
Class Notes 4:

Second Order Differential Equation –

Homogeneous    

82A – Engineering Mathematics 



Homogenous

Solution: Complementary Solution
Method: Series Solution

Second Order Linear Differential Equations 

Introduction 
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Linear Non Linear 

Non-Homogenous

Solution: Particular Solution  
Method: Series Solution
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Homogenous

Solution: Complementary Solution
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Non-Homogenous

Solution: Particular Solution  
Method 1: Undermined Coefficient
Method 2: Variation of Parameters   
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Structure of the General Solution 

• Solution:

where 

yc(x): solution of the homogeneous equation (complementary solution)

yp(x): any solution of the non-homogeneous equation (particular solution)
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Lumped Parameters Models 
Introduction



Lumped Parameter Model – Introduction 













Lumped Parameter Model (Mass Spring)
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• Initial Condition:
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Lumped Parameter Model (Mass Spring)

kzkxxm 

• Initial Condition:
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Lumped Parameter Model (Mass Spring)
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- Viscous damping factor (non-dimensional)

- Natural frequency



Lumped Parameter Model (Mass Spring)
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Second Order Homogeneous Diff. Eq. 

Theorems 



Theorem 1 (3.2.1)  

Existence and Uniqueness  

• Consider the initial value problem

• where p, q, and g are continuous on an open interval I that 

contains t0. 

• Then there exists a unique solution y = (t) on I.

• Note:  While this theorem says that a solution to the initial value 

problem above exists, it is often not possible to write down a 

useful expression for the solution.  This is a major difference 

between first and second order linear equations.  
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Theorem 2 (3.2.2)  

Principle of Superposition

• If y1and y2 are solutions to the equation

• Then the linear combination c1y1 + y2c2 is also a solution, for all 

constants c1 and c2.
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The Wronskian Determinant (1/3)

• Suppose y1 and y2 are solutions to the equation

• From Theorem 3.2.2, we know that y = c1y1 + c2 y2 is a solution to 

this equation.  

• Next, find coefficients such that y = c1y1 + c2 y2 satisfies the initial 

conditions 

• To do so, we need to solve the following equations:
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The Wronskian Determinant (2/3)

• Solving the equations, we obtain

• In terms of determinants:
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The Wronskian Determinant (3/3)

• In order for these formulas to be valid, the determinant W in the 

denominator cannot be zero:

• W is called the Wronskian determinant, or more simply, the 

Wronskian of the solutions y1and y2.  We will sometimes use the 

notation
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Theorem 3 (3.2.3)

Constants Coefficient  c1, c2

• Suppose y1 and y2 are solutions to the equation

with the initial conditions

Then it is always possible to choose constants c1, c2 so that

satisfies the differential equation and initial conditions if and only if 

the Wronskian

is not zero at the point t0
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Theorem 4  (3.2.4)  

General Solution / Fundamental Set of Solutions 

• Suppose y1 and y2 are solutions to the equation

Then the family of solutions 

y = c1y1 + c2 y2

with arbitrary coefficients c1, c2 includes every solution to the 

differential equation if an only if there is a point t0 such that 

W(y1,y2)(t0)  0, . 

• The expression y = c1y1 + c2 y2 is called the general solution of 

the differential equation above, and in this case y1 and y2 are said 

to form a fundamental set of solutions to the differential 

equation.  
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Theorem 5 (3.2.5) 

Existence of Fundamental Set of Solutions

• Consider the differential equation below, whose coefficients p and 

q are continuous on some open interval I:

• Let t0 be a point in I, and y1 and y2 solutions of the equation with y1

satisfying initial conditions 

and y2 satisfying initial conditions 

• Then y1, y2 form a fundamental set of solutions to the given 

differential equation.
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Theorem 6 (3.2.6)

Real & Imaginary Parts – Solution 

Consider again the equation (2):

where p and q are continuous real-valued functions.

If y = u(t) + iv(t) is a complex-valued solution of Eq. (2), 

Then its real part u and its imaginary part v are also solutions of this 
equation.
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Theorem 7 (3.2.7) 

Abel’s Theorem

• Suppose y1 and y2 are solutions to the equation

• Where p and q are continuous on some open interval I.  

