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Numerical Methods

Up to this point we have discussed methods for solving differential equations by using
analytical techniques such as integration or series expansions. Usually, the emphasis was on
finding an exact expression for the solution. Unfortunately, there are many important problems
in engineering and science, especially nonlinear ones, to which these methods either do not
apply or are very complicated to use. In this chapter we discuss an alternative approach, the use
of numerical approximation methods to obtain an accurate approximation to the solution of an
initial value problem. We present these methods in the simplest possible context, namely,
a single scalar first-order equation. However, they can readily be extended to systems of
first-order equations, and this is outlined briefly in Section 8.5. The procedures described
here can be executed easily on a wide variety of computational devices, from smartphones
to supercomputers.

81 The Euler or Tangent Line Method

To discuss the development and use of numerical approximation procedures, we will
concentrate mainly on the first-order initial value problem consisting of the differential
equation

dy

- = f(1, 1

R f(t,y) 0
and the initial condition

y(%) = Yo @

We assume that the functions f and fy are continuous on some rectangle in the zy-plane
containing the point (fy, yo). Then, by Theorem 2.4.2, there exists a unique solution y = ¢ ()
of the given problem in some interval about 7. If equation (1) is nonlinear, then the interval
of existence of the solution may be difficult to determine and may have no simple relationship
to the function f. However, in all our discussions we assume that there is a unique solution of
the initial value problem (1), (2) in the interval of interest.

In Section 2.7 we described the oldest and simplest numerical approximation method,
namely, the Euler or tangent line method. To derive this method, let us write the differential
equation (1) at the point ¢ = ¢, in the form

ij_?(tn) :f(tn,¢(tn))- 3

Then we approximate the derivative in equation (3) by the corresponding (forward) difference
quotient, obtaining

¢(tn+1) - ¢(tn)

trH—l — I

2 f(tn, & (1)) )

Finally, if we replace ¢ (#,41) and ¢ (t,) by their approximate values y, and y,, respectively,
and solve for y, 1, we obtain the Euler formula

Yntt = Yo + [, Yo) (a1 — 1), n= 0,12, .... ®)

8 |

If the step size t,+1 — t, has a uniform value 4 for all n and if we denote f(t,, y,) by f,, then
equation (5) simplifies to

Ynt1 =Yn+hfn, n=0,1,2,.... (6)
Euler’s method consists of repeatedly evaluating equation (5) or (6), using the result of each
step to execute the next step. In this way we obtain a sequence of values yo, y1, Y2, - -+ s Vs - -
that approximate the values of the solution ¢ (¢) at the points g, t1, tp, ... , by « . .

A computer program for Euler’s method has a structure such as that shown below. The
specific instructions can be written in any convenient programming language.

The Euler Method

Step 1. define f(¢,y)

Step 2. input initial values t = t0 and y = y0
Step 3. input step size 4 and number of steps n
Step 4. output 70 and y0

Step 5. for j from 1 ton do

Step 6. Jo=f(t,y)

y=y+hxfy
t=t+h
Step 7. output 7 and y
Step 8. end

Some examples of Euler’s method appear in Section 2.7. As another example, consider
the initial value problem

y(0) = 1. @®)

Equation (7) is a first-order linear equation, and you can easily verify that the solution
satisfying the initial condition (8) is
1 3 19,

y—¢(t)—4t 16+16e' ©)
Since the exact solution is known, we do not need numerical methods to approximate the
solution of the initial value problem (7), (8). On the other hand, the availability of the exact
solution makes it easy to monitor the accuracy of any numerical procedure that we use on this
problem. We will use this problem throughout the chapter to illustrate and to compare different
numerical methods. The solutions of equation (7) diverge rather rapidly from each other, so
we should expect that it will be fairly difficult to approximate the solution (9) well over any
interval of moderate length. Indeed, this is the reason for choosing this particular problem; it
will be relatively easy to observe the benefits of using more efficient methods.

EXAMPLE 1

Using the Euler formula (6) and step sizes & = 0.05, 0.025, 0.01, and 0.001, determine approximate
values of the solution y = ¢ (¢) of the problem (7), (8) on the interval 0 < ¢ < 2.

Solution:

The indicated calculations were carried out on a computer, and some of the results are shown in
Table 8.1.1. Their accuracy is not particularly impressive. For 2~ = 0.01 the percentage error is
3.85%att =0.5,7.49% att = 1.0, and 14.4% at t = 2.0. The corresponding percentage errors for
h = 0.001 are 0.40%, 0.79%, and 1.58%, respectively. Observe that if 2 = 0.001, then it requires
2000 steps to traverse the interval from ¢t = 0 to t = 2. Thus considerable computation is needed
to obtain even reasonably good accuracy for this problem using the Euler method. When we discuss
other numerical approximation methods later in this chapter, we will find that it is possible to obtain

comparable or better accuracy with much larger step sizes and many fewer computational steps.

8.1 The Euler or Tangent Line Method
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where 7, is some point in t, < %, < t, + h. Then, noting that ¢ (#, + h) = ¢ (ty41) and
@' (ty) = f(ty, ¢(1n)), We can rewrite equation (19) as

-

and therefore

¢ (1) = 19¢*.

| P
@ (tap1) = ¢ () +hf(tn, ¢ (80)) + E¢//(tn)h2- (20) Equation (22) then states that
Now let us use the Euler formula to calculate an approximation to ¢(#,41) under the gy 19¢* p2 f <<t th on
assumption that we know the correct value for y, at t,, namely y, = ¢ (t,). The result is 2 " " " ’

Yary = ¢ (ta) +hf (ta, (1)), @1

where the asterisk is used to designate this hypothetical approximate value for ¢ (#,41). The
difference between ¢ (#,41) and y; , is the local truncation error for the (n + 1) step in
the Euler method, which we will denote by e, ;. Thus, by subtracting equation (21) from
equation (20), we find that

S S
ent1 = O (tay1) — Vg1 = §¢ (Tn)h?, (22)

since the remaining terms in equations (20) and (21) cancel.

Thus the local truncation error for the Euler method is proportional to the square of the
step size h, and the proportionality factor depends on the second derivative of the solution ¢.
The expression given by equation (22) depends on n and, in general, is different for each step.
A uniform bound, valid on an interval [a, b], is given by

1
Ienl < EM]’I“, (23)

where M is the maximum of ‘(ﬁ”(t)l on the interval [a, b]. Since equation (23) is based on
a consideration of the worst possible case—that is, the largest possible value of |¢” (1) | —it
may well be a considerable overestimate of the actual local truncation error in some parts of
the interval [a, b].

