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22. The Tautochrone. A problem of interest in the history
of mathematics is that of finding the tautochrone®—the curve
down which a particle will slide freely under gravity alone,
reaching the bottom in the same time regardless of its starting
point on the curve. This problem arose in the construction of
a clock pendulum whose period is independent of the amplitude
of its motion. The tautochrone was found by Christian Huygens
(1629-1695) in 1673 by geometric methods, and later by Leibniz
and Jakob Bernoulli using analytic arguments. Bernoulli’s solution
(in 1690) was one of the first occasions on which a differential
equation was explicitly solved. The geometric configuration is
shown in Figure 6.6.2. The starting point P(a,b) is joined
to the terminal point (0,0) by the arc C. Arc length s is

P(a, b)
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The tautochrone.

8The word “tautochrone” comes from the Greek words fauto, which means
“same,” and chronos, which means “time.”
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measured from the origin, and f(y) denotes the rate of change of s
with respect to y:
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Then it follows from the principle of conservation of energy that the
time 7' (b) required for a particle to slide from P to the origin is
f(y

1 b
ﬁ/o vb—y

a. Assume that 7(b) = Ty, a constant, for each b. By taking
the Laplace transform of equation (32) in this case, and using the
convolution theorem, Theorem 6.6.1, show that

28 TO.

T(b) =

dy. (32)

F(s) = ?«/5’ (33)
then show that
2g T,
f) = Vi T (34)

T /Y '
Hint: See Problem 24 of Section 6.1.
b. Combining equations (32) and (34), show that

d 200 —
= 2= (35)
dy y

where o = gT02/7r2.
¢. Use the substitution y = 2« sin2(0 /2) to solve equation
(35), and show that

x=ca(f +sinf), y=a(l—-cosh). (36)
Equations (36) can be identified as parametric equations of a
cycloid. Thus the tautochrone is an arc of a cycloid.
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Systems of First-Order
Linear Equations

Many physical problems involve a number of separate but interconnected components. For
example, the current and voltage in an electrical network, each mass in a mechanical system,
each element (or compound) in a chemical system, or each species in a biological system have
this character. In these and similar cases, the corresponding mathematical problem consists
of a system of two or more differential equations, which can always be written as first-order
differential equations. In this chapter we focus on systems of first-order linear differential
equations and, in particular, differential equations having constant coefficients, utilizing some
of the elementary aspects of linear algebra to unify the presentation. In many respects this
chapter follows the same lines as the treatment of second-order linear differential equations in
Chapter 3.

7.1 |ntroduction

Systems of simultaneous ordinary differential equations arise naturally in problems involving
several dependent variables, each of which is a function of the same single independent
variable. We will denote the independent variable by ¢ and will let xy, x5, x3, ... represent
dependent variables that are functions of 7. Differentiation! with respect to ¢ will be denoted

X1
by, for example, — or x|.

Let us begin by considering the spring—mass system in Figure 7.1.1. The two masses
move on a frictionless surface under the influence of external forces F;(¢) and F,(t), and
they are also constrained by the three springs whose constants are ki, k5, and ks, respectively.
We regard motion and displacement to the right as being positive.

Fy(0) | Ft)
| |
k : k; : ks
m; MWW mo
| | | |
| | | 1
%2
|——>

A two-mass, three-spring system.

Using arguments similar to those in Section 3.7, we find the following equations for the
coordinates x; and x, of the two masses:

dle

mq —dz_2

d2x2

My = —k3xy — ka(x2 — x1) + F2(2) = kox1 — (kp + k3) xz + F(1).