• Then the W(y1,y2)(t) is given by

where c is a constant that depends on y1 and y2 but not on t.  

• Note that W(y1,y2)(t) is either zero for all t in I (if c = 0) or else is 

never zero in I (if c ≠ 0).
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Summary

• To find a general solution of the differential equation

we first find two solutions y1 and y2.

• Then make sure there is a point t0 in the interval such that W(y1, 

y2)(t0)  0.

• It follows that y1 and y2 form a fundamental set of solutions to the 

equation, with general solution y = c1y1 + c2 y2.

• If initial conditions are prescribed at a point t0 in the interval where 

W  0, then c1 and c2 can be chosen to satisfy those conditions. 

  tytqytpy ,0)()(



Homogeneous Second Order Linear Differential 

Equations – Constant Coefficient  

• Assume:

sub: 

since 

Characteristic Equation (Quadratic Equation):

Solution for r:

1) Real and different

2) Real and repeated

3) Complex conjugates:
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Second Order Homogeneous Diff. Eq. 

Mathematical Approach 



Homogeneous Equations With Constant Coefficients

Case 1 – Roots – Real & Different  

• Case 1: Real and different roots

Assume

If                          then

Solution has the form
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• Substituting

• Substituting

• Solve for C1 and C2

• Notes:
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Homogeneous Equations With Constant Coefficients

Case 1 – Roots – Real & Different  



• Case 1a

• Case 1b

• Case 1c

• Case 1d

Homogeneous Equations With Constant Coefficients

Case 1 – Roots – Real & Different  
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• Homogeneous Equation with Constant Coefficients

• Case 3:  Complex conjugate roots
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Homogeneous Equations With Constant Coefficients

Case 3 – Roots – Complex Conjugates 



• Euler’s Formula

• Taylor’s series for et about t=0

• Substitute   t for t
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Homogeneous Equations With Constant Coefficients

Case 3 – Roots – Complex Conjugates 



• Or based on the theorem 3.2.6 p 153, both real and imaginary 

parts are solutions
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Homogeneous Equations With Constant Coefficients

Case 3 – Roots – Complex Conjugates 



• Case 3a: For λ<0

• Case 3b: For λ>0
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Homogeneous Equations With Constant Coefficients

Case 3 – Roots – Complex Conjugates 



• Case 3c: For λ=0

Homogeneous Equations With Constant Coefficients

Case 3 – Roots – Complex Conjugates 



• To find a second solution, we assume that
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Homogeneous Equations With Constant Coefficients

Case 2 – Roots – Repeated



• Substitute for y in differential equation

• The solution for the differential equation
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Homogeneous Equations With Constant Coefficients

Case 2 – Roots – Repeated
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Fundamental set of solutions
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Homogeneous Equations With Constant Coefficients

Case 2 – Roots – Repeated



• Case 2a

• Cas2 2b 

Homogeneous Equations With Constant Coefficients

Case 2 – Roots – Repeated
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• We know one solution y1(t) (not everywhere zero)

To find the second solution let

Substitute for y, y’, y’’ in the differential equation
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Homogeneous Equations With Constant Coefficients

Case 2 – Roots – Repeated - Reduction of Order -
Generalization



• First order differential equation

Find a solution for u

See example 3, p172
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Homogeneous Equations With Constant Coefficients

Case 2 – Roots – Repeated - Reduction of Order -
Generalization



• Differential Equation

• Characteristic Equation

• Case 1 – Roots – Real and different

• Case 3 – Roots – Complex conjugates

• Case 2 – Roots – Real and repeated
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Homogeneous Equations With Constant Coefficients

Summary 



Second Order Homogeneous Diff. Eq. 