One use of equation (23) is to choose a step size that will result in a local truncation error
no greater than some given tolerance level. For example, if the local truncation error must be
no greater than e, then from equation (23) we have

L < 'h<\/2€ 24)
5 eorh=y/o

The primary difficulty in using equation (22), (23), or (24) lies in estimating |</5” (t)l or M.
However, the central fact expressed by these equations is that the local truncation error is
proportional to h2. For example, if a new value of / is used that is one-half of its original
value, then the resulting error will be reduced to one-fourth of its previous value.

More important than the local truncation error is the global truncation error E,. The
analysis for estimating E, is much more difficult than that for e,. Nevertheless, it can be shown
that the global truncation error in using the Euler method on a finite interval is no greater than
a constant times /. Thus

|E| < Kh 25)

for some constant K ; see Problem 20 for more details. The Euler method is called a first-order
method because its global truncation error is proportional to the first power of the step size.

Because it is more accessible, we will hereafter use the local truncation error as our
principal measure of the accuracy of a numerical method and for comparing different methods.
If we have a priori information about the solution of the given initial value problem, we can
use the result (22) to obtain more precise information about how the local truncation error
varies with £.

As an example, consider the illustrative problem

y=1-t+4y, y0) =1 (26)

The appearance of the factor 19 and the rapid growth of ¢* explain why the results in
Table 8.1.1 are not very accurate.

For instance, for 7 = 0.05 the error in the first step is

19¢40(0.0025)

e =0¢(t) —y = 2 , 0< 1< 0.05.

It is clear that e; is positive, and since e*® < ¢%2, we have

19¢°2(0.0025)
L, smerrermermp——————

e = )

= 0.02901. (28)

= 19
Note also that ¢*® > 1; hence e; > 7(0.0025) = 0.02375. The actual error is

0.02542. It follows from equation (27) that the error becomes progressively worse with
increasing #; this is also clearly shown by the results in Table 8.1.1. Similar computations
for bounds for the local truncation error give

_ 196%%(0.0025 19¢4(0.0025
1.0617 = ——(-2——-1 < ey < —e—(z—) =~ 1.2967 (29)

in going from 0.95 to 1.0 and

19¢7-8(0.0025) 19¢8(0.0025)
SUMANRS S B G2 [ SN« SN

57.96 = 2 S e =< 3

=70.80 (30)

in going from 1.95 to 2.0.

These results indicate that for this problem, the local truncation error is about 2500 times
larger near t = 2 than near ¢+ = 0. Thus, to reduce the local truncation error to an acceptable
level throughout 0 < ¢ < 2, we must choose a step size 4 based on an analysis near ¢ = 2.
Of course, this step size will be much smaller than necessary near ¢t = 0. For example, to
achieve a local truncation error of 0.01 for this problem, we need a step size of about 0.00059
near t = 2 and a step size of about 0.032 near = 0. The use of a uniform step size that is
smaller than necessary over much of the interval results in more calculations than necessary,
more time consumed, and possibly more danger of unacceptable round-off errors.

Another approach is to keep the local truncation error approximately constant throughout
the interval by gradually reducing the step size as ¢ increases. In the example problem, we
would need to reduce £ by a factor of about 50 in going from ¢t = 0 to r = 2. A method
that provides for variations in the step size is called adaptive. All modern computer codes for
solving differential equations have the capability of adjusting the step size as needed. We will
return to this question in the next section.

Problems

8.1 The Euler or Tangent Line Method
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@ 1. Complete the calculations leading to the entries in columns ~ In each of Problems 3 through 7, find approximate values of the

three and four of Table 8.1.1.

solution of the initial value problem at t = 0.1, 0.2, 0.3, and 0.4.
) a. Use the Euler method with £ = 0.05.
@ b. Use the Euler method with # = 0.025.
) c. Use the backward Euler method with # = 0.05.
D d. Use the backward Euler method with # = 0.025.

on the interval 0 < ¢ < 2.Let y = ¢(¢) be the solution of the initial value problem (26).

, . . o
‘ Then, s nated previously, @ 2. Complete the calculations leading to the entries in columns

three and four of Table 8.1.2.

(1) = 11—6(4t ~3419¢")
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3. Y =5-3/y, y0)=2

4. y=2y-3t, y0) =1

5. yy=2t+e™", y0) =1

6. ¥y =0+2ty)/3+1%), y(0) =05
7. ¥y =(?—y»siny, y(0)=-1

In each of Problems 8 through 12, find approximate values of the
solution of the initial value problem at ¢ = 0.5, 1.0, 1.5, and 2.0.

) a. Use the Euler method with 2 = 0.025.

@ b. Use the Euler method with 7 = 0.0125.

 c. Use the backward Buler method with z = 0.025.

 d. Use the backward Euler method with 4 = 0.0125.

8. y=05—-t+2y, y(0)=1

9. y=5t-3/y, y(0)=2
10. y=2t+e™, y(0) =1

11. y=@—1y)/(1+yH, y0) =-2

12. y'=*+2ty)/(3+1%), »(0) =05

13. Using three terms in the Taylor series given in equation (12) and
taking 4 = 0.1, determine approximate values of the solution of the
illustrative example y' = 1 — 1 + 4y, y(0) = l at¢ = 0.1 and 0.2.

Compare the results with those using the Euler method and with the
exact values. Hint: If y' = f(#,y), whatis y"?

In each of Problems 14 and 15,
) a. Estimate the local truncation error for the Euler method in
terms of the solution y = ¢ (7).
 b. Obtain abound for e, in terms of  and ¢ (¢) that is valid
ontheinterval 0 <t < 1.
) c. By using a formula for the solution, obtain a more accurate
error bound for e,,;.
D d. For h = 0.1 compute a bound for e; and compare it with
the actual error at ¢t = 0.1.
D e. Compute a bound for the error e, in the fourth step.

14. y'=2y—-1, y0) =1
15. y'=5—t+2y, y(0) =1
In each of Problems 16 through 18, obtain a formula for the local

truncation error for the Euler method in terms of ¢ and the exact
solution y = ¢ (7).

16. y =5t-3./y, y(0) =2

17. y'=Jf+y, y1)=3

18. y=2t+e™, y(0)=1

19. Consider the initial value problem

y' =cos(57t), y(0) =1

@ a. Determine approximate values of ¢(7) at ¢ = 0.2, 0.4,
and 0.6 using the Euler method with 2 = 0.2.

D b. Determine the solution y = ¢ (#), and draw a graph of
y=¢() for0<t <1

@ c. Draw a broken-line graph for the approximate solution,
and compare it with the graph of the exact solution.

) d. Repeat the computation of part a for 0 < ¢ < 0.4, but take
h=0.1.

