Class Notes 4:

Second Order Differential Equation —
Homogeneous

82A — Engineering Mathematics



Second Order Linear Differential Equations
Introduction

Non Linear
|

Homogenous Non-Homogenous

Linear

Solution: Complementary Solution Solution: Particular Solution
Method: Series Solution Method: Series Solution

Homogenous Non-Homogenous

Solution: Complementary Solution Solution: Particular Solution
Method 1: Undermined Coefficient
Method 2: Variation of Parameters




Structure of the General Solution

g(X), Non -homogeneous

y'+ p(x)y’+q(x)y={

0, Homogeneous

Solution:

y=Y.(X)+Y,(X)

where
Y.(X): solution of the homogeneous equation (complementary solution)
Yp(X): any solution of the non-homogeneous equation (particular solution)




Lumped Parameters Models



Lumped Parameter Model — Introduction
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Lumped Parameter Model (Mass Spring)

T3 = £ (1) —kx=mx
mx + kx = f (t)

Initial Condition: X(t=0)=x,=d
Xt=0)=%,=v
5('—|—-£X=—fg2 o= LS
m m m
)

X+w’x=4 M
\O




Lumped Parameter Model (Mass Spring)

+T> F =k(z—x) =mX

mX +kx =kz
 Initial Condition: X(t=0)=x,=d
Xt=0)=%,=v
T K k
X+—X=—12 w=.|—
m m m

®°17
X+ m°X =
0



Lumped Parameter Model (Mass Spring)

, C. Kk f(t)
X+ —X+—X=—2
m m m
c c c c
== =, S m d 2Ma, Jko 2dmk
m m 2m\/,
(f(1) "
m ¢ - Viscous damping factor (non-dimensional)

X+20w X+ X =1

+ T F=1f(t)—kx—cx=mx
mX +cX+kx= f(t)

@, - Natural frequency




Lumped Parameter Model (Mass Spring)

+ T F=k(z—x)—c(z—%) =mX
MX + CX + kX =CcZ + kz
k

. Cc. k C .
X+—X+—X=—7+—7
m m m m

X+20w X+ @' X = 2w, 7+ w2
. 2
20w,1+ w, 7

X+ 20w X+ @ X =
0



Second Order Homogeneous Diff. EqQ.

Theorems



Theorem 1 (3.2.1)
Existence and Unigueness

Consider the initial value problem

y'+p)y' +q(t)y=9(t)
Y(to) = Yo y’(to) — y6

where p, q, and g are continuous on an open interval | that
contains t,,.

Then there exists a unique solution 'y = ¢(t) on I.

Note: While this theorem says that a solution to the initial value
problem above exists, it is often not possible to write down a
useful expression for the solution. This is a major difference
between first and second order linear equations.



Theorem 2 (3.2.2)
Principle of Superposition

« If y,andy, are solutions to the equation

LIy]=y"+pt)y'+q(t)y=0

* Then the linear combination c,y, + y,C, is also a solution, for all
constants ¢, and c..



The Wronskian Determinant (1/3)

Suppose y; and y, are solutions to the equation

LIy]=y"+pt)y'+q(t)y=0

From Theorem 3.2.2, we know thaty = c,y, + C, Y, IS a solution to
this equation.

Next, find coefficients such thaty = c,y,; + ¢, Yy, satisfies the initial
conditions

y(to) = Yor y’(to) — yé

To do so, we need to solve the following equations:
Clyl(to) +C Y, (to) =Y
C1Y1’(to) +C, y; (to) = Y6



The Wronskian Determinant (2/3)

Solving the equations, we obtain

o - YoY2(to) = VoY (&)
C.Y1(to) +C2 Y, (L) = Yo R AGNAGEABIA
C Y (o) +C, Y5 (t) = Yo S D AES A,

| TVt Y5 () = Vi (te) Y (t)
In terms of determinants:
y1(to) yO
yi(t) Yo
Yi(t) Yo (ko)
Y (t) Y2 (ty)

yO y2 (tO)
Yo Ya(ty)
Y, (te) Y, (t,)
yi(te)  y5(to)

C].: , 2:




The Wronskian Determinant (3/3)

 In order for these formulas to be valid, the determinant W in the
denominator cannot be zero:

yO y2 (tO) yl (to) yO
Yoo Ya(to) VAR
C, = W , C, = W

Yi(t) Y2 (to)
yi(to) Y2 (L)

