


Systems of First Order Linear Equations

* A system of simultaneous first order ordinary differential
equations has the general form

X =Ft,x,x,,...x,)

xy = Fy(t,%,,Xy,...%,)

x =F (t,%,,%,,...X,)

where each x, i1s a function of «. If each I, is a linear
function of xy, x,, ..., x,, then the system of equations 1s said
to be linear, otherwise 1t 1s nonlinear.

» Systems of higher order differential equations can similarly
be defined.



Linear 15 Order Systems

* The method illustrated in the previous example can be used
to transform an arbitrary nth order equation

Py = F(t, y,y',y",...,y(”_l)> |
into a system of # first order equations, first by defining

_ _ - _ ., (n-1
X =y, %=y, %=y, .,x =y )
Then

,—
X = Xy

’ —
Xy = X3

7]

=F(t,x,%,5,...X )

, —
Xyq =X

X

f
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lutions of KFirst

Order Systems

* A system of simultaneous first order ordinary differential
equations has the general form

x, =F(t,x,%,,...x,)

x =F (t,x,%,,...%,).
It has a solution on [: o <t < f if there exists » functions
X, = ¢ (1), X, =9, (0),.... %, = 4,(0)

that are differentiable on 7 and satisfy the system of
equations at all points 7 in /.

 Initial conditions may also be prescribed to give an IVP:
xl(to):x{)axz(to):xgr--:xn(fo):xg |



Theorem 7.1

¢ Suppose F,..., F, and OoF,/0x,..., 0F/0x,,..., OF /O x,...,
OF /0x,, are continuous in the region R of ¢ x; x,...x -space
defined by a<t< g, oy <x; < pf, ..., a,<x, < f, and let the
point - |

(1,20 x2,...,x0)

be contained in R. Then in some interval (¢, - A, #,+ &) there

exists a unique solution

X, =4 (1), x, =9, (1),....x, =9,(1)

that satisfies the TVP. x = F(t,x,%x,,...x,)
xy, =F,(t,x,%,,...%,)

x =F (6,%,%,5,...X,)



Linear Systems

« Ifeach F, is a linear function of xy, x,, ..., x,, then the

* 5 12

system of equations has the general form

_—._—-a

Xy “_“3711(0351+p12(t)xz+---+p1n(t)x "‘gl(f)

X, =’p21(z‘)x1+p22(z‘)x2+...+p2n(z‘)x,l{rgz(t) j
E \ ‘

=0+ PO+ 4 p O3} 2,0 |

-

» [feach of the g,(¢) 1s zero on /, then the system 1s
homogeneous, otherwise it 1s mmhomogenemls

W\—/\p/\/‘\/w—-.-— ———— = — T iyt T —



*  SUPPOSE Pi1s Pros-«-s Pos 15« -» £, ATE CONtINUOUS ON an

interval I: « <t < B with t,in I, and let

0
n

0 0
X 9 XngeeesX

prescribe the initial conditions. Then there exists a unique
solution

xl — ¢1(f), x2 — ¢2(r)3 d °9xn — ¢n(t)
that satisfies the IVP, and exists throughout /.

x; = py(0)x, + p,(H)x, +...+ p,(0)x, + g (1)
x; = Py (D)x, + ppr(O)x, +...+ p, (1)x, + g,(F)

x; = pnl(t)xl +pn2(t)x2 +'“+pnn(z)xn +gn(t)






For theoretical and computational reasons, we review results
of matrix theory in this section and the next.

A matrix A is an m X n rectangular array of elements,
arranged in m rows and » columns, denoted

4 \
ay Ay dy,
a a o8 e a
21 22 2
A:(az): . ) ’ .,n
J . . . .
\aml amZ o amn/

Some examples of 2 X 2 matrices are given below:

) 1 3 1 3-2
A= , B= , C=
(3 4} [2 4) (4+5z 6W7J



» The transpose of A = (a;) is A" = (a,).

.\ E \
/(6111 adiy a},J\ qall g sy, a,,
r —TT g | ﬂ
A= iazi, e a2jj_§ — AT = 4 %1 42 s
. : % : % .

* For example,

1

1 2 T13 1 2 3 ;
A= — A = , B= =B =|2
3 4) 2 4 4 5 6 .

N W



° The conjugate of A =(a,) 1s A m_(c?ij).

