(4.95) and (4.96) into Eq. (4.92), we obtain the harmonic response

x(t) = AG(iw)e'" 4.97)
But, the frequency response, as any complex expression, can be written in the form
Gliw)=|G(iw)|e" (4.98)

where |G(iw)| is the magnitude of G(iw) and ¢ is a phase angle.* Introducing Eq.
(4.98) into Eq. (4.97), the response becomes

" x(t)=A|Gliw)|e D (4.99)

Note that the nature of the present phase angle ¢ is different from that encountered
in the free response.

Comparing Egs. (4.90) and (4.99), we conclude that the phase angle ¢ represents
a measure of the time interval by which the response leads the excitation, As shown
later in this section, in the case of the first-order system considered here the phase
angle is negative, so that the response lags behind the excitation.

Equation (4.99) contains in essence the response to Ak cos wt and Aksinwtina

single expression, as anticipated. The two responses can be separated from one
another by considering the real and imaginary parts of Eq. (4.99), so that the
response to the harmonic excitation Ak cos wt is simply

Re x(t) = A|G(iw)| cos(wt + ¢) (4.100a)
and the respounse to the harmonic excitation Ak sin wt is
Im x(t) = A|G(icw)| sin(wt + ) (4.100b)

Later in this chapter we shall present a geometric interpretation of solutions
(4.99)-(4.100).

Next, let us examine how the response of the system behaves as the driving
frequency w varies. To this end, we wish to plot the magnitude |G(iw)| and the
phase angle ¢ of the frequency response G(iw) as functions of w. From complex
algebra, we refer to Eq. (4.96) and write

2 _ 2731/2
|Glie)| =[Re? G(iw) +Im? G(iw)]‘“:[(l : cluztz> +<1 +;D:zﬁ> :I

o

The plot of |G(iw)| versus wr is displayed in Fig. 4.16. Moreover, recognizing that

¢ =cos ¢ +isin ¢ and recalling Eqs. (4.96) and (4.98), we obtain the phase angle

_,; Im G(iw) —wtf(l +wit?)
Re G(iw) 1/(1 + w?t?)

The plot of ¢ versus wt is shown in Fig. 4.17. It should be pointed out that the

plots of Figs. 4.16 and 4.17 are known as frequency response plots. They are used
extensively in vibrations and in control.

(4.101)

¢ =tan tan™! =tan™!(—w1) 4.102)

*In texts on vibrations, the phase angle is defined as the negative of the one here. The definition given
here is consistent with the one given in Chapter 11, and is the definition ordinarily used in control.
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The magnitude |G(iw)| of the frequency response can be given a physical interpre-
tatlgn. Indeed, using Eq. (4.99), we observe that the magnitude of the force in the
spring is

| ()] = k|x(0)} = Ak G(iw)] (4.103)

Moreover, the magnitude of the external force is simply | f(¢)| = 4k. Hence, we can
write

_lAol
Ly

or, the magnitude of the frequency response represents the nondimensional ratio
of the magnitude of the spring force f(t) to the magnitude of the external force f().

We observe from the plot of |G(iw)| versus wt in Fig. 4.16 that for relatively
large values of wt the response is attenuated greatly. Hence, for a given 7, the
system acts like a filter, leaving low-frequency inputs largely unaffected and
attenuating high-frequency inputs. In many applications, electrical signals are
contaminated by undesirable external factors called noise. In general, signals have
low frequencies and noise has high frequencies. Then, the RC circuit discussed in
Section 4.3 can be used as a filter reducing the amplitude of the undesirable noise
relative to the amplitude of the signal. In view of this, such an RC circuil is catled
a low-pass filter. Note that in this case the time constant is 7= RC.

|Gliw)| (4.104)