= ka(x2 — x1) — kix1 + Fi(¢) = —(ky + ko) x1 + koxo + Fi(2),
H

See Problem 14 for a full derivation of the system of differential equations (1).
Next, consider the parallel LRC circuit shown in Figure 7.1.2. Let V be the voltage drop
across the capacitor and I the current through the inductor. Then, referring to Section 3.7 and

!In some treatments you will see differentiation with respect to time represented with a dot over the function, as in
. dx 1 dzx 1
X = = and X¥| = o We reserve this notation for a specific purpose, which will be introduced in Section 9.6.
t
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CHAPTER 7 Systems of First-Order Linear Equations

The proof of this theorem can be constructed by generalizing the argument in Section 2.8,
but we do not give it here. However, note that, in the hypotheses of the theorem, nothing is said
about the partial derivatives of Fy, ..., F, with respect to the independent variable ¢. Also,
in the conclusion, the length 2/ of the interval in which the solution exists is not specified
exactly, and in some cases it may be very short. Finally, the same result can be established on
the basis of somewhat weaker but more complicated hypotheses, so the theorem as stated is
not the most general one known, and the given conditions are sufficient, but not necessary, for
the conclusion to hold.

If each of the functions F), ... , F, in equations (11) is a linear function of the dependent
variables xq, ... , x,, then the system of differential equations is said to be linear; otherwise,
it is nonlinear. Thus the most general system of # first-order linear differential equations has
the form

x; = pu(D)x;+ -+ pra(t)x, + g1(2),
xy = pa(D)x1 + -+ pan()xn + 82(2),
(14)

x;l = ppi(D) X1 + -+ + Pun() Xy + gn(1).

If each of the functions g;(?), ..., g,(¢) is zero for all ¢ in the interval I, then the system
(14) is said to be homogeneous; otherwise, it is nonhomogeneous. Observe that the systems
(1) and (2) are both linear. The system (1) is nonhomogeneous unless Fi(t) = F5(t) = 0,
while the system (2) is homogeneous.

For the linear system (14), the existence and uniqueness theorem is simpler and also has
a stronger conclusion. It is analogous to Theorems 2.4.1 and 3.2.1.

Theorem 7.1.2

If the functions pi;, pi2, --- s Puns 815 ---,8n Aare continuous on an open interval
I: o < t < (3, then there exists a unique solution x; = ¢{(¢), ... ,x, = ¢,(¢) of the system
(14) that also satisfies the initial conditions (13), where #, is any point in 7, and xlo, RN x,? are any

prescribed numbers. Moreover, the solution exists throughout the interval 7.

Note that, in contrast to the situation for a nonlinear system, the existence and uniqueness
of the solution of a linear system are guaranteed throughout the interval in which the
hypotheses are satisfied. Furthermore, for a linear system the initial values x?, ey xyat
t = tp are completely arbitrary, whereas in the nonlinear case the initial point must lie in
the region R defined in Theorem 7.1.1.

The rest of this chapter is devoted to systems of linear first-order differential equations
(nonlinear systems are included in the discussions in Chapters 8 and 9). Our presentation
makes use of matrix notation and assumes that you have some familiarity with the properties
of matrices. The basic facts about matrices needed for this discussion are presented in Sections
7.2 and 7.3; some more advanced material is reviewed as needed in later sections.

-

Problems

In each of Problems | through 3, transform the given equation into a
system of first-order equations.

L. 4" 4+05u+2u=0
2. 2w +tu 4+ (12 —0.25u=0
3. u(4) —u=0

In each of Problems 4 and 5, transform the given initial value problem
into an initial value problem for two first-order equations.

4. u” +0.25u' +4u =2cos(3t), u(0) =1, w'(0) =—2
5. u"+pu' +q(Hu=g(t), u(0) =uy, u'(0)=u,

6. Systems of first-order equations can sometimes be transformed
into a single equation of higher-order. Consider the system

x] =21+ %, X=X — 2%

a. Solve the first differential equation for x,.
b. Substitute the result of a into the second differential equation,
thereby obtaining a second-order differential equation for x;.
¢. Solve the differential equation found in b for x;.
d. Use the results of a and c to find x,.