/ \ (= 3 =\
a4y a, a,  dp a,
a a a — a a. a
21 22 2 21 22 2
A= : "= A= . '
aml amZ amn / \aml amZ mn /




)
2.
Lot . %&

.

"
> The adjoint of A is‘\R@,/an

,
a; dp

A= dy Uy
\aml Ao

* For example,

1
A=
[3—4i

Tf‘a%&.@wﬁﬁ
d is denoted by A"
a, ) a, dy
a?n — A ‘5_’.-;2 5.22
amn / \aln a21/.!
243 * 1 344
: -
4 2 —3i 4

Q
_

ml

m2

amn )



* A square matrix A has the same number of rows and
columns. That is, A is n x n. In this case, A 1s said to have

order 7. N
[ T \ -
ay, dyp o o 4y 1)
A = dyy Ay = Uy, > h
: : . }
\anl an2 ann/ v



A column vector x 1s nnx 1 matrix. For example,
1

X = 2 3 _ 3 X i
3 o
A row vector xis a 1 X7 matrix. For example,
& \_,/"\\ |
yE(1 2 3) e

Note here that y = x’, and that in general, if x is a column
vector X, then x/ is a row vector.



* The zero matrix is defined to be 0 = (0), whose dimensions
depend on the context. For example,

0 0 00 0)
@: 5@: ’0:
0 0 0 0 0

oo O
oo O



Matrix I

» Two matrices A = (a;) and B = (b,) are equal if a; = b, for
all i and j. For example,

/




trix — Scalar B

* The product of a matrix A = (a,;) and a constant & 1s defined
to be kA = (ka;). For example,

1 2 3 -5 —-10 -15
4 5 6 - -20 =25 -30



Matrix Addition a btraction

WUS% &\ﬁv‘@ iﬁ\e 5 Crind diwﬂtaamg

-~ '
The sum of two(m X n\matrices A=(a;)and B=(b;) 1s
defined to be A + B = (g, + b;). For example,

1 2 5 6 (6 8
A= , B = = A+B=
3 4 7 8 10 12

Wuﬁé Zf/mwe “éﬂe Sate eI
The difference of two n X 71 matrices A = (a;) and B = (b,)
is defined to be A - B =(q;; - b;). For example,

1 2 5 6 _4 -4
A= . B= —A-B=
SR N R S



Multiplication

e The product of an m X n matrix A = (ay)andannXxr matrix
B = (b;) is defined to be the matrix C = (c;), where

C; = Z a;b,
k=1
» Examples (note AB does not necessarily equal BA):
1 2 1 3 1+4 348 5 11
A= , B= — AB = =
3 4 2 4 3+8 9+16 11 25
| 149 2+412) (10 14
(2+12 4+16j [14 20]
3 0

1 2 3 3+24+0 0+4-3 5 1
C= ,D=|1 2|=>CD= | =
4 5 6 0 12+5+0 0+10-6 17 4

~1



» To illustrate matrix multiplication and show that it is not
commutative, consider the following matrices:

I -2 1 21 -1
A=l0 2 -1, B=|1 -1 O
2 1 1 2 -1 1

* From the definition of matrix multiplication we have:

2242 1+42-1 —14+1} (2 2 0
AB=| 2-2  -2+41 -1 |=]|0 -1 -1
(4+1+2 2-1-1 -2+41) \7 0 -1
(2-2 —44+2-1 2-1-1) (0 =3 0
BA=| 1 ~2-2 1+1 |=/1 -4 2|=2AB
2+2 —4-2+1 2+1+1) 4 -5 4




° The dot product of two 7 x 1 vectors x & y is defined as

X'y=) xy, — Serlar
k=1 '
* The inner product of twon x 1 vectors x & y is defined as
(X,Y): XT? = inj;j — 5 colar
k=1
« Example:
1 —1
x=| 2] y=|2-3i| ="y =)= +2)2-31)+GBi)5+5i)=-12+9i
3i 5+5i
= (xy)=x"y = (=1 + ()2 +3i) + (3i)(5 - 5i) = 18+ 21



Vector Length

e

ek € ?