W is called the Wronskian determinant, or more simply, the
Wronskian of the solutions y,and y,. We will sometimes use the

notation
W (y,, ¥, )t,)

= Y1(to)y; (to) - Y1’(to)yz (to)




Theorem 3 (3.2.3)
Constants Coefficient c,, c,

* Suppose y, and y, are solutions to the equation

LIyl=y"+p(®) y'+q(t) y=0
with the initial conditions

y(to) = Yo y’(to) = y(’)
Then it is always possible to choose constants c,, ¢, so that

y =CY; (D) +Co,(t)
satisfies the differential equation and initial conditions if and only if
the Wronskian

W=vyYy,-VY,

IS not zero at the point t,



Theorem 4 (3.2.4)
General Solution / Fundamental Set of Solutions

Suppose y, and y, are solutions to the equation

LIy]=y"+p(t) y'+q(t) y=0.

Then the family of solutions

Yy=Cy1 T C ¥
with arbitrary coefficients c,, c, includes every solution to the
differential equation if an only if there is a point t, such that

W(y1,y2)(t) = 0, .

The expressiony = c,y; + C, Y, is called the general solution of
the differential equation above, and in this case y, and y, are said
to form a fundamental set of solutions to the differential
equation.



Theorem 5 (3.2.5)
Existence of Fundamental Set of Solutions

» Consider the differential equation below, whose coefficients p and
g are continuous on some open interval I.

LIy]=y"+pt)y'+q(t)y=0

* Letty,be apointinl, and y, and y, solutions of the equation with y,
satisfying initial conditions
Y1(to) =1, Y1(to) =0

and y, satisfying initial conditions

Y, (to) =0, y; (to) =1
* Theny,, Yy, form a fundamental set of solutions to the given
differential equation.



Theorem 6 (3.2.6)
Real & Imaginary Parts — Solution

Consider again the equation (2):
LIyl=y"+p®) y' +q(t)y=0

where p and g are continuous real-valued functions.
If y = u(t) + iv(t) is a complex-valued solution of Eqg. (2),

Then its real part u and its imaginary part v are also solutions of this
equation.

y =Cu(t)+C,v(t)



Theorem 7 (3.2.7)
Abel’s Theorem

* Suppose y, and y, are solutions to the equation

LIyl=y"+p(t) y'+a(t) y=0
 Where p and g are continuous on some open interval I.
« Then the W(y,,y,)(t) is given by

W (y,, ¥,)(t) =ce

where c is a constant that depends on y, and y, but not on t.

—j p(t)dt

* Note that W(y,,Y,)(1) is either zero for all tin I (if c = 0) or else is
never zero in | (if c # 0).



Summary

To find a general solution of the differential equation
y'+p)y'+q(t)y=0, a<t<p
we first find two solutions y, and y,.

Then make sure there is a point t, in the interval such that W(y,,
y2)(to) # 0.

It follows that y, and y, form a fundamental set of solutions to the
equation, with general solutiony = c,y; + C, V..

If initial conditions are prescribed at a point t, in the interval where
W = 0, then ¢, and ¢, can be chosen to satisfy those conditions.



Homogeneous Second Order Linear Differential
Equations — Constant Coefficient

ay"+by' +cy =0

Assume: y=e"

sub: ar’e" +bre" +ce™ =0
(ar®+br+c)e" =0

since e" %0
Characteristic Equation (Quadratic Equation):

ar’+br+c=0

Solution for r:
1) Real and different
2) Real and repeated
3) Complex conjugates: {I’l =Re+1Im |

r,=Re—1Im ]



Second Order Homogeneous Diff. EqQ.

Mathematical Approach



Homogeneous Equations With Constant Coefficients

Case 1 — Roots — Real & Different

« Case 1: Real and different roots
ay"+by'+cy=0
Assume y=¢e"
(ar®+br+c)e" =0
ar’+br+c=0
If b°-4ac>0 then rsxzrand reRr, eN

y, =e"
Solution has the form
y= Clyl(t) + Cz Y, (t) — Clerlt + Czeth

y(to) =Y
y'(t) =Y,



Homogeneous Equations With Constant Coefficients

Case 1 — Roots — Real & Different

- Substituting t=1; Y=Y,
— Y, =Ce" +C,e""