4.9 RESPONSE OF SECOND-ORDER SYSTEMS
TO HARMONIC EXCITATION

The response of second-order systems to harmonic excitation can be obtained in a
way analogous to that used in Section 4.8 for the response of first-order systems.
Indeed, the mathematical analogy is complete, and the difference lies in the manner
in which the two types of systems respond. ‘
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Let us consider the second-order system
42wk + okx = Awlel! (4.105)
where A is a constant having the same units as x(t). Then, following the procedure

outlined in Section 4.8, the response can be shown to be
x(t) = X (iw)e"™ (4.106)

where
A

1 —(@/w,)?* +i2{w]w,

Defining the frequency response for this second-order system in the form of the
nondimensional ratio :

X (iw) = (4.107)

X (i) 1

o) == = (ol + Xy, (4.108)

we can write the response once again in the form
x(t) = A|G(iw)| e * ¥ {4.109)
where |G(iw)| is the magnitude and ¢ is the phase angle of the frequency response

Giw).
To study the nature of the response, let us examine the dependence of |G(iw)|
and ¢ on the driving frequency w. To this end, let us write

|Giw)| =[Re?* G(iw) +Im? G(iw)]"/?
1
T = (/o) T + (L wjw,) T} 7

Plots of |G(iw)| versus w/w, for various values of { are shown in Fig. 4.18. For
small {, the amplitude increases appreciably in the neighborhood of w/w, =1 and
then it falls off as w/w, continues to increase. Note that |G(iw)| is called the magnifi-
cation factor, in spite of the fact that for certain values of w the amplitude of the
response is actually reduced instead of being magnified. The curves |G(iw)|
versus w/w, reach peak values for certain w/w,. To obtain the peak value for any
of the curves, we use the standard technique of calculus for the determination of

maxima and write :
dG(iw) _ 1 21 ~(@/w) N —20/w,) + 80 wjw, _ @.111)

d/wy 2 {[1—(w/w,) 1 +@w/w,)*}37?

(4.110)

which yields
§=(1—2c2)“2 @.112)

so that the peaks occur for w/w, < 1. The proximity of the peaks to w/w, =1 depends
on how small { is. Moreover, peaks occur only if 1 —2(? is positive. Inserting

5 e
4

iy

.8
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Eq. (4.112) back into Eq. (4.110), we obtain the peak amplitude

1 1

J2
which, for small ¢, can be approximated by

e

The peak amplitude Q is known as the quality factor.

For very small values of {, Q becomes very large. In fact, as {—0, Q—»c0. For
{ =0, we have no longer a peak but a discontinuity, It is easy to verify from Eq.
(4.110) that the discontinuity occurs at m=uw,, at which driving frequency the
amplitude becomes infinite. Of course, this is impossible for real physical systems,
for which the displacement must remain finite, In fact, for our analysis to remain
valid, the displacement must remain sufficiently small to stay within the linear
range, Nevertheless, this serves as an indication that undamped systems experience
violent vibrations at w=w,, a phenomenon known as resonance. It should be
pointed out that solution (4.109) is not valid at resonance, so that a separate
solution for the case { =0, w=0w, must be produced. This is done later in this
section. In many engineering systems, the driving frequency is not constant but
increases from zero to a given steady operating value, such as when starting a
motor driving the system. If the operating value of w is larger than the natural
frequency w,, then some high-amplitude vibration can be expected when w is

Q = ‘G(iw)lmax =

4.114)
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close to w,. This points to the desirability of a certain amount of damping in the

system to prevent resonance. ‘
Next, let us examine the dependence of the phase angle ¢ on w. Following the

procedure of Section 4.5, we obtain the phase angle

_, Im G(iw) - 2 wjw,
¢=taﬂ lm=tan 1[_W] (4.115)