) e. Show by computing the local truncation error that neither
of these step sizes is sufficiently small.

) f. Determine a value of & to ensure that the local truncation

error is less than 0.05 throughout the interval 0 < ¢ < 1. That

such a small value of 4 is required results from the fact that

max |¢"(¢)] is large.
20. In this problem we discuss the global truncation error associated
with the Euler method for the initial value problem y’ = f(t,y),
y(t) = yo. When the functions f and f, are continuous in a
closed, bounded region R of the ry-plane that includes the point
(fo, Yo), it can be shown that there exists a constant L such that
|£(t,y) = £(£,5)| < L|y — 5|, where (¢, y) and (7, ) are any two
points in R with the same ¢ coordinate (see Problem 14 of Section
2.8). Further, we assume that f; is continuous, so the solution ¢ has a
continuous second derivative.

a. Using equation (20), show that

|Ept1] < |Enl + B f(tny (1)) = £ (tny y)

+%h2|¢>”(i;>|

BN E2Y)

< alE,| + Bh?,

1
where o = 1+ hL and 3 :maxEIdJ”(t)[onto <t <t

b. Assume that if E; = 0, and if | E,| satisfies equation (31),
then |E,| < Bh*(a" — 1) /(a — 1) for o # 1. Use this result to
show that

(1+hL)" —1
Z

Equation (32) gives a bound for |E,| in terms of A, L, n, and
3. Notice that for a fixed h, this error bound increases with
increasing n; that is, the error bound increases with distance from
the starting point #;.

¢. Show that (1 + AL)" < e"L; hence

|Enl = Bh. (32

enhL =1
|Enl < —F—Ph-
If we select an ending point T greater than #; and then choose
the step size & so that n steps are required to traverse the interval
[ty, T1, then nh = T — ty, and
e(T—ro')L _
|E,| < —L—-—ﬁh = Kh,

which is equation (25). Note that K depends on the length 7' — 1,
of the interval and on the constants L and 3 that are determined
from the function f.

21. Derive an expression analogous to equation (22) for the local
truncation error for the backward Euler formula. Hint: Construct a
suitable Taylor approximation to ¢ () about f = f,41.

22. Using a step size A = 0.05 and the Euler method, but retaining
only three digits throughout the computations, determine approximate
values of the solution at ¢+ = 0.1, 0.2, 0.3, and 0.4 for each of the
following initial value problems:

Qa. y=1-t+4y, y(0) =1

Ob.y=3+1t—y, y0)=1

Oc y=2y-3t, y0=1
Compare the results of a with those obtained in Example 1 and in
Problem 1 and the results of ¢ with those obtained in Problem 4. The
small differences between some of those results rounded to three digits
and the present results are due to round-off error. The round-off error
would become important if the computation required many steps.

T—

23. The following problem illustrates a danger that occurs because
of round-off error when nearly equal numbers are subtracted and the
difference is then multiplied by a large number. Evaluate the quantity

6.010 18.04
2.004 6.000

in parts a and b.

1000 - ’

in the following ways:
) a. First round each entry in the determinant to two digits.

82  |mprovements on the Euler Method

For many problems the Euler method requires a very small step size to produce sufficiently
accurate results. Much effort has been devoted to the development of more accurate methods.

In the next three sections, we will discuss some of these methods. Consider the initial value
problem

v = f(t,y), y() =y 1)

and let y = ¢(¢) denote its solution. Recall from equation (10) of Section 8.1 that by
integrating the given differential equation from ¢, to #,,, we obtain

Int1

¢ (tn1) = ¢ (1) + [, ¢(1)) dr. @

tn

The Euler formula

Ynt1 = Yo + hf(tn, yn) 3

is obtained by replacing the integrand f(¢, ¢ (#)) in equation (2) by its approximate value
f(ty, yu) atthe left endpoint of the interval of integration. Other approximations of the definite
integral lead to other numerical solution methods for initial value problems.

y y'=F£(t, ¢(2)

f(tn+lv¢(tn+l)) N
L1

Lt 02, +
f(tn+1: ¢(tn+l)))

J

tn tn+1 ¢

ft,, 0@~

Derivation of the improved Euler method.

Improved Euler Formula. A better approximate formula for the solution of initial value
problem (1) can be obtained if the definite integral in equation (2) is approximated more

accurately. One Waylto do this is to replace the integrand by the average of its values at the two
endpoints, namely, = (f (fz, @ (1)) + f(tn41, @ (1241)) ). This is equivalent to approximating

the area under the curve in Figure 8.2.1 between ¢ = #, and ¢ = t,; by the area of the shaded

trapezoid. Further, we replace ¢ (#,) and ¢ (#,+1) by their respective approximate values y,
and y,. In this way we obtain, from equation (2),

tf’l.!}'l+ tﬂ *.Jn
yn+1=yn+f( Yn) g( +1y+l)h. @

Since the unknown y,; appears as one of the arguments of f on the right-hand side of
equation (4), this equation defines y,; implicitly rather than explicitly. Depending on the
nature of the function f, it might be fairly difficult to solve equation (4) for y, ;. This difficulty

8.2 Improvements on the Euler Method

@ b. First round each entry in the determinant to three digits.
© c. Retain all four digits. Compare this value with the results

24. The distributive law a(b — ¢) = ab — ac does not hold, in
general, if the products are rounded off to a smaller number of digits.
To show this in a specific case, takea = 0.22,b = 3.19,andc = 2.17.
After each multiplication, round off the last digit.
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Problems

Variation of Step Size. In Section 8.1 we mentioned the possibility of adjusting the step
size as a calculation proceeds so as to maintain the local truncation error at a more or less
constant level. The goal is to use no more steps than necessary and, at the same time, to
keep some control over the accuracy of the approximation. Here, we will describe how this
can be done. First, we choose the error tolerance ¢, which is the local truncation error that
we are willing to accept. Suppose that after n steps we have reached the point (7, y,). We
choose a step size h and calculate y,. ;. Next we need to estimate the error we have made in
calculating y,,;. Not knowing the actual solution, the best that we can do is to use a more
accurate method and repeat the calculation starting from (#,, y,). For example, if we used
the Euler method for the original calculation, we might repeat it with the improved Euler
method. Then the difference between the two calculated values is an estimate e;il of the
error in using the original method. If the estimated error is larger than the error tolerance e,
then we adjust the step size and repeat the calculation. The key to making this adjustment
efficiently is knowing how the local truncation error e,; depends on the step size h. For
the Euler method, the local truncation error is proportional to 2, so to bring the estimated
error down (or up) to the tolerance level €, we must multiply the original step size by the

factor Ve /e, .
To illustrate this procedure, consider the example problem (7):
y=1—t+4y, y0)=1.
Suppose that we choose the error tolerance € to be 0.05. You can verify that after one step
with 4 = 0.1, we obtain the values 1.5 and 1.595 from the Euler method and the improved
Euler method, respectively. Thus the estimated error in using the Euler method is 0.095. Since
this is larger than the tolerance level of 0.05, we need to adjust the step size downward by

the factor 1/0.05/0.095 = 0.73. Rounding downward to be conservative, let us choose the
adjusted step size A = 0.07. Then, from the Euler formula, we obtain

v = 14 (0.07) £(0, 1) = 1.35 = ¢(0.07).