* The length of an n x 1 vec é x 1s defined as
| 1/2 1/2
1(){25} [ S ]
k=1

k=1

e Note here that we have used the fact that if x = a + bi, then
x-Xx=(a+bifa—-bi)=d" +b zlxi2
e Example:

1
x=| 2 | =|x=(xx)"=JOO)+2)2)+G+4i)3—4)
3+4i |

=\/l+4+(9+16)=\/%



&

(0‘1\!

gane §

e Twonx 1 vectors x &y are mﬂmgonal if (x,y) = 0.

* Example:
1 11 |
x=2] y=|-4| =xy)=OAD+2)(-4)+B)-1)=0
3 —1

B

ALk = HAINGE @590 = O



entity Matrix

The multiplicative identity matrix I is an|n x n\matrix

givenby

0 0 - 1)

For any square matrix A, it follows that Al =TA = A.

R

The dimensions of I depend on the context. For example,

I 2 3 1 2 3
I 21 O 1 2
Al = = , IB= 1 04 5 6|={4 5 6
3 400 1 3 4
0 0 ITA7 8 9 7 8 9



A square matrix A 1s nonsingular, or invertible, 1f there
exists a matrix B such that that AB = BA = I. Otherwise A
1s singular.

The matrix B, if 1t exists, is unique and is denoted by A"l
and 1s called the inverse of A.

[t turns out that A exists iff detA # 0, and Al can be found
using row reduction (also called Gaussian elimination) on
the augmented matrix (A|l), see example on next slide.

The three elementary row operations:
— Interchange two rows.
— Multiply a row by a nonzero scalar.
— Add a multiple of one row to another row.



Example 2: Finding the Inverse of a Matrix (1 of 2)

* Use row reduction to find the inverse of the matrix A below,

if 1t exists. 1 —1 -1\
A=13 -1 2
2 2 3

e Solution: If possible, use elementary row operations to
reduce (A|I),
1 -1 -1]1 0 0

Ajr)=[3 -1 210 1 0|,
2 2 3(0 0 1

such that the left side 1s the identity matrix, for then the
right side will be A-l. (See next slide.)



1
0
0

OO T (N I

PrENS 15( 3

0 4 5 -2 0
V{*k&w. )

1 -1 -1 10 0) 310 3/2 -1/2 1/2

>0 (1)5/2 -3/2 1/2 0|40 1 5/2 =3/2 1/2 0

0 4 5 -2 0 1)920(0) -5

(1 0 3/2 -1/2 1/2 0} (1 0 © 7/10

|0 1 5/2 =3/2 1/2 0]|=>[0 1) 1/2

)ry\()o-s 4 -2 1) 0 0 1 -4/5
' vk

7/10 -1/10 3/10) \\[ 4 o

Thus ~ A'=| /2 -1/2 1/2 >

~4/5  2/5 -1/5 A

~

X ﬂak’i’b

1

4 -2 1

-1/10  3/10

-1/2  1/2
2/5 =1/5

}
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Matrix Fun

* The elements of a matrix can be functions of a real variable.
In this case, we write

X (6) (ay ) ay@®) - ay ()
x,(7) ay(t) an(t) - a,l(?)

x(f) = , A(t) =

o0)  \au® an® - a,0),

» Such a matrix is continuous at a point, or on an interval

(a, b), if each element 1s continuous there. Similarly with
“différentiation and integration:

a;: _ (dzj J r A()dt = ( jjay. (z‘)dz‘)




ntiation Rules

e Example:

cost 4

| 2 : ' 61 t
Af) = [ 3t sin l‘} N _c_ié _ ( COS }

¢ Many of the rules from calculus apply in this setting. For

example:
M = Cﬁ’é—, where C 1s a constant matrix

dt dt
d(A+B) dA ,dB
dt dt dt

(o2, (20

dt dt dt



Systems of Linear Equations, Linear Independence, Eigenvalues

* A system of » linear equations in # variables,
Xy + %, +tay X, = by

az’lxi + a2’2x2 + e + azjnxn == b2

a, x, +a,,x,+--+a,,x,=b,,

nun

can be expressed as a matrix equation Ax = b:

. \ 77 )
di; Gy i X b,
Gy Gop =70 Gy | Xy ) b,
\an,l an,2 T an,n / \xn / \bn Y,

e Ifb =0, then system is homogeneous; otherwise it 1s
nonhomogeneous.
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e [fthe coefficient matrix A 1s Wr, then 1t 1s
invertible and we can solve Ax = b as follows:

Ax=b =(AJAx=Ah =Ix=A"b =x=A"D
- |

* This solution 1s therefore unique. Also, if b =0, 1t follows
that the unique solutionto Ax =0 is x = A"10 = 0.

e Thus if A i1s nonsingular, then the only solution to Ax =0 1s
the trivial solution x = 0.



le 1: Nonsingular Case (1 of 3)

From a previous example, we know that the matrix A below
is nonsingular with inverse as given.