Figure 4.19 shows plots of ¢ versus w/w, for various values of {. We observe that
all curves pass through the point ¢ = —n/2, w/w,=1. Moreover, ¢ > —n/2 for
w/w, <1 and ¢ < —n/2 for wjw,> 1. As w/w,—0, ¢—0, and as w/w,— ©, — —m.
Hence, because the phase angle is negative, except for { =0, w <w,, we conclude
from Eqs. (4.105) and (4.109) that the response of damped systems lags behind the
excitation, For { =0, the plot exhibits a discontinuity at w/w, = 1. In the undampcd
case, { =0, the response reduces to

x(t)= it +4) 4.116)

4,
|1 —'(w/wn)z'
where ¢ =0 for w/w,<1 and ¢=—n for w/w,>1. Hence, Eq. (4.116) can be
written in the form
= el 4.117
S @

Equation (4.117) states that the displacement is in phase with the excitation for
w <w, and that it is /80° out of phase with the excitation for w > m,.

Finally, let us examine the resonance case, which occurs when a harmonic
oscillator is.driven at the natural frequency. Letting ¢=0, w=w, in Eq. (4.105),
considering only the real part of the excitation, and dividing through by m, we
obtain

)+ wix(t)=w2A cos w,t (4.118)

We shall produce a particular solution of Eq. (4.118) by the Laplace transfo;mation

0
[=0
[=0
¢ _E {=
(=02
t=0l
{ = 0.05
(=0
-7
0 0.5 1.0 1.5
w/w,
FIGURE 4,19
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method. Transforming both sides of Eq. (4.118), letting x(0)=x(0)=0, and using
the Laplace transforms table in the Appendix, we can write

N

(5? + w2 X (s)=w2A T 4.119)
or
w2As
X(s)=~~—_(s2 o (4.120)

Once again using the Laplace transforms table, we can write the inverse trans-
formation

X(t)=3’“X(s)=§w,,t sin w,t (4.121)

The response lends itself to relatively easy interpretation, The term (A/2)w,! can
be regarded as a time-dependent amplitude, modulating the harmonic function
sin w,t. Hence, the response will be bounded by the envelope defined by the two
straight lines 4:(A4/2)w,t. As the width of the envelope increases with time, the
response is characterized by increasingly large amplitudes (Fig. 4.20). At a certain
point, however, the linear range of the spring will be exceeded, at which point
either the system breaks down, as in the case of a softening spring, or the motion
is contained, as in the case of a stiffening spring. Of course, when the system exceeds
the linear range, one must abandon the linear analysis as invalid and consider
nonlinear analysis. Because the excitation is a cosine function and the response
is a sine function and the two functions are related by the identity sin wt=
cos(wt —n/2), it follows that the phase angle ¢ has the value —n/2, Hence the plot ¢
versus w/w, for {=0 consists of the straight line ¢ =0 for w <w,, the point ¢ =
—n/2 for w=w,, and the straight line ¢ = —n for v > w,,

x(t) P

FIGURE 4.20
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4,10 GEOMETRIC INTERPRETATION OF THE
RESPONSE TO HARMONIC EXCITATION

Equation (4.91), governing the response of a first-order system to harmonic excita-
tion, can be given an interesting geometric interpretation by representing it in the
complex plane. Referring to Eq. (4.99), we can write

%(t) = iwA|G(iw)|e' @+ (4.122)

so that, considering the identity

i=cosg+ising=e""2 (4.123)
we can rewrite Eq. (4.122) in the form
X(t) =wA|G(iw)|e" ¢+ 2 (4.124)

Hence, x(t) is a vector whose magnitude is equal to the magnitude of x(t) multi-
plied by @ and whose direction makes an angle m/2 with the direction of x(¢). In
view of this, Eq. (4.91) can be satisfied vectorially, as shown in the diagram of
Fig. 4.21. Note that, as time unfolds, the entire diagram rotates counterclockwise in
the complex plane with the angular velocity w. The response to the excitation Aa
cos wt can be obtained by taking the projection of x(f) on the real axis and the
response to Ak sin wt can be obtained by taking the projection of x(t) on the imagi-
nary axis, so that the complex representation of motion yields the two solutions
simultaneously.