Then, using the improved Euler method with 2~ = 0.07, we obtain y; = 1.39655, so the
estimated error in using the Euler formula is 0.04655, which is slightly less than the specified
tolerance. The actual error, based on a comparison with the exact solution, is somewhat greater,
namely, 0.05122.

We can follow the same procedure at each step of the calculation, thereby keeping the
local truncation error approximately constant throughout the entire numerical process. Modern
adaptive codes for solving differential equations adjust the step size in very much this way as
they proceed, although they usually use more accurate formulas than the Euler and improved
Euler formulas. Consequently, they are able to achieve both efficiency and accuracy by using
very small steps only where they are really needed.

1. Complete the calculations leading to the entries in columns 5. ¥y =(*+2ty)/3+1?), ¥(0) =05
four and five of Table 8.2.1.

6. y=(2—yHsiny, y(0) =-1

In each of Problems 2 through 6, find approximate values of the
solution of the given initial value problem at ¢+ = 0.1, 0.2, 0.3, and
0.4. Compare the results with those obtained by the Euler method and
the backward Euler method in Section 8.1 and with the exact solution
(if available).

© a. Use the improved Euler method with & = 0.05.

@ b. Use the improved Euler method with A = 0.025.

@ c. Use the improved Euler method with & = 0.0125.

2. y=3+rt—y, y0) =1
3.y =2y-3t, y0)=1
4. y=2t+e”, y(0) =1

In each of Problems 7 through 11, find approximate values of the
solution of the initial value problem at = 0.5, 1.0, 1.5, and 2.0.

@ a. Use the improved Euler method with 2 = 0.025.

@ b. Use the improved Euler method with 2 = 0.0125.

7. ¥=05-t+2y, y(0)=1

8. y=5-3/5 0 =2

9. y=Jt+y, y0) =3

10, y=2t+e™™, y(0)=1

1. ¥y =?+2ty)/3+1H), »(0) =05

12. In this problem we establish that the local truncation error for ~ In each of Problems 14 and 15,
the improved Euler formula is proportional to 43. If we assume that
the solution ¢ of the initial value problem y’ = f(¢,y), y(t0) = Yo
has derivatives that are continuous through the third order (f has
continuous second partial derivatives), then it follows that
" e
(tl'l) tl
Bl ) = 9 () + ¢ (h -+ L g2y T 5,
where t, < I, < t, + h. Assume that y, = ¢ (1,).

14, y=2y—1, y(0) =1

8.3 The Runge-Kutta Method

a. Show that, for y,; as given by equation (5), 15. ¥ =05-1t+2y, y(0) =1

€pt1 = ¢(tn+1) — Yn+1
_ @"(t)h — (f(tn + Ry yn + hf (tn, yu)) — [ (2, yn)) h

21 Suppose that a local truncation error no greater than ¢ = 0.0025 is
" (T 3 required. Estimate the step size that is needed for the Euler method to
T (10)  satisty this requirement at the first step.

6. y=05—
b. Use the facts that " (1) = f,(t, $(8)) + f(1, (1)) /(1) W26, =05~

and that the Taylor approximation with a remainder for a function

y(0) =1
O 17. y=5-3/5 0 =2

F(t, y) of two variables is 0 18. y=yi+ty, y0) =3

F(a+h,b+k) = F(a,b) + Fi(a,b)h + Fy(a, bk
1
+E(h2F,, + 2hkFyy + k> Fyy) ,
’ t=£,y=n

where & lies between a and a + h, and 7 lies between b and
b + k, to show that the first term on the right-hand side of

0O 19. y=02+2y)/3+1), y0) =05
20. The modified Euler formula for the initial value problem
y'= f(t, ), y(to) = yo is given by

1 1
Ynt+1 = Yn + hf <[n + Eh, Yn + Ehf(tn, Yn)> .
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a. Use the actual solution ¢ (#) to determine e,,; and a bound
for e, atany stepon 0 < ¢ < 1 for the improved Euler method
for the given initial value problem.
b. Also obtain a bound for e; for 2 = 0.1, and compare it with
the similar estimate for the Euler method and with the actual error
for the improved Euler method.

In each of Problems 16 through 19, carry out one step of the Euler
method and of the improved Euler method, using the step size 4 = 0.1.

equation (10) is proportional to 4> plus higher-order terms. This Following the procedure outlined in Problem 12, show that the local
is the critical estimate needed to prove that the local truncation  truncation error in the modified Euler formula is proportional to /4.

error is proportional to />,
c. Show thatif f(¢, y) is linear in ¢ and y, then

1 = —
ny1 = g¢>”’(E,)h3 for some 7, with #, < Ty < t,471.

In each of Problems 21 through 24, use the modified Euler formula
of Problem 20 with # = 0.05 to compute approximate values of the
solution of the given initial value problem atz = 0.1, 0.2,0.3, and 0.4.

Hint: What ate f, fiy, and fy,? O 21. y=3+t—y, y(0)=1 (Compare with Problem 2)

13. Consider the improved Euler method for solving the illustrative

0 22. y=5-3/5 y0)=2
initial value problem y’ = 1 — ¢ + 4y, y(0) = 1. 0 23. y=2y—-3t, y(0) =1 (Compare with Problem 3)

a. Using the result of Problem 12c and the exact solution of the O 24. y=2t+e™, y(0) =1 (Compare with Problem 4)

initial value problem, determine e, and a bound for the error at
any stepon 0 <t < 2.

b. Compare the error found in a with the one obtained in
equation (27) of Section 8.1 using the Euler method.

¢. Also obtain a bound for e; for 2 = 0.05, and compare it with
equation (28) of Section 8.1.

linear in both # and y.

83 The Runge-Kutta Method

The Euler formula, the backward Euler formula, and the improved Euler formula were
introduced, in Sections 8.1 and 8.2, as ways to numerically approximate the solution of the
initial value problem

y'=ft.y), y() = o ©)

The local truncation errors for these methods are proportional to 42, k2, and A3, respectively.

The Euler and improved Euler methods belong to what is now called the Runge-Kutta? class
of methods.