In each of Problems 7 through 9, proceed as in Problem 6.
a. Transform the given system into a single equation of second-
order.
b. Find x; and x, that also satisfy the given initial conditions.
c. Sketch the graph of the solution in the x;x,-plane for ¢ > 0.

= 3x1 = 2)C2, xl(O) = 3

1
xh=2x; —2xp, x(0) = 3

8. x{=2x3, x(0)=3

xy = —2x;, x(0)=4

9. x| =—2x; +2x, x1(0) = -2
JCé = —2x1 = %XZ, JCZ(O) =2
10. Transform equations (2) for the parallel circuit into a single

second-order equation.

11. Show thatifa;q, aj, a1, and ay, are constants with a;, and a,
not both zero, and if the functions g; and g, are differentiable, then
the initial value problem

0
xp = anx; +apxy +g1(1), x(0) = x;

0
Xy = Gy X; +anxs + &(1), x(0) =x,

can be transformed into an initial value problem for a single second-
order equation. Can the same procedure be carried outif ajq, ... , a2
are functions of ¢#?

12. Consider the linear homogeneous system

x' = pu()x + p(t)y,
¥ = pa(D)x + pu(t)y.

Show that if x = x;(¢), y = y1(#) and x = x(1), y = y(¥)
are two solutions of the given system, then x = c;x1(#) + cax(1),
y = c1y1(t) + coy»(2) is also a solution for any constants ¢; and
¢,. This is the principle of superposition; it will be discussed in much
greater detail in Section 7.4.

13. Letx = x1(2),y = y1(¢) and x = x,(1), y = y»(t) be any two
solutions of the linear nonhomogeneous system

x'=pu()x + p()y +g1(1),
Y = pa(Dx + pu(t)y + gt).

Show that x = x;(#) — x2(2), y = y1(#) — y,(t) is a solution of the
corresponding homogeneous system.

14. Equations (1) can be derived by drawing a free-body diagram
showing the forces acting on each mass. Figure 7.1.3a shows the
situation when the displacements x; and x, of the two masses are both
positive (to the right) and x, > x;. Then springs 1 and 2 are elongated
and spring 3 is compressed, giving rise to forces as shown in Figure
7.1.3b. Use Newton’s law ( F = ma) to derive equations (1).
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(a) The displacements x; and x, are both
positive. (b) The free-body diagram for the spring—mass system.

15. Transform the system (1) into a system of first-order differential
equations by letting y; = X1, y, = X3, y3 = x|, and y; = x,,.

Electric Circuits. The theory of electric circuits, such as that shown
in Figure 7.1.2, consisting of inductors, resistors, and capacitors, is
based on Kirchhoff’s laws: (1) The net flow of current into each node
(or junction) is zero, and (2) the net voltage drop around each closed
loop is zero. In addition to Kirchhoff’s laws, we also have the relation
between the current I, with units of amperes through each circuit
element and the voltage drop V, measured in volts, across the element:

V = RI, R = resistance in ohms;
av _

- I, C = capacitance in farads;?
dI . .
LE =V, L = inductance in henrys.

Kirchhoff’s laws and the current-voltage relation for each circuit
element provide a system of algebraic and differential equations
from which the voltage and current throughout the circuit can be
determined. Problems 16 through 18 illustrate the procedure just
described.

16. Consider the circuit shown in Figure 7.1.2. Let I, I, and I; be
the currents through the capacitor, resistor, and inductor, respectively.
Likewise, let V;, V5, and V3 be the corresponding voltage drops. The
arrows denote the arbitrarily chosen directions in which currents and
voltage drops will be taken to be positive.
a. Applying Kirchhoff’s second law to the upper loop in the
circuit, show that

Vi—V,=0. (15)
In a similar way, show that
Vo,—V3=0. (16)
b. Applying Kirchhoff’s first law to either node in the circuit,
show that
L+L+1=0. a7

¢. Use the current-voltage relation through each element in the
circuit to obtain the equations

CV/=1L, V,=RL, LI=Vs (18)

d. Eliminate V,, V3, I}, and I, among equations (15) through
(18) to obtain
Vi
cv{:—la—%, LI =V (19)
Observe that if we omit the subscripts in equations (19), then we
have the system (2) of this section.