The geometric interpretation of the response of a second-order system to
harmonic excitation can be obtained analogously. From Eq. (4.99), we can write

x(t)= sz[G(iw)Ie““’”‘“ ™ (4.125)
and because
—1=cos n+isinn=e" (4.126)
we have
%() = w?4|G(iw)]e"! Fétm 4.127)
itmxt)
ax(t)
Ageivt
k(3] Z wl x(t)
X Re x(t)
w\f wt + ¢
FIGURE 4,21
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Re x(¢)

FIGURE 4,22

Hgnce, X(t) is a vector whose magnitude is equal to the magnitude of x(¢) multi-
plied by w? and whose direction is opposite to that of x(t). The vector diagram
describing Eq. (4.105) is shown in Fig, 4.22.

411 ROTATING UNBALANCED MASSES

Many engineering systems contain rotating unbalanced masses, sometimes by
design but quite often inadvertently. Such masses produce harmonic excitation
that can lead to excessive vibration and possible damage.

Let us consider a system consisting of a principal mass M —m supported by two
equal springs of combined stiffness kK and a damper with coefficient of viscous
damping c. Two equal eccentric masses /2 rotate in opposite sense with constant
angular velocity w about symmetrically placed points at distances R from the
masses, so that at any time the angle between the horizontal and the rigid links
carrying the masses is wt (Fig. 4.23a). Figures 4.23b and 4.23¢ show free-body
diagrams for the principal mass and for the right eccentric mass, respectively.
From Fig. 4.23b, if we measure the displacement x(f) from the static equilibrium
position, we can write Newton’s second law for the principal mass in the form

—2F—cX(t)— kx()=(M —m)x(r) (4.128)

x(t)
m n
2 R R 2
wt w!

(a) (b) (¢)
FIGURE 4,23
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where F, represents the vertical force exerted by one eccentric mass on the principal
mass. Of course, for the two masses, the vertical forces add up to 2F,, whereas the
horizontal forces, F, and —F,, cancel out. To obtain the expression for F,, we
consider the free-body diagram for the right rotating mass shown in Fig. 4.23¢

and write Newton’s second law. Observing that the displacement of the mass is

x(¢)+ R sin wt, we can write

_md*
24
It must be pointed out that, by measuring x(t) from equilibrium, we were able to
cancel out the effect of the weights (M —m)g and mg/2 in Eqgs. (4.128) and (4.129),
respectively. Introducing Eq. (4.129) into Eq. (4.128) and rearranging, we obtain
the system equation of motion '

F, =?’5’ a [x(f) + R sin wt] =% [%()—Rw? sin wf]  (4.129)

mRw?

() + 2w, () + 0l x(f) = sin wt (4.130)
where
K=l wr=X 4.131)
"M "M ‘

Hence, the rotating unbalanced masses produce a harmonic excitation of the
system, where the excitation has the frequency w. Note that, although the system
involves three masses, the motion of the reciprocating masses relative to the
principal mass is prescribed, so that this is a single-degree-of-freedom system.

The solution of an equation similar to Eq. (4.130) was derived earlier in the form
of Eq. (4.109), and to use this solution it is only necessary to recognize that in this

case
2
m{ w
A=—|— 132
M<w,,> R (4.132)

Hence, retaining the imaginary part of the solution (4.109), with A as indicated
by Eq. (4.132), we obtain

2
x(z):%R- <(—zg—> |G(iw)| sin(wt + P) (4.133)

where |G(iw)| and ¢ are given by Eqgs. (4.110) and (4.115), respectively.