In this section we discuss the method originally developed by Runge and Kutta. This

method is now called the classic fourth-order four-stage Runge-Kutta method, but it is

often referred to simply as the Runge-Kutta method, and we will follow this practice for

2Carl David Runge (1856-1927), a German mathematician and physicist, worked for many years in spectroscopy.
The analysis of data led him to consider problems in numerical computation, and the Runge-Kutta method originated
in his paper on the numerical solution of differential equations in 1895. The method was extended to systems of
equations in 1901 by Martin Wilhelm Kutta (1867-1944). Kutta was a German mathematician and aerodynamicist
who is also well known for his important contributions to classical airfoil theory.

25. Show that the modified Euler formula of Problem 20 is identical
to the improved Euler formula of equation (5) for y' = f(z, y) if f is




P__ﬁ

370 CHAPTER 8 Numerical Methods

This has stimulated the development of adaptive Runge-Kutta methods that provide for
modifying the step size automatically as the computation proceeds, so as to maintain the local
truncation error near or below a specified tolerance level. As explained in Section 8.2, this
requires the estimation of the local truncation error at each step. One way to do this is to repeat
the computation with a fifth-order method — which has a local truncation error proportional
to h®—and then to use the difference between the two results as an estimate of the error. If
this is done in a straightforward manner, then the use of the fifth-order method requires at
least five more evaluations of f at each step, in addition to those required originally by the
fourth-order method. However, if we make an appropriate choice of the intermediate points
and the weighting coefficients in the expressions for ki, ... s kna in a certain fourth-order
Runge-Kutta method, then these expressions can be used again, together with one additional
stage, in a corresponding fifth-order method. This results in a substantial gain in efficiency. It
turns out that this can be done in more than one way.

The first fourth- and fifth-order Runge-Kutta pair was developed by Erwin Fehlberg®
in the late 1960s and is now called the Runge-Kutta-Fehlberg, or RKF,° method. The
popularity of the RKF method was considerably enhanced by the appearance in 1977 of
its Fortran implementation RKF45 by Lawrence F. Shampine and H. A. Watts. The RKF
method and other adaptive Runge-Kutta methods are very powerful and efficient means of

approximating numerically the solutions of an enormous class of initial value problems.
Specific implementations of one or more of them are widely available in commercial software

packages.

Problems

( 1. Confirm the results in Table 8.3.1 by executing the
indicated computations.
In each of Problems 2 through 6, find approximate values of the
solution of the given initial value problem at ¢ = 0.1, 0.2, 0.3, and
0.4. Compare the results with those obtained by using other methods
and with the exact solution (if available).

) a. Use the Runge-Kutta method with # = 0.1.

 b. Use the Runge-Kutta method with 2 = 0.05.

2. yy=3+t—-y, y0)=1

3. y=5t-3/y, y0) =2

4, y=2+e", Y0 =1

5. y =242y /(B3 +1?), y(0) =05
6. y =(2—yHsiny, y(0)=-1

In each of Problems 7 through 11, find approximate values of the
solution of the given initial value problem at ¢ = 0.5, 1.0, 1.5, and
2.0. Compare the results with those obtained by other methods and
with the exact solution (if available).

) a. Use the Runge-Kutta method with 2 = 0.1.

© b. Use the Runge-Kutta method with 2 = 0.05.

SErwin Fehlberg (1911-1990) was born in Germany, received his doctorate
from the Technical University of Berlin in 1942, emigrated to the United States
after World War I1, and was employed by NASA for many years. The Runge-
Kutta-Fehlberg method was first published in a NASA Technical Report in
1969.

6The details of the RKF method may be found, for example, in the books
by Ascher and Petzold and by Mattheij and Molenaar that are listed in the
References.

7. y=05-t+2y, y0) =1

8. y=5t—3y3 y(0) =2

9. y=i+ty, y0)=3

10. y =2t+e®, y0) =1

1.y =(*+2ty)/(3+1%), »(0) =05
12. Consider the initial value problem

y' =32/(3y*—4), y(0)=0.

Let ¢ be the right-hand endpoint of the interval of existence of this
solution.
@ a. Draw a direction field for this equation.
b. Use the direction field created in a to estimate t. What
happens at ¢ to prevent the solution from continuing farther?
) c. Use the Runge-Kutta method with various step sizes to
determine an approximate value of #.
d. Ifyou continue the Runge-Kutta computation forz > £, you
can continue to generate values of y. What significance, if any,
do these values have?
) e. Suppose that the initial condition is changed to y(0) = 1.
Repeat parts b and ¢ for this problem.

84  Multistep Methods

In preYious sections we have discussed numerical procedures for approximating the solution
of the initial value problem

y'=f(t,y), y(t) = yo, 1)

in which data at the point ¢t = #, are used to calculate an approximate value of the solution
¢(tn+1) at the next mesh point t = #,,. In other words, the calculated value of the exact
solution ¢ at any mesh point depends only on the data at the preceding mesh point. Such
methods are called one-step methods. However, once approximate values of the exact solution
y = ¢ (¢) have been obtained at a few points beyond #y, it is natural to ask whether we can make
use of more of this information—not just the value at the last point—to calculate the value of
o (1) z}t the next point. Specifically, if y; at #{, y, att,, ..., y, at t, are known, how can we
use this information to determine y,; at t,,,? Methods that use information at more than
the last mesh point are referred to as multistep methods. In this section we will describe two
types of multistep methods: Adams’ methods and backward differentiation methods. Within
each type, we can achieve various levels of accuracy, depending on the number of preceding
data points that are used. For simplicity, we will assume throughout our discussion that the
step size k is constant.

Adams Me

Recall that the solution ¢ (¢) of the initial value problem (1) satisfies

Iny1

G (tpp1) — D (tn) = @' (1) dt. 2)

rll
The basic idea of an Adams method is to approximate ¢'(¢) by a polynomial P.(¢) of degree
k andh tg use 'the polynomial to evaluate the integral on the right-hand side of equation (2). The
coefficients in P(t) are determined by using k + 1 previously calculated data points.

For example, suppose that we wish to use a first-degree polynomial P;(t) = At + B.
Then we need only the two data points (#,, y,) and (#,_1, y,—1). For P; to interpolate ¢’
??Oth; =¢t7 and ¢t = t,_,, we require both that P;(t,) = ¢'(t,) = f(t,, y») and that

W(t—1) = @'(t,—1) = f(ty—1, Yu—1). Recall that we denote f(¢;, y; i i j

) ,Yi) b for an integer j.