I -2 3 -3/4 =5/4 1/4
A=|-1 1 -2, A7 =|-5/4 -7/4 -1/4
2 -1 -1 -1/4 -3/4 -1/4

Using the definition of matrix multiplication, it follows that
the only solution of Ax =0 1is x = 0:

~3/4 =5/4 1/4Y0 0
x=A"0=|-5/4 -7/4 =1/4}0|=|0
~1/4 -=3/4 -1/4)0 0



[xample 1: Nonsingular Case (2 of 3)

* Now let’s solve the nonhomogeneous linear system Ax = b
below using Al X ~2% 43 = T
""'}C,{ 4 XZ"‘ 2)(3 ':"_"g-

Ox, +x/+2x,= 2

2%, ~X, - %Xs=¢4

1 -2 3 X 7
A=|-1 1 =2, x=|x,|, b=|-5
2 -1 -1 X, 4

e Then
-3/4 —5/4 1/4 7 2

x=A"b=|-5/4 -7/4 -1/4]-5|=|-1
~1/4 -3/4 -1/4) 4 1



« Alternatively, we could solve the nonhomogeneous linear
system Ax = b below using row reduction.
X, —2x,+3x,= 7
—X, +Xx,—2x,==5"
2x,—x,—x, = 4
* To do so, form the augmented matrix (A|b) and reduce,
using elementary row operations.
1 -2 3 7 1 -2 3 7 1 -2 3 7
(Ap)=|-1 1 -2 -5|>][0 -1 1 2[>l0 1 -1 -2
2 -1 -1 4) (0 3 -7 -10) (0 3 -7 -10

] -2 3 17 1 =2 3] 7} x -2x, +3x, =7 2
10 1 -1 =2|—=|0NJ -1|-2|> X, —x, =-2 — x=|-1
0 0 -4 -4 0 oNJ| 1 x, =1 1



If the coefficient matrix A is singular, then A™! does not
exist, and either a solution to Ax = b does not exist, or there
1s more than one solution (not unique).

Further, the homogeneous system Ax = () has more than one
solution. That 1s, in addition to the trivial solution x = 0,
there are infinitely many nontrivial solutions.

The nonhomogeneous case Ax = b has no solution unless
(b, y) = 0, for all vectors y satisfying A"y = 0, where A” is
the adjoint of A.

In this case, Ax = b has solutions (infinitely many), each of
the form x = x(O + & where x( is a particular solution of

Ax = b, and € is any solution of Ax = 0.



Singular Case (1 of 2)

e Solve the nonhomogeneous linear system Ax = b below using row
reduction. Observe that the coefficients are nearly the same as in the

previous example x, = 2%, +3x,=b,

— X, +x,—2x, =0,
2x,—x, +3x, = b,

»  We will form the augmented matrix (A|b) and use some of the steps in
Example 1 to transform the matrix more quickly

1 -2 3 b 1 -2 3 b
(Ap)=|-1 1 -2 b, |>|0 1 -1  —b-b,
2 -1 3 b 0 0 0 b +3b,+5,
x, —2x, +3x, =Dh
—> x, — X3 =-b-0b, —> b +3b,+b, =0
0 =b+3b,+b,



X, —2x, +3x; z'bl
-x, +x,-2x,=b,
2x,—x, +3x, = b,

ular Case (2 of2)

From the previous slide, if & +3b, +b, #0 , there is no solution
to the system of equations

Requiring that b, +3b,+b, =0, assume, for example, that
b,=2,b,=1,b,=-5 ”

Then the reduced augmented matrix (A|b) becomes:

-2 3 b x —-2x, +3x;, =2 -x,—4 -1} (-4
I -1 ~b-b, |— x, — X% =-3->x=| x3-3|>x=x 1|+ -3
0 O b+3b+b 0 =0 X 1 0

It can be shown that the second term in X is a solution of the
nonhomogeneous equation and that the first term 1s the most
general solution of the homogeneous equation, letting X; =« |

where a 1s arbitrary Y N
(v

% = Y



Dependence @

e A set of vectors x(U, x®_ ..., x(™ is linearly dependent if
there exists scalars ¢, ¢,,..., ¢,, not all zero, such that

s “ps

cxV+exP +te x™ =0

e .