Next, let us examine the manner in which the amplitude and phase angle of the
response vary with the driving frequency . Examining Eq, (4.133), we conclude
that the magnification factor in this case requires some modification. Indeed, now
the indicated nondimensional ratio is

M 2
‘_"%‘)}lﬂ_%g) |G(i)| (4.134)

Plots of (w/w,)?|G(iw)| versus w/w, are shown in Fig. 4.24 for various values of the
damping factor {. Clearly, the plots ¢ versus w/w, for various values of { remain
as in Fig, 4.19.
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We note from Fig. 4.24 that the effect of multiplying |G(iw)| by (w/w,)* is to
shift the peaks from values of w smaller than w, to values larger than w,. We also
note that (w/w,)*|G(iw)] -0 as w/w,—0 and that (w/w,)*|G(w)|-1 as w/w,— .
This latter statement leads to an interesting result. From Fig, 4.19, we conclude
that ¢— —n as w/w, - 0o, which implies that the excitation and response are 180°
out of phase in this case. Hence, as w/w,— 00 and (w/w,)?|G(iw)|— 1, the displace-
ment of M —m becomes

x(t)=% sin(wf —1) = — % sin (4.135)

On the other hand, under the same circumstances, the vertical displacement of the
masses m/2 becomes '

M —
M R sin wt (4.136)

x(t)+ R sin wt=

But in general the position of the mass center of a system of masses is defined as
(see Section 5.3)

X myx

~Sim 4.137)

Xc

which in this particular case yields

mM—m

1 R,
Xe=s7 [(M—m) (— %:7 sin wt)+2 0 R sin wt}—_—o (4.138)
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so that for very large driving frequencies  the principal mass and the two eccentric
masses move in such a way that the center of mass remains at rest in the static
equilibrium position.

Examples of systems containing rotating unbalanced masses are very common,
and in most cases the effect of the imbalance is undesirable. Washing machines
and clothes dryers with rotating drums can serve as such examples if the clothes
are not spread uniformly around the drum. It is assumed that the clothes do not
move relative to the drum. Automobiles with unbalanced tires are other examples.
Because normal operation involves increasing the driving frequency w from zero
to well beyond w=uw,, corrective measures are necessary if vibration is to be
eliminated, such as spreading the clothes evehly and balancing the tires. In the
discussion just preceding, it was tacitly assumed that washing machines, clothes
dryers, and automobiles can be modeled as single-degree-of-freedom systems,
which must be regarded only as a crude assumption. Nevertheless, the phenomenon
described above is commonly encountered in these systems, so that the assumption
has some measure of validity, at least for the purpose of explaining this phe-
nomenon,

4,12 MOTION OF VEHICLES OVER WAVY TERRAIN

Let us consider a vehicle traveling with uniform velocity v over a wavy terrain. We
shall model the vehicle as a damped single-degree-of-freedom system and the
terrain as the function

y(x)= A sin 2—’;’5 4.139)

where L is the wavelength (Fig. 4.25a). The forward motion of the vehicle on the
wavy terrain y(x) results in a vertical motion y(¢) of the wheel. Because uniform
forward motion implies the relation x = vt, the vertical motion of the wheel is simply

()= A sin 2”—;’ (4.140)

Considering the free-body diagram of Fig. 4.25b, we can use Newton’s second
law to write

—c[2(t)— y(O)] — k[z(t) — y(£)] = mi(D) (4.141)
yielding
mz(t) + c2(6) + kz(£) = cy(£) + ky(t) (4.142)
Dividing Eq. (4.142) through by m and using Eq. (4.140), we obtain
3(t) + 20w, (1) + w2z(t) = w2 Alsin wt +2{{w/w,) cos wt] (4.143)

where { and w, have the customary meaning and
w=2nv/L (4.144)
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yx) = A sinz-,’:z

' 2(t)
m - y = Const
L.

y(t) z
° \_/l D k(z—y)¢ L(z-y)

L i
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is the driving frequency. Introducing the notation
Awfw, =tan « (4.145)
we can reduce Eq. (4.143) to

() + 20w, () + wlz(t) =w2 A (sin wt cos o+ cos wt sin o)

cos o
=w2A[1+(2Lw/w,)*]"? sin(wt + «) (4.146)

so that & can be identified as an excitation phase angle.