Thus A and B must satisfy the equations OIS, =
Aty + B = f ns

Aty 1+ B = fn—l‘ ®

Solving for A and B, we obtain

_ fn_fn-—l fn—ltn_fnt ~1
A= B and B = —~h—" 4)
Replacing ¢'(t) by P;(t) and evaluating the integral in equation (2), we find that

1,

n A

® (ts) = @ (8) = / (At By di = 211 = 1) + Bltnys =),
n+

Finally,. we replace _¢(tn+1) and ¢(t,) by y,11 and y,, respectively, and carry out some

algebraic simplification. For a constant step size 4, we obtain

3 1
Y41 = Yn + Ehfn ’R ihfn—l- (5)

EquaFion (5) is the second-order Adams-Bashforth® formula. It is an explicit formula for
Yn+1 in terms of y, and y,_; and has a local truncation error proportional to A>.

N A s B S S AT A A S SRR

John Couch {\dams (1819-1892), an English mathematician and astronomer, is most famous as codiscoverer, with
Joseph Leverrier, of the planet Neptune in 1846. He was associated with Cambridge University for most of his life, as
student (1839-1843), fellow, Lowdean Professor, and director of the Observatory. Adams was extremely skilled at

computation; his procedure for numerical integration of differential equati i i i
: ' ; quations appeared in 1883 in a book on
action written with Francis Bashforth. ’ emcaptliey

8 : .
Francis Bashforth (1819-1912), English mathematician and Anglican priest, was a classmate of J. C. Adams at

Camblridge. He was particularly interested in ballistics and invented the Bashforth chronograph for measuring the
velocity of artillery projectiles.

8.4 Multistep Methods
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The Runge-Kutta method with 2 = 0.1 gives y, = 5.7927853 with an error of —0.0014407;
see Table 8.3.1. Thus, for this problem, the Runge-Kutta method is comparable in accuracy to the
predictor —corrector method.

Darlwraved DiFF
Backward DTt

P(#) to approximate the solution ¢ (#) of the initial value problem (1) rather than its
derivative ¢'(t), as in the Adams methods. We then differentiate P(t) and set P{(f;+1)
equal to f(Zy+1, Yu41) to Obtain an implicit formula for y,;;. These are called backward
differentiation formulas. These methods became widely used in the 1970s because of the
work of C. William Gear!© on so-called stiff differential equations, whose solutions are very
difficult to approximate by the methods discussed up to now; see Section 8.6.

The simplest case uses a first-degree polynomial Pi(7) = At + B. The coefficients are
chosen so that P;(#,) and P;(,,1) agree with the computed values of the solution y, and y, 41,
respectively: Py(t,) = yu and Pi(fp41) = Ynt1- Thus A and B must satisfy

Aty + B = yn,

entiation Formulas.  Another type of multistep method uses a polynomial

12)
Aty + B = Yy
Solving the linear algebraic equations (12) for A and B yields
A:Xﬁlh_’ﬂand B:yn_wtl_’z;_yfﬂ_ (13)

Since P(t) = A, the requirement that P{(tyt1) = f(tat1, Ynt1) isjust A = f(tyt1s Ynt1)-
Equating this value of A and the value of A given in equation (13) and rearranging terms, we
obtain the first-order backward differentiation formula

Ynt1 = Yn + hf (i1, Yn1) - (14)

Note that equation (14) is just the backward Euler formula that we first saw in Section 8.1.

By using higher-order polynomials and correspondingly more data points, we can obtain
backward differentiation formulas of any order. The second-order backward differentiation
formula is

1
Yn+1 = 5(4}’11 = Yn-1+ 2hf (th+1, yn+1))a (15)

and the fourth-order backward differentiation formula is
1
Yn+1 = '2—5 (48yn —36y,—1 + 16y, — 3yp—3 + 12hf (tpt1, yn+1))‘ (16)

These formulas have local truncation errors proportional to A° and h>, respectively.

EXAMPLE 2

Use the fourth-order backward differentiation formula with 2 = 0.1 and the data given in Example
1 to determine an approximate value of the solution y = ¢ () att = 0.4 for the initial value
problem (11).

Solution:
Using equation (16) with n = 3, h = 0.1, and with yg, ... , y3 given in Example 1, we obtain the
equation

y4 = 4.6837842 + 0.192y4.

10¢, William Gear (1935- ), born in London, England, received his undergraduate education at Cambridge University
and his doctorate in 1960 from the University of Illinois. He was a member of the faculty at the University of Illinois for
most of his career and made significant contributions to both computer design and numerical analysis. His influential
book on numerical methods for differential equations is listed in the References.

Y Thus

y4 = 5.7967626.

Comparing the calculated value with the exact value ¢ (0.4) = 5.7942260, we find that the error is
0.0025366. This is somewhat better than the result using the fourth-order Adams-Bashforth method,
but it is not as good as the result using the fourth-order predictor—corrector method, and not neatly
as good as the result using the fourth-order Adams-Moulton method.

A comparison between one-step and multistep methods must take several factors into
consideration. The fourth-order Runge-Kutta method requires four evaluations of f at each
step, while the fourth-order Adams-Bashforth method (once past the starting values) requires
only one, and the predictor—corrector method only two. Thus, for a given step size h, the latter
two methods may well be considerably faster than Runge-Kutta. However, if Runge-Kutta is
more accurate and therefore can use fewer steps, the difference in speed will be reduced and
perhaps eliminated.

The Adams-Moulton and backward differentiation formulas also require that the
difficulty in solving the implicit equation at each step be taken into account. All multistep
methods have the possible disadvantage that errors in earlier steps can feed back into later
calculations with unfavorable consequences. On the other hand, the underlying polynomial
approximations in multistep methods make it easy to approximate the solution at points
between the mesh points, should this be desirable. Multistep methods have become popular
largely because it is relatively easy to estimate the etrror at each step and to adjust the order
or the step size to control it. For a further discussion of such questions as these, see the books
listed at the end of this chapter; in particular, Shampine (1994) continues to be an authoritative
source.

Problems
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In each of Problems 1 through 5, determine an approximate value of O b. Use the fourth-order Adams-Moulton method with

the solution at ¢+ = 0.4 and ¢+ = 0.5 using the specified method. For h = 0.05.

starting values, use the values given by the Runge-Kutta method; see O c. Use the fourth-order backward differentiation method

Problems 2 through 6 of Section 8.3. Compare the results of the with & = 0.05.
various methods with each other and with the actual solution (if
available).
 a. Use the fourth-order predictor—corrector method with
h = 0.1. Use the corrector formula once at each step.
O b. Use the fourth-order Adams-Moulton method with
h=0.1.
@ c. Use the fourth-order backward differentiation method

y=4t+y, y0) =3

il A 4

Yy =2t+e", y(0)=1
10. y = (y2+2ty)/(3+1?),

y=05—-t+2y, y(0) =1
Y =5t-3/y, ¥(0) =2

y(0) =0.5

with 4 = 0.1. 11. a. Show that the first-order Adams-Bashforth method is the

Eul thod.
Y=3+i—y, y0) =1 uler metho

y=5-3/y, ¥0) =2 backward Euler method.