»  Substituting t=ty; Y =Y
— Yo =Cire™ +C,re%

« Solve for C, and C,

’
+ V. _
Cl — yO yo 2 e rlto;

L+VYy -
C2 — yO 1 yO e It

 Notes:

n=r, => r—-r,#0 = C,C, exist

One possible choice of C1 and C2 for some initial conditions



Homogeneous Equations With Constant Coefficients

Case 1 — Roots — Real & Different

Case la n<0
r,<0

Case 1b >0
r,<0

Case 1c n=r,=0

Case 1d n>0
r,>0



Homogeneous Equations With Constant Coefficients
Case 3 — Roots — Complex Conjugates

« Homogeneous Equation with Constant Coefficients
« Case 3. Complex conjugate roots
ay”"+by'+cy =0
y — ert
(ar® +br+c)e" =0
ar’+br+c=0

rF=A+I
b’-4ac<0 — {1 H

y, = p (i)t
y, = eliint

,=A1-lu



Homogeneous Equations With Constant Coefficients
Case 3 — Roots — Complex Conjugates

 FEuler’s Formula
« Taylor’s series for et about t=0
0 tn
et =) — —o<t<oo
= Nl

« Substitute 1t fort

Rgal Imagi nary
cos(t) sin(t)




Homogeneous Equations With Constant Coefficients
Case 3 — Roots — Complex Conjugates

e" =cos(t) +isin(t) y

e =cos(t) —isin(t) 0511/\ y \ /
cos(-t) = cos(t) 5 v \/ i

sin(—t) = —sin(t) S U S A S
e" =cos(t) +isin(t) e e
e = cos(ut) +isin(ut)
et — g g™ — @™ (cos ut +isin ut)
y=C,y, +C,y, =Ce""" 1 C et =
e™(C,(cos ut +isin ut) +C,(cos ut —isin ut)) =
e™((C,+C,)(cos ut) +i(C, +C,)(sin ut))

« Or based on the theorem 3.2.6 p 153, both real and imaginary
parts are solutions

y =e*(C, cos ut +C, sin ut)



Homogeneous Equations With Constant Coefficients
Case 3 — Roots — Complex Conjugates

« Case 3a: For A<0 ;
y =e " (C, cosut +C,sin st) <

« Case 3b: For A>0
y =e™(C,cosut +C, sin z)




Homogeneous Equations With Constant Coefficients
Case 3 — Roots — Complex Conjugates

e Case 3c: For A=0



Homogeneous Equations With Constant Coefficients
Case 2 — Roots — Repeated

ay”"+by'+cy =0
y — ert
(ar® +br+c)e" =0

ar’+br+c=0
b

b°-4ac=0 — r=r,=——
2a

_b,
yl — e 2a

To find a second solution, we assume that
b

y =v(D)y, () =v(t)e



Homogeneous Equations With Constant Coefficients
Case 2 — Roots — Repeated

Substitute for y in differential equation ay"+by’+cy =0
y=v(®)y, () =v(t)e =

_it b _it
y'IV,(t)e 2a __V(t)e 2a
2a
" " _Lt b ' _it b , —Et b 2 —Lt
y'=vi(t)e = ———vi(tle = —_—v'(t)e ** +_—v(t)e *
2a 2a 4a

b

{a{v”(t) —gv’(t) + %;v(t)} + b{v’(t) — Zﬂav(t)} +C v(t)}eZat =0

av'(t)+ (-b+b)v'(t) + (i — i + cjv(t) =0
— 4a 2a

0

" ° b2 b2 b2 —b2+4aC
vi(t)=0 ———+4+C=——+C=
da 2a 4a 4a

v(t)=C,+C,t
y=v()y,(t) =C,y, (t) + C,ty, (t)
The solution for the differential equation
b b

——t —t
y=Ce ** +C,te *#



Homogeneous Equations With Constant Coefficients
Case 2 — Roots — Repeated

b, b,
y,(t)=e =, y,(t)=te >
_b, b
e 2a te 2a . _b,
W(y,,VY,)= b —-tj=¢€?@
(yl yz) _Le_Zat (1—£t) 2a
2a 2a
-2 Y1
W=e?2 20 = y Fundamental set of solutions
2



Homogeneous Equations With Constant Coefficients
Case 2 — Roots — Repeated

e Case2a hL=n>0

e Cas22b r,=r,<0



Homogeneous Equations With Constant Coefficients _
Case 2 — Roots — Repeated - Reduction of Order -

Generalization

y'+p)y' +q(t)y=0

* We know one solution y,(t) (not everywhere zero)
To find the second solution let

y =v(t)y,(t)
y' =v'([0)y, (1) +v() y,(t)
Y =vi(O) () +2v (1) y1 (1) + v (1) yi(t)

.