The solution to an equation similar to Eq. (4.146), namely, Eq. (4.130), was
obtained in Section 4.11 in the form of Eq. (4.133). Hence, we shall produce the
solution to Eq. (4.146) by adapting solution (4.133) to the case at hand. Indeed,
comparing Eqgs. (4.130) and (4.146), we observe that in this case the amplitude of
the excitation is multiplied by [1 4 (2{w/w,)?]"/? and that the sine function con-
tains the phase angle «. With this in mind, we can modify solution (4.133) and
write the solution to Eq. (4.146) directly in the form

2(t) = A[1 + QLw/w,)*]'?|G(iw)| sin(wt + ¢ ) (4.147)
where
. pi=d+a (4.148)
is the response phase angle. Note that |G(iw)| and ¢ are given by Egs. (4.110) and
(4.115), respectively.
A measure of the magnitude of the response can be obtained from the non-
dimensional ratio
||

= [+ Q2Lo/w,)?]'?|Gliw))| (4.149)
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which is known as transmissibility. Figure 4.26 shows plots of [14
(2l w/w,)*1'?|Giw)] versus w/w, for various values of the damping factor {. We
note that for small { the curves experience peaks in the neighborhood of w=w,,
but for w <w,. Moreover, the response approaches zero as w/w,— oo, and it does
so faster for smaller damping, The response will be the largest for a given ratio
of the velocity v to the wavelength L. Indeed, for small damping, the critical ratio
is approximately equal to the natural frequency f, =, /2r, which can be verified
by substituting w =w, in Eq. (4.144). Shock absorbers in automobiles are really
dampers designed to reduce vibration. They generally possess heavy damping,
When they are worn out, however, vibration magnification like that discussed
above can occur. ,
To calculate the response phase angle ¢, let us write first

_ _ tand+tana
tan ¢, =tan($ +) = I —tan ¢ tan o
- - (2{(1)/(1),,)/[1 - (U)/CL)")ZJ + 2Cw/a)n — ZC(w/(f)n)s (4 150)
1 + {(zcw/wn)/[l - (w/w,,)’]}2{w/w,, 1 - (a)/wn)2 + (2C(0/(U||)2 '
so that the phase angle ¢, is
o )
¢1=tan [ 1—«Ww02+Q&WwJ{] @.131)

Plots of ¢, versus w/w, for various values of { are shown in Fig, 4.27.
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413 IMPULSE RESPONSE

The impulse response, denoted g(t), was defined in Section 1.9 as the response to a
unit impulse applied at £=0, with the initial conditions being equal to zero. Also
in Section 1.9 it was shown that the impulse response is equal to the inverse Laplace
transform of the transfer function G(s), or

g(t)= L~ 1G(s) (4.152)

In this section, we propose to derive the impulse response both for a first-order and
a second-order system.
The equation of motion for a damper—spring system was shown in Section 4.2
to have the form
ex(f)+kx(y=f@) {4.153)
Taking the Laplace transform of both sides of Eq. (4.153), while letting x(0) be
equal to zero, we obtain

(cs+k)X(s)=F(s) (4.154)
so that, using the analogy with Eq. (1.32), we conclude that the transfer function
for the first-order system in question has the expression

X(¢s) 1 1
G(b)~m~cs+/€_c(3+a)
where a=k/c. Considering Eq. (4.152) and using the table of Laplace transform
pairs (Section A.7), we obtain the impulse response
r 1

g)=2"'Gls)=2"! %s+a=ze"“¢(z) (4.156)

(4.155)

where t=1/a=c/k is recognized as the time constant and «(t) is the unit step
function, Note that we multiplied the response by «(t) in recognition of the fact
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that it must be zero for t <0, An equation similar to Eq. (4.156) was obtained in
Section 4.4 in connection with the free response of a first-order system. Indeed,
comparing Eqs. (4.29) and (4.156) we conclude that the impulse response of a first-
order system is equivalent to the response to an initial excitation. In the case of the
mechanical system at hand the initial excitation is an initial displacement, x(0)=1/c.
In the case of an electrical system, such as the RL circuit, the initial excitation is an
initial charge, q(0)=1/R, where R is the resistance.