W N =

o

¥y =(*+2ty)/(3+1%), y(0)=0.5
¥y =(?—y*)siny, y(0)=-1

wn

y=2+e", y(0)=1 12. Show that the third-order Adams-Bashforth formula is
h
Yust = Y+ 17 (3fu =16 fus + 5ifi-n)s

In each of Problems 6 through 10, find approximate values of the ~ 13. Show that the third-order Adams-Moulton formula is

solution of the given initial value problemat¢ = 0.5, 1.0, 1.5, and 2.0,
using the specified method. For starting values, use the values given
by the Runge-Kutta method; see Problems 7 through 11 in Section 8.3.

h
Yntl = Yn + E(sfnﬂ +8fu— fn—l)-

b. Show that the first-order Adams-Moulton method is the

Compare the results of the various methods with each other and with 14. Derive the second-order backward differentiation formula given

the actual solution (if available).
@ a. Use the fourth-order predictor—corrector method with
h = 0.05. Use the corrector formula once at each step.

by equation (15) in this section.
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Problems

In each of Problems | through 5, determine approximate values of
the solution x = ¢ (1), y = ¥ (1) of the given initial value problem
att = 0.2, 0.4, 0.6, 0.8, and 1.0. Compare the results obtained by
different methods and different step sizes.
() a. Use the Euler method with 1 = 0.1.
© b. Use the Runge-Kutta method with 7 = 0.2.
@ c. Use the Runge-Kutta method with / = 0.1.
1. x'=x+y+t, y=4x—2y; x(0)=1 y(0)=0
2. x'=—tx—y—1, ¥=x; x(0)=1, y(0) =1
3, x=x—y+xy, y=3x-2y—xy; x(0)=0, y(0)=1
4. x'=x(1-0.5x—0.5y), ¥y =y(-025+ 0.5x);
x(0) =4, y(0) =1
5. x'=exp(—x +y) —cosx, y' =sin(x — 3y);
x(0) =1, y(0)=2
) 6. Consider the example problem xX=x—-4y,y =—x+y
with the initial conditions x(0) = 1 and y(0) = 0. Use the
Runge-Kutta method to find approximate values of the solution of this
problem on the interval 0 < t < 1. Start with b = 0.2, and then
repeat the calculation with step sizes h=0.1,0.05, ..., eachhalfas
long as in the preceding case. Continue the process until the first five
digits of the solution at# = 1 are unchanged for successive step sizes.
Determine whether these digits are accurate by comparing them with
the exact solution given in equations (8) in the text.

) 7. Consider the initial value problem

2 43 =1, x(0) =1, x'(0)=2.

Convert this problem to a system of two first-order equations, and
determine approximate values of the solution at ¢ = 0.5andt = 1.0
using the Runge-Kutta method with h=0.1.

() 8. Consider the general initial value problem x’ = f(t, x, y)
and y' = g(t,x,y) with x(f) = Xo and y(ty) = Yo. The Adams-
Moulton predictor-corrector method of Section 8.4 generalizes to

1
g1 = Xn+ 57 h(55fn = 59 fu-1 + 37 fu2 = 9 fn-3),

1
Ynt1 = Yn + ﬁh(SSgn —59g,_1 +378n—2 — 98n-3)
and

i
g1 = Xn + 57O fa1 + 19fy =5 fa-1+ fa2)

1
Ynt+1 = Yn + ﬂh(98n+1 + 198” - 5gn—l + gn—2)'

Determine an approximate value of the solution at ¢ = 0.4 for the
example initial value problem x' = x — 4y, y = —x + y with
x(0) = 1, y(0) = 0. Take h = 0.1. Correct the predicted value
once. For the values of x;, . . . , y3 use the values of the exact solution
rounded to six digits: x; = 1.12735, x = 1.32042, x3 = 1.60021,
y; = —0.111255, y, = —0.250847, and y; = —0.429696.

s6 More on Errors; Stability

In Section 8.1 we discussed some ideas related to the errors that can occur in a numerical
approximation of the solution of the initial value problem

yl:f(tsy)’ y(t()) = Yo- (1)

In this section we continue that discussion and also point out some other difficulties that can
arise. Some of the points that we wish to make are fairly difficult to treat in detail, so we will
illustrate them by means of examples.

Truncation and Round-Off Errors. Recall that, for the Euler method with equal time steps
of size h, we showed the local truncation error is proportional to h? and, for a finite interval,

Error
|E,| +|R,I

FIGuREs Ji' The dependence of truncation
error | E,| (black), round-off error | R, | (blue), and
total error | E,| + |R,| (red) on the step size A.

and therefore is inversely proportional to the step size #. On the other hand, the truncation
error E, is proportional to a positive power of 4. From equation (17) of Section 8.1, we know
thjat the total error is bounded by |E,| 4+ |R,|; hence we wish to choose 4 so as to minimize
this quantity. The optimum value of ~ occurs when the rate of increase of the truncation error

(as h increases) is balanced by the rate of decrease of the round-off error, as indicated in
Figure 8.6.1.

EXAMPLE 1

Consider the example problem
y=1-t+4y, y0) =L @

Using the Euler method with various step sizes, calculate approximate values for the solution
¢ (1) att = 0.5 and ¢t = 1. Try to determine the optimum step size.

Solution:

Table 8.6.1 shows the results of applying Euler's method for nine different values of /. The results
were obtained using software configured to use only four significant digits. This was done on purpose
to have round-off errors become significant for larger values of 4 than if more significant digits are
used in floating-point operations. The first two columns are the step size 4 and the number of steps N
required to traverse the interval 0 < 7 < 1. Then yy, and yy are approximations to ¢ (0.5) = 8.712
and ¢ (1) = 64.90, respectively. These quantities appear in the third and fifth columns. The fourth

anld sixth columns display the differences between the calculated values and the actual value of the
solution.