Substitute fory, y’, y” in the differential equation

Vav" +(2y; + Py, '+ (v + py; +ay, o =0

y, isasolution=0




Homogeneous Equations With Constant Coefficients _
Case 2 — Roots — Repeated - Reduction of Order -

Generalization

Vv +(2y; + py, V' =0
u=1v'
Yo' +(2y; + py, u =0

« First order differential equation
Find a solution for u
v=[u

See example 3, p172



Homogeneous Equations With Constant Coefficients
Summary

- Differential Equation ay"+by'+cy =0
« Characteristic Equation ar’+br+c=0

 Case 1l - Roots — Real and different r, #r,

nt rt
y=Ce* +C,e>

« Case 3 — Roots — Complex conjugates A+iu

y =C.e™ cosut+C,e™ sin ut

y =e™(C,cosut +C, sin z)

« Case 2 — Roots — Real and repeated r, =r,

y=C.e™ +C,te"”




Second Order Homogeneous Diff. EqQ.

Engineering Approach (Free Response)
Undamped & Damped
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Free Response of Damped Second Order System —

Introduction — Cases — The “S” Plane

(UNDAMPE@) M A=0
(mpsré W O <i<1

b

k,V‘n“ 't.md}-\:A

7 ]‘_’GYt 1% Pn = ~(FUWn+Wg ‘ A
he™ epuat )\ Dy
& < By
(cnmep. owmes | 3= 'f

M A2 -Wa

X&) (¢4 *‘zt)e'”‘t \ |

Cr"l‘ln

E afm./ one 643

(‘over bampeD ) Z>i

)= e'-iw..é(q : e+{{‘z'.1‘ Wt"fu e,..{t.—_;-,,,‘b

= Polie

& C e
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Free Response of Underdamped Second Order System
Harmonic Oscillator

e ol Free response — f(t) =0

—————— o X+w'x=0

« The general solution can be written in the form
X(t) = Ae*

 Introducing the solution into the equation

Are" + 0’ Ae™ =0

(2 + 0 )pe <0

#0

=0



Free Response of Underdamped Second Order System
Harmonic Oscillator

T+o'=0 = VP =-0

* In general the solution becomes
X(t) — Aieﬂ'lt + Azeﬂzt _ Aieia)nt 4 Aze_ia)nt

} constants of integration

A,

« Since x(t) must be real — Al}complex conjugates

N\

A=1A€W
21 0 where A & y are real
AZ — E Ae”//

J



Free Response of Underdamped Second Order System
Harmonic Oscillator

X(t) = % A[euwnt—w) +e—i(vvnt—w)]

X(t) = % AlcosW, — ) +i sin(w t=7) + COS(—(W,t —y)) +isin(—(w,t - '7”).)]

‘ = COS(Wnt —y) = —WW )

X(t) = Acos(w.t —i)

Based on
cos(ax — ) =cosacos+sinasin B

X(t) = Alcosw, t cosy +sinw, tsiny]



Free Response of Underdamped Second Order System
Harmonic Oscillator

X(t) = Alcosw. t cosy +sinw, tsiny |
The solution can also be expressed as

X(t) = B,sinw, t+ B, cosw.t

Bl
B2 constants of integration
BZ Bl

——— ———

X(t) = Acosy cosw.t+ Asiny sinw, t

* sin/ cos - harmonic functions
« Solution — simple harmonic oscillation
« System powered by this type of diff. eq. are called harmonic oscillators




Free Response of Underdamped Second Order System
Harmonic Oscillator

X(t) = Acos(w.t — i)

()

~
~>.