Next, let us consider a second-order system in the form of the mass-- damper—
spring system of Fig. 4.5. The differential equation for the system is given by
Eq. (4.8), so that it can be verified easily that the transfer function has the form

1 {

G(s)= mst+ces+k  m(s*+ 2w, s +w?)
where ¢ is the damping factor and w, is the frequency of undamped oscillation.
Hence, the impulse response for the mass—damper—spring system is simply

1
— -1 — -1
gl)=2""6l)=< m(s? + 2w, s+ w2 (4.158)

To obtain the inverse Laplace transform, it will prove convenient to expand G(s)
into partial fractions. It is not difficult to show that

G(s)= L <1 ~ 1) (4.159)

m(s; —s,) \s—s; $—5,

(4.157)

where, assuming thatvC <1,

S‘}: — L, + g ' (4.160)
S2
are the simple poles of G(s), in which wy =(1 —{*!?w, is the frequency of damped
oscillation. Using the table of Laplace transform pairs (Section A.7), we can write
1
t il 4 52! 4.161
00 = ey @) (4161)
Inserting s, and s, from Eqs. (4.160) into Eq. (4.161), we obtain the impulse response
for the mass—damper—system in the form

__1__ ~fwnt
glt)= — e sin wgt «(t) (4.162)
Note that the impulse response, Eq. (4.162), could have been obtained directly
from Eq. (4.158) and the table of Laplace transform pairs in Section A.7.

An equation similar to Eq. (4.162) was obtained in Example 4.2. Comparing
Eq. (d) of Example 4.2 with Eq. (4.162), we conclude that the impulse response of
the mass—damper—spring system is equal to the response to the initial velocity
$(0)=vo = 1/m. Similarly, it is not difficult to see that for the LRC circuit of Fig. 4.9
the impulse response is equal to the response to the initial current i(0)=1/L.
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4.14 STEP RESPONSE

The step response, denoted by 4(t), is defined as the response to a unit step function
applied at t=0, with the initial conditions being equal to zero. It was shown in
Section 1.10 that the step response of a general linear system has the expression

G(s)
N

ot)y=2"1 (4.163)

where G(s) is the transfer function.
Recalling Eq. (4.155), we can write the step response of the damper—spring
system described by Eq. (4.153) in the form
l
cs{s+a)

a(y=<"" (4.164)

It is not difficult to show that the partial fractions expansion of the function on the
right side of Eq. (4.164) is

LY L 4.165
es(s+a) k\s s+a (4.165)
so that, using the table of Laplace transform pairs (Section A.7), we can write

o(t)=% (1 —e"")el(r) (4.166)

where t=1/a=c/k is the time constant and «(f) is the unit step function. The
step response is plotted in Fig. 4.28.

Next, let us determine the step response of an undamped second-order system.
The transfer function of such a system is obtained by simply letting ¢=0 in Eq.
(4.157), so that the step response is

1
a)=2"" me(s +w}) (4.167)
But
taf, 1
ms(se + 0l k[l Ao—io) 2(s+iw,,):| (4.168)

FIGURE 4.28
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so that, using the table of Laplace transform pairs once again, we obtain the
step response

a(t):1 <1 - % elon — % e"'“’"‘> a(t):% (1 —cos w,t) «(t) 4.169)
It should be pointed out that the resolution into partial fractions was not really
necessary here, because the function on the right side of Eq. (4.167) can be found
in the table of Laplace transform pairs in Section A.7. The response is plotted in
Fig. 4.29.