 Ifthe only solution of

cxV +e,x? 4ot x =0

isc;=c,=...= ¢, =0, then x, x?,..., x is linearly
independent.



Jependence (1 of 2)

« Determine whether the following vectors are linear
dependent or linearly independent.

1 2 —4
<O= 2 x| 1| x®=] 1
-] 3 =11

» We need to solve

cxV +0,x? +ex¥ =0
of 0 (2) (-4) (0 1 2 —4Y¢e) (0
¢l 2|+c) li+c 1|=]0]| < 2 1 1c,{=|0
—1 3 —-11) (0 -1 3 -1ljg¢ 0



¢ We can reduce the augmented matrix (Alb), as before.
—4 0

9 0>
1570

-2

@

1 2 -4 0) (1 2
Ab)=| 2 1 1 0]|=|0 -3
-1 3 =11 0) (0 5
¢, +2¢, —4c; =0
—> c, —3¢; = 0> c=¢
0 = 0

3 | where ¢, can be any number

1

1 2
0 1
0 0

-4 0

-3 0
0 0

So, the vectors are linearly dependent: ifc, =1, 2x" -3x® —x¥ =0

Alternatively, we could show that the following determinant 1s zero:

det(x,) =

1
2

2
1

-1 3

—4
1

—11

=0



Linear Independence and Invertibility

Consider the previous two examples:

— The first matrix was known to be nonsingular, and its column vectors
were linearly independent.

— The second matrix was known to be singular, and its column vectors
were linearly dependent.
This is true in general: the columns (or rows) of A are linearly
independent iff A is nonsingular iff A-! exists.

Also, A is nonsingular iff detA # 0, hence columns (or rows)
of A are linearly independent iff detA = 0.

Further, if A = BC, then det(C) = det(A)det(B). Thus if the
columns (or rows) of A and B are linearly independent, then
the columns (or rows) of C are also.



Linear |

» Now consider vector functions x()(7), x2)(¢),..., x")(f), where

4 xl(k) (z‘)\

(7 = xék? (¢)

\x,(nk) (7))

, k

:1923“-:”; IG[:(a,ﬁ)

* As before, x1(7), x2)(7),..., x)(7) is linearly dependent on [ if
there exists scalars ¢y, ¢,,..., ¢, not all zero, such that

exV @)+, xP () +--+ c,x"(t)=0, forall te]

e«  Otherwise x(V(7), x3(¢),..., x")(¢) is linearly independent on /
See text for more discussion on this.
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Figenvalu

The eqn. Ax =y can be viewed as a linear transformation
that maps (or transforms) x into a new vector y.

Nonzero vectors x that transform into multiples of
themselves are important in many applications.

Thus we solve Ax = Ax or equivalently, (A-Al)x = 0.

This equation has a nonzero solution if we choose 4 such
that det(A-AI) = 0.

Such values of A are called eigenvalues of A, and the
nonzero solutions x are called eigenvectors.



alues (1 of3)

» Find the eigenvalues and eigenvectors of the matrix A.

3 -1
A s
o
« Solution: Choose A such that det(A-Al) = 0, as follows.

det(A—ﬂ):de{@ j“ﬂ[é ?D

3-1 —1
= det
. 4 —ZWZJ

=(3-2)-2-2)-(-1)4)
= -1-2=(1-2)1+1)
=2 A=2, A=-1




Eigenvector (2 of 3)

 To find the eigenvectors of the matrix A, we need to solve
(A-ADx=0for A=2and 1=-1.
« Eigenvector for 1 =2: Solve

N I N A

and this implies that x, =x, . So

X 1 |
x :( 2} = c[ ], ¢ arbitrary — choose x"" =[ J
X, 1 1)



oI (3 of 3)

» FEigenvector for A=-1: Solve |
341 1Y% ) (0 4 -1\x) (0
(A-Aix=0 < = |o -
4 -24+1Ax,) \0 4 —-1)x, 0

and this implies that x, =4x, So

| X 1 " 1
x? = "'|=¢| | c arbitrary - choose x* =
4x, ) 4 4






d Eigenvectors

» From the previous example, we see that eigenvectors are
determined up to a nonzero multiplicative constant.