Free Response of Underdamped Second Order System
Harmonic Oscillator

« T - Time period (of oscillation) [sec]
« W, - Natural frequency [RAD/sec]

- f_- Natural frequency [Hz]

W =27z f > f =
27T
T — 1 :27z
f wW



Free Response of Underdamped Second Order System
Harmonic Oscillator

« For spring-mass system

T:27z\/E ; Wn:\/E kT - w T
K m

* For pendulum

T:27Z'\/f : an\/g LT - w, 4
g L

« Note—that T orW, are not function of m



Free Response of Underdamped Second Order System
Harmonic Oscillator — Concluding Remarks

Notes

- No matter how the motion is initiated, free oscillation always occurs
at the freq. W,

- w = f(k,m) w =f(g,L)

- W, Is independent of external forces; that is the reason why W, is
called natural frequency.

- Mathematical idealization — perpetuate — Ad intitum

- Every real system possesses some measure of damping

- Pendulum damping ~C Air resistance
Friction point of support

- When damping is small — harmonic oscillation

- For short period of time t << T small damping does not have any effect
over that interval



Free Response of Underdamped Second Order System
Harmonic Oscillator — Initial Conditions

IC to determine A, & (two conditions)

X(0) = X, (+/-) e S

X(0) =V, (+/-) S HE

X(t) = Acos(w .t —y) TE

-

X(0) = Acosy =X, — COSy =

X(0) =w, Asiny =v, > Siny =




Free Response of Underdamped Second Order System
Harmonic Oscillator — Initial Conditions

-

X
x(0) = Acosy =x, — cosw:K"
X(0) =w, Asiny =v, —> siny = Yo

Wn

Determine A




Free Response of Underdamped Second Order System
Harmonic Oscillator — Initial Conditions

Determine v

In v, A
tany = My _ Y
cosy W A X,

v
w:tanl[ < j
W, X,

Final Solution

: B, = Asiny
X(t) = B, sin(w. t) + B, cos(w.t)
B, = Acosy

V, .
X(t) = x, cos(w,t) + —=sin(w,t)
W

n



Free Response of Damped Second Order System —
Introduction

Free response — f(t)=0

; %(t) + 2¢W X(t) + W2X(t) =0

; /‘/f i \ 3 k C
3 : = Wn — T é/ —
' m 2mw,

e W, — natural frequency of the system

¢ — viscous damping factor

Assume solution x(t) = ce™

characteristic Eq. 2* +2W.A+wW> =0

) } - 20w, + AW WS 2w, (¢ +£7 1 {E

A, 2 - 2




Free Response of Damped Second Order System —
Introduction — Cases

CASE 1 ¢ >1 —  real, negative, distinct
(over damped)
CASE 2 -
=1 real, negative, equal

(critical damped) g ~ J q

ﬂl — 12 =—-W,
CASE 3 : .

1 complex, conjugates, negative real

(under damped) <<l P It J

o R Ve Nt



Free Response of Damped Second Order System —
Case 1 — Overdamped
For ¢>1 (Casel)-overdamped

x(t) =ce™ +c,e™

(—§+\/ijnt

=ce + cze(_g_JﬁjW”t

[ 2 (2
:e—gwnt(cle+ ¢ 1Wnt_|_C2e 4 1Wnt)

since {>1 = ¢>4¢*-1

the response x(t) decays exponentially with time

- Aperiodic motion — approaches zero without oscillation

X(t=0) =X,

Applying initial condition {)’((t _0)= %,



Free Response of Damped Second Order System —
Case 1 — Overdamped

x(t=0)= cle(_gw?l]WnO

%(t = 0) = (_ £+ \/ﬁ),vncle[ﬁm)wno N (_ ‘- \/ﬁ)/vncze( _

I P W



Free Response of Damped Second Order System —
Case 1 — Overdamped

(I P W
AZ(‘(ﬂ/ﬁ)’Vn (—4—\/ﬁ)wn :(_g—\/ﬁ)/vn+(+é—\/ﬁ)wn
2/

C, = — )T :Xo(_g,—\/m)/\/n—)'(o
1 (2\/7}‘,\/
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Free Response of Damped Second Order System —
Case 1 — Overdamped
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Free Response of Damped Second Order System —
Case 1 — Overdamped
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Free Response of Damped Second Order System —
Case 2 — Critical Damping