Engineering Approach (Free Response)

Undamped & Damped  













Free Response of Underdamped Second Order System 

Harmonic Oscillator  

Free response

• The general solution can be written in the form

• Introducing the solution into the equation
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• In general the solution becomes

constants of integration

• Since x(t) must be real
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Free Response of Underdamped Second Order System 

Harmonic Oscillator  
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Free Response of Underdamped Second Order System 

Harmonic Oscillator  



  sinsincoscos)( twtwAtx nn 

The solution can also be expressed as
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• sin / cos - harmonic functions

• Solution – simple harmonic oscillation

• System powered by this type of diff. eq. are called harmonic oscillators

Free Response of Underdamped Second Order System 

Harmonic Oscillator  
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Free Response of Underdamped Second Order System 

Harmonic Oscillator  



• - Time period (of oscillation) [sec]

• - Natural frequency [RAD/sec]

• - Natural frequency [Hz]
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Free Response of Underdamped Second Order System 

Harmonic Oscillator  



• For spring-mass system

• For pendulum

• Note – that      or       are not function of m
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Free Response of Underdamped Second Order System 

Harmonic Oscillator  



Notes

- No matter how the motion is initiated, free oscillation always occurs 

at the freq. 

-

- is independent of external forces; that is the reason why       is 

called natural frequency.

- Mathematical idealization → perpetuate → Ad intitum

- Every real system possesses some measure of damping

- Pendulum damping

- When damping is small – harmonic oscillation

- For short period of time t << T small damping does not have any effect 

over that interval
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Air resistance

Friction point of support

Free Response of Underdamped Second Order System 

Harmonic Oscillator – Concluding Remarks  
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Free Response of Underdamped Second Order System 

Harmonic Oscillator – Initial Conditions
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Free Response of Underdamped Second Order System 

Harmonic Oscillator – Initial Conditions

Determine          A



)sin()cos()(

cos

sin
)cos()sin()(

0
0

2

1

21

tw
w

v
twxtx

AB

AB
twBtwBtx

n

n

n

nn
















Free Response of Underdamped Second Order System 

Harmonic Oscillator – Initial Conditions

Determine          
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Final Solution   
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Assume solution

characteristic Eq.
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Free Response of Damped Second Order System –

Introduction 
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Free Response of Damped Second Order System –

Introduction – Cases  

CASE 1

(over damped)

CASE 2

(critical damped)

CASE 3

(under damped)

real, negative, distinct

real, negative, equal

complex, conjugates, negative real 10 
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For (Case 1) - overdamped1
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since

the response x(t) decays exponentially with time

- Aperiodic motion – approaches zero without oscillation

Applying initial condition 
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Free Response of Damped Second Order System –

Case 1 – Overdamped
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Free Response of Damped Second Order System –

Case 1 – Overdamped
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Free Response of Damped Second Order System –

Case 1 – Overdamped
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Free Response of Damped Second Order System –

Case 1 – Overdamped



Free Response of Damped Second Order System –

Case 1 – Overdamped



For (Case 1)  critical damped1
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Applying initial condition 
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Free Response of Damped Second Order System –

Case 2 – Critical Damping  

1c 2c



Free Response of Damped Second Order System –

Case 2 – Critical Damping  



For (Case 3)  underdamped10 
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Free Response of Damped Second Order System –

Case 3 – Underdamped  



Solving for Initial Conditions
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Free Response of Damped Second Order System –

Case 3 – Underdamped  
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Another form of solution would be
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Free Response of Damped Second Order System –

Case 3 – Underdamped  
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Given the solution 
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Solving for Initial Conditions

Free Response of Damped Second Order System –

Case 3 – Underdamped  
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Free Response of Damped Second Order System –

Case 3 – Underdamped  
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Free Response of Damped Second Order System –

Case 3 – Underdamped  
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Free Response of Damped Second Order System –

Case 3 – Underdamped  



Free Response of Damped Second Order System –

Introduction – Cases – The “S” Plane  



Free Response of Second Order System –

Logarithmic Decrement 

- System identification

- Determined coefficients of the model experimentally



Free Response of Second Order System –

Logarithmic Decrement – Stiffness  



Free Response of Second Order System –

Logarithmic Decrement – Damping  

• Assumptions
– Viscous damping 

– Under damped system 

– System identification 
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Free Response of Second Order System –

Logarithmic Decrement 
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Free Response of Second Order System –

Logarithmic Decrement 



- The ratio between the two peak values
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Logarithmic decrement

Measured experimentally – ln of two consecutive peak

values(not necessarily the first two)

Free Response of Second Order System –

Logarithmic Decrement 



22

22

2
2

2222

22222

2222

2

22
2

)2(

4

)4(

4

4)1(

1

4





































For small damping
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Free Response of Second Order System –

Logarithmic Decrement 