 If this constant 1s specified in some particular way, then the
eigenvector 1s said to be normalized.

* For example, eigenvectors are sometimes normalized by
choosing the constant so that |[x|| = (x, x)”> = 1.



& @

Itiplicity

In finding the eigenvalues A of an n x n matrix A, we solve
det(A-AI) = 0. '_
Since this involves finding the determinant of an n X n

matrix, the problem reduces to finding roots of an nth
degree polynomial.

Denote these roots, or eigenvalues, by 4,, 4,, ..., 4,.
If an eigenvalue is repeated m times, then its algebraic
multiplicity 1s m.

Each eigenvalue has at least one eigenvector, and a
eigenvalue of algebraic multiplicity m may have g linearly
independent eigevectors, 1 < g <m, and q 1s called the

geometric multiplicity of the eigenvalue.



envectors and Linea

 If an eigenvalue A has algebraic multiplicity 1, then 1t 1s said
to be simple, and the geometric multiplicity is 1 also.

 If each eigenvalue of an n x » matrix A is simple, then A
has » distinct eigenvalues. It can be shown that the »
eigenvectors corresponding to these eigenvalues are linearly
independent.

« ]f an eigenvalue has one or more repeated eigenvalues, then
there may be fewer than » linearly independent eigenvectors
since for each repeated eigenvalue, we may have g < m.
This may lead to complications in solving systems of
differential equations.



Figenvalues (1 of 5)

 Find the eigenvalues and eigenvectors of the matrix A.
0 1 1
A={1 0 1
1 1 0

* Solution: Choose A such that det(A-AI) = 0, as follows.

-A 1 1
det(A - AI)=detf 1 -4 1
1 1 -2
=—1 +31+2
=(A=2)(A+1)

= 4 =2, =-1,4=-1



» Eigenvector for 1 =2: Solve (A-AI)x = 0, as follows.

1 0 1 1 =2 0 1 1 =2 0
1 =2 1 0l=| 1 =2 1-0|—|0 =3 3 0
0 _ 1 0 0 3 -3 0

1 1 -2 0 ~1 0} Ix “1x, =0
%0110}%01—-10» Ix, —lx, =0
0 0 0 0x, =0

|

1
—>xP=lx |=c|l|c arbitrary — choose xV =1
1

X4



nvectors (3 of 5)

+ Eigenvector for A=-1: Solve (A-AI)x =0, as follows.

1110y (1 1 10} 1Ix +lx, +lx, =0 |
1 110) (0000

—>choose x? =| 0|,x%=| 1



Thus three e1 envectors of A are =
T < N /
/ 1 ] f 1 (o) P

SONN X(z)_ ol x®=| 11

i
I i
N ; i .
I N [
by 1) -1 1
i : H
/
JJ

where x@) x® correspond to the double eigenvalue 1 =- 1.
It can be shown that x(V, x®, x(®) are linearly independent.

Hence A is a 3 x 3 symmetric matrix (A = A’ ) with 3 real
eigenvalues and 3 linearly independent eigenvectors.

0 1 1 //
A - 1 0 1 1 H o4 ) // / -
L IR OVRR. T
I 1 0 o T



I -7 s 4 -0 /
)

A

Thentheelgénvectorsareortho gonal, since

(x(”,x@): 0, (X(l)’X(i%)): 0, (X@)j x(?’)): 0

Thus A is a 3 x 3 symmetric matrix with 3 real eigenvalues
and 3 linearly independent orthogonal eigenvectors.



A self-adjoint, or Hermitian matrix, satisfies A = A",
where we recall that A™ = AT .

Thus for a Hermitian matrix, a; = a;;.

Note that if A has real entries and is symmetric (see last
example), then A 1s Hermitian.

An n x n Hermitian matrix A has the following properties:

All eigenvalues of A are real.
There exists a full set of » linearly independent eigenvectors of A.

If x( and x® are eigenvectors that correspond to different
eigenvalues of A, then x( and x®) are orthogonal.

Corresponding to an eigenvalue of algebraic multiplicity m, it is
possible to choose m mutually orthogonal eigenvectors, and hence A
has a full set of » linearly independent orthogonal eigenvectors.