For ¢=1 (Casel) critical damped
ﬂ'l = ﬁz =—W,
y(t) = (¢, +c,t)e ™

For ¢ =1 g ¢ =1 > c=2mw, :2m\/%

2mw,

C, = 2vkm

Applying initial condition X(t=0) =X,
X(t=0)=X%,

y(t) =" [x, L+ w,t) ok ]
Cl CZ



Free Response of Damped Second Order System —
Case 2 — Critical Damping



Free Response of Damped Second Order System —

Case 3 — Underdamped

For 0<{ <1 (Case 3) underdamped

— W+ 1w,

1= N T
A ( ¢ tiyl=¢ T —dw, —iw,
Wy =W,/1-¢” damped frequency

W, <W,

x(t) = e "' (A cosw,t+ A, sinw,t)



Free Response of Damped Second Order System —

Case 3 — Underdamped

Solving for Initial Conditions

X(t) =e é”V“(Alcoswdt+A25|nwdt)

X(t = 0) = M"Aiccprﬁdomzsmd) X, = A = X,

X(t = O)——gwe/“(o(Alpo”édejLAzde )+e/W'°( Alwo,5)9/(X/O,O+A2wOI c/os'wd 0)
= =W, A + Aw, =X,




Free Response of Damped Second Order System —

Case 3 — Underdamped
Given the solution
X(t) = e "' (A cosw,t+ A, sinw,t)
Another form of solution would be
X = Ae™"" cos(w,t — ¢)

A, ¢ unknown constants



Free Response of Damped Second Order System —

Case 3 — Underdamped

Solving for Initial Conditions

X(t, =0) =X, — X, =Ae""cos(w,0-¢)
X,

cos(¢)
X(t,=0)=v — x=A(-<Ww Je "' cosw,t — @) — Ae"""'w, sin(w,t — ¢)
V, = A(— W, )cos(¢) + Aw, sin(¢)

Vo = /3/¢)+

X, = Acos(@) — A=

wOI sin(¢)



Free Response of Damped Second Order System —

Case 3 — Underdamped

sin
Vo = XoGW, + Xy W, ¢
COS¢
Vo — Xo6W,  Sing
Xo Wy COS¢

sin V., — X.CW
tan¢: ¢: 0 Oé/n

COS¢ X W,y
¢ = tan 1{\/0 ~ XooW, }
2 XOWd
A= 0
COS¢




Free Response of Damped Second Order System —

Case 3 — Underdamped

X = Ae~"" cos(w,t — @)



Free Response of Damped Second Order System —

Case 3 — Underdamped

X(t) = " (cl cos(wn J1-¢7 )t +C, sin(wn J1-¢° )t)

w, =1 x(0)=1 x(0)=0



Free Response of Damped Second Order System —
Introduction — Cases — The “S” Plane
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Free Response of Second Order System —
Logarithmic Decrement

- System identification
- Determined coefficients of the model experimentally




Free Response of Second Order System —
Logarithmic Decrement — Stiffness
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Free Response of Second Order System —
Logarithmic Decrement — Damping

¢ Assumptions

— Viscous damping
— Under damped system
— System identification



Free Response of Second Order System —
Logarithmic Decrement

For

{t= t1 X(tl) = Ae "t COS(Wdtl - W)
t=t, x(t,) = Ae *"[cos(w,t, )

e_é,Wn (tZ) — e_é,Wn (t1+T)

= A cos(w, (t, +T) ~ 1)

— e_gwntle_é,wn-r — e_é/Wntle Wy — e_é/Wntle 1_4

727 W, =W 1-¢7
Wd




Free Response of Second Order System —
Logarithmic Decrement

For t=t, x(@)= Ae~e"h cos(wyt, —w)

t=t,  X(t,)=Ae " [cos(w,t, —v)
_ Ae—g“wn(tl+T)

cos(w, (t, +T) — )

cos|w, (t,) — | = cos|w, (t, + T) —w | = cos(w,t, —w) cos(w,T) —sin(w,t, — ) sin(w,T)

= cos(w,t, —w) cos(2r) —sin(w,t, —y)sin(2rz) = cos(w,t, —)

w,T =27 = cos(w,t, —y) =cos(w,t, —w)



Free Response of Second Order System —
Logarithmic Decrement

- The ratio between the two peak values

X(t)  Ae™icos(wyt, —w)  eTMn
X(t,) Ae "' cos(Wyt, —)  a-éwitig276/ 1<

278

X(t,)
5: In X(tl) _ 27[4/

X(t,)  J1-¢?

0 — Logarithmic decrement

0 — Measured experimentally — In of two consecutive peak
values(not necessarily the first two)



Free Response of Second Order System —
Logarithmic Decrement
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