4.15 RESPONSE TO ARBITRARY EXCITATION

The response to any arbitrary excitation can be obtained by means of the con-
volution integral derived in Section 1.11, Because we have used the symbol 7 for
the time constant, we rewrite Eq. (1.59) in the form

t

x(t)= f glt—0a)f(o) d0=j g(0)f(t—o) do (4.170)
0

[]

where ¢ is a dummy variable of integration.

As an application of the convolution integral, let us consider the response of the
damper—spring system to a force in the form of the ramp function shown in Fig,
4.30. The force can be expressed in the form

Jo

JO)=75 te(t) (4.171)

fre

+—Slope = /7"

FIGURE 4,30
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In Section 4.13, we showed that the impulse response of the damper—spring
system is )

0= e ) @172)

Inserting Eqgs. (4.171) and (4.172) into the first form of the convolution integral,
we can write

x(t)=% jl se= 0= dg =0 g-ic Jl oe’l do

0 Te 0

_fO =t e (a _fO
" [(w (’5‘1)]

wlty==7 [t—1(1 —e ")) elt) (4.173)
Tk
The response is plotted in Fig. 4.31. Note that, compared with an equivalent dis-
placement input equal to f(t)/k, the output x{¢) exhibits a steady-state error equal
to foc/Tk™. ‘
As a second illustration, let us consider the response of a mass—spring system
to the rectangular pulse shown in Fig. 4.32. The force can be expressed in the form

t

0

Jos O<t<T
t)y=
S0 {0, everywhere else (4.174)
Moreover, letting { =0 in Eq. (4.162), we obtain the impulse response
g(t)= sin w,t «(t) 4.175)

mo,

Inserting Eqs. (4.174) and (4.175) into the first form of the convolution integral,

FIGURE 4,31
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Eq. (4.170), we obtain

t t
x(t)= fo sin w,(t—0) do= Jo Im | onlt~9 gg, 0<t<T  (4.176a)
mwy, Jo mw, 0

T T
x(t):-f"—j Sin ot — ) do =2 ImJ. do=9 g (ST - (4176b)
mawy, Jo maw, 0

Evaluation of the intergrals yields

%(1——003(0,,0, O0<t<T
x(t) = 1 4.177)
70 [cos w,(t—T)~cos w,t], t>T

A typical plot is shown in Fig, 4.33.

The above result can be obtained, perhaps in a more direct fashion, by regarding
the rectangular pulse as a superposition of two step functions. Indeed, recalling
developments from Section 1.8, we can write the input in the form

J@)=fole(t)—«(t—T)] (4.178)

so that the response can be expressed as the superposition of two step responses
as follows:

x(t)= fola(t)— o(t — T)] 4.179)
Hence, using Eq. (4.169), we obtain
x(t) =!lc2 {(1 —cos w,t)e(t) —[1 —cos w,(t — T)]e«(t — T)} (4.180)

which is identical to Eqs. (4.177).

PROBLEMS

4.1 The system shown in Fig. 4.34 consists of two linear springs arranged in
series. Determine the equivalent spring constant, defined as k., = f/.
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4.2 Figure 4.35 depicts a mass—damper system. Show that the system can be
described by a first-order differential equation, and give an expression for
the time constant. Then, indicate the electrical analog, the corresponding
differential equation, and the time constant,

O

m
FIGURE 4,35

4.3 A massless rigid bar hinged at point 0 is supported by two linear springs, as

‘ shown in Fig. 4.36. Derive the differential equation for the angular motion 0
under the assumption that the angle 8 is sufficiently small that sin 826 and
cos 0= 1, Determine the static equilibrium position 8,,, show how the effect
of the weight Mg can be eliminated from the equation of motion, and calcu-
late the natural frequency of oscillation about the equilibrium position.

Massless
rigid bar

FIGURE 4,36

4.4 A mass mis suspended through a pulley-and-spring mechanism, as shown in
Fig. 4.37. Let the spring be linear, and derive the differential equation of

FIGURE 4,37