Approximations to the Solution of the Initial Value Problem

y' ' =1—t+4y,y(0) = 1 Using the Euler Method with
Different Step Sizes

TABLE 8.6.1

8.6 More on Errors; Stability
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the global truncation error is at most a constant times h. In general, for a method of order p, 0.01 100 8.390 —0.322 60.12 —4.78
the Tocal truncation error is proportional to #P*! and the global truncation error on a finite 0.005 200 8.551 —0.161 62.51  —2.39
interval is bounded by a constant times A”. For example, Euler's method is an order 1 method. 0.002 500 8.633 i
; : . . . : 0.079 63.75 21,15
To achieve high accuracy, we normally use a numerical procedure for which p is fairly 0.001

. . . : . 1000 8.656 —0.056 63.94 —0.96

large, perhaps 4 or higher. As p increases, the formula used in computing y,; normally 0.0008 Ll :
becomes more complicated, and hence more calculations are required at each step. However, ) 8.636 —0.076 63.78 ~1i12
this is usually not a serious problem unless f(z, y) is very complicated or the calculation must 0.000625 1600 8.616 —0.096 6435  —0.55
be repeated very many times. 0.0005 2000 8.772 0.060 64.00  —0.90
‘ gthc step size h is decreased, the global 'trunca.tion error is dec'rfezsc?d by the saﬁle factot; 0.0004 2500 8.507 0.205 63.40 —1.50
raised to the power p. However, as we mentioned in Section 8.1, if 4 is very small, a greal 0.00025 4000 8.231 e e i

many steps will be required to cover a fixed interval, and the global round-off error may be
larger than the global truncation error. The situation is shown schematically in Figure 8.6.1. We
assume that the round-off error R, is proportional to the number of computations performed v
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Problems

1.

2

ko

Y You should bear in mind that the numerical values of the entries in the second column

of Table 8.6.4 are extremely sensitive to slight variations in how the calculations are executed.
Regardless of such details, however, the exponential growth of the approximation will be clearly
evident.

Equation (18) is highly unstable, and the behavior shown in this example is typical of unstable
problems. We can track a solution accurately for a while, and the interval can be extended by using
smaller step sizes or more accurate methods, but eventually the instability in the problem itself takes
over and leads to large errors.

A

Some Comments on the Selection of a Numerical Method. In this chapter we
have introduced several numerical methods for approximating the solution of an initial
value problem. We have tried to emphasize some important ideas while limiting the level
of complexity. For one thing, except for the comments at the end of Section 8.2, we
have always used a uniform step size, whereas production codes that are currently in use
provide for varying the step size as the calculation proceeds.

There are several considerations that must be taken into account in choosing step sizes.
Of course, one is accuracy; too large a step size leads to an inaccurate result. Normally, an
error tolerance is prescribed in advance, and the step size at each step must be consistent with
this requirement. As we have seen, the step size must also be chosen so that the method is
stable. Otherwise, small errors could grow and render the subsequent computations worthless.
Finally, for implicit methods an equation must be solved at each step, and the method used to
solve the equation may impose additional restrictions on the step size.

In choosing a method, one must also balance the considerations of accuracy and stability
against the amount of time required to execute each step. An implicit method, such as the
Adams-Moulton method, requires more calculations for each step, but if its accuracy and
stability permit a larger step size (and consequently fewer steps), then this may more than
compensate for the additional calculations. The backward differentiation formulas of moderate
order (say, four) are highly stable and are therefore indicated for stiff problems, for which
stability is the controlling factor.

Some current production codes also permit the order of the method to be varied, as well as
the step size, as the calculation proceeds. The error is estimated at each step, and the order and
step size are chosen to satisfy the prescribed error tolerance. In practice, Adams methods up to
order twelve and backward differentiation formulas up to order five are in use. Higher-order
backward differentiation formulas are unsuitable because of a lack of stability.

Finally, we note that the smoothness of the function f —that is, the number of continuous
derivatives that it possesses —is a factor in choosing the order of the method to be used. High-
order methods lose some of their accuracy if f is not smooth to a corresponding order.

A numerical analysis course is likely to provide a more in-depth investigation of errors,
stability, and efficiency. Similar information can be found in the References at the end of this
chapter.

To obtain some idea of the possible dangers of small errorsinthe ~ Using the Runge-Kutta method with step size h, we obtain the results
initial conditions, such as those due to round-off, consider the initial ~ in Table 8.6.5. These results suggest that the solution has a vertical
value problem

y=t+y-3,

a. Show that the solutionis y = ¢(#) =2 —¢.

b. Suppose that in the initial condition a mistake is made, and
2.001 is used instead of 2. Determine the solution y = ¢,(¢) in
this case, and compare the difference ¢,(#) — ¢ () att = 1 and

ast — oo.

y/=t2+ey,

asymptote between t = 0.9 and t = 1.0.

Approximations to the Solution of the
Initial Value Problem y’ = ¢* 4 ¢’,
y(0) = 0 Using the Runge-Kutta Method

y(0) =2.

TABLE 8.6.5

0.02 3.42985 > 1038
Consider the initial value problem 0.01

y(0) =0. (26)

3.42982 > 10

a. Lety = ¢(¢) be the solution of initial value problem 27).
Further, let y = ¢{(¢) be the solution of

y=1+¢, y(0)=0, @7
and let y = ¢,(¢) be the solution of
y'=e, y(0)=0. (28)
Show that
G2(1) < P(1) < @1(1) (29)

on some interval, contained in 0 < ¢ < 1, where all three
solutions exist.

b. Determine ¢ ((¢) and ¢5(7). Then show that ¢ (1) — oo for
some ¢ between t = In2 = 0.69315 and ¢ = 1.

¢. Solve the differential equations y’ = ¢” and y' = 1 + ¢,
respectively, with the initial condition y(0.9) = 3.4298. Use the
results to show that ¢ () — oo when ¢ = 0.932.

3. Consider again the initial value problem (16) from Example 2.
Investigate how small a step size 4 must be chosen to ensure that the
error at ¢ = 0.05 and at # = 0.1 is less than 0.0005.

@ a. Use the Euler method.
@ b. Use the backward Euler method.
@ c. Use the Runge-Kutta method.
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4. Consider the initial value problem
¥ =—10y +2.5> + 0.5, y(0) = 4.

a. Find the solution y = ¢ (¢) and draw its graphfor0 <t <5,
@ b. The stability analysis in the text suggests that—for_this
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that this is true by applying the Euler method to this problem for
0 <t < 5 with step sizes near 0.2.
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this problem for 0 < ¢ < 5. What can you conclude about the
stability of this method?
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that the error at 7 = 5 is less than 0.01?

In each of Problems 5 and 6:
a. Find a formula for the solution of the initial value problem,
and note that it is independent of \.
@ b. Use the Runge-Kutta method with # = 0.01 to compute
approximate values of the solution for 0 < ¢ < 1 for various
values of A suchas A = 1, 10, 20, and 50.
¢. Explain the differences, if any, between the exact solution
and the numerical approximations.

Y —=Ay=1=Xt, y(0)=0
6. y—Ay=2t—-X%, y(0) =0
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