2Actual capacitors typically have capacitances measured in microfarads.
We use farad as the unit for numerical convenience.
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17. Consider the circuit shown in Figure 7.1.4. Use the method
outlined in Problem 16 to show that the current / through the inductor
and the voltage V across the capacitor satisfy the system of differential
equations

ﬂ:—I—V, d_V=21—V.
dt dt
R =1ohm
L =1 henry
R =2 ohms
=2
C_2farad

The circuit in Problem 17.

18. Consider the circuit shown in Figure 7.1.5. Use the method
outlined in Problem 16 to show that the current / through the inductor
and the voltage V across the capacitor satisfy the system of differential
equations

dI av Vv
L—=—-RI-V, C—=1——.
dt 1 ¥ dt R,
L

R,
C

1 The circuit in Problem 18.

19. Consider the two interconnected tanks shown in Figure 7.1.6.
Tank 1 initially contains 30 gal of water and 25 oz of salt, and Tank 2
initially contains 20 gal of water and 15 oz of salt. Water containing
1 oz/gal of salt flows into Tank 1 at a rate of 1.5 gal/min. The
mixture flows from Tank 1 to Tank 2 at a rate of 3 gal/min. Water
containing 3 oz/gal of salt also flows into Tank 2 at a rate of 1 gal/min
(from the outside). The mixture drains from Tank 2 at a rate of 4 gal/
min, of which some flows back into Tank 1 at a rate of 1.5 gal/min,
while the remainder leaves the system.

- . 3

1.5 gal/min 1 gal/min
1 oz/gal B 47 3 0z/gal
~ dia
3 gal/min
Q,(#) oz salt RS Q,(t) oz salt
30 gal water :] 20 gal water
—————— <~ et

/2.5 gal/min Tank 2

Two interconnected tanks (Problem 19).

a. Let Q;(¢) and Q,(¢), respectively, be the amount of salt in
each tank at time #. Write down differential equations and initial
conditions that model the flow process. Observe that the system
of differential equations is nonhomogeneous.

b. Find the values of Q; and Q, for which the system is in
equilibrium—that is, does not change with time. Let Qf and
QZE be the equilibrium values. Can you predict which tank will
approach its equilibrium state more rapidly?

c. Letx; = Qi(z) — Of and x, = Qy(¢) — QF. Determine
an initial value problem for x; and x,. Observe that the system of
equations for x; and x, is homogeneous.

20. Consider two interconnected tanks similar to those in Figure
7.1.6. Initially, Tank 1 contains 60 gal of water and Q| oz of salt, and
Tank 2 contains 100 gal of water and Qg oz of salt. Water containing
g1 oz/gal of salt flows into Tank 1 at a rate of 3 gal/min. The mixture
in Tank 1 flows out at a rate of 4 gal/min, of which half flows into Tank
2, while the remainder leaves the system. Water containing g, oz/gal of
salt also flows into Tank 2 from the outside at the rate of 1 gal/min. The
mixture in Tank 2 leaves it at a rate of 3 gal/min, of which some flows
back into Tank 1 at arate of 1 gal/min, while the rest leaves the system.
a. Draw a diagram that depicts the flow process described
above. Let Qi(z) and Q,(?), respectively, be the amount of
salt in each tank at time 7. Write down differential equations and
initial conditions for Q; and Q, that model the flow process.
b. Find the equilibrium values QF and QF in terms of the
concentrations g; and g,.
¢. Isit possible (by adjusting g; and g,) to obtain QIE = 60 and
0F = 50 as an equilibrium state?
d. Describe which equilibrium states are possible for this system
for various values of ¢; and g,.

72 Matrices

For both theoretical and computational reasons, it is advisable to bring some of the results of
matrix algebra® to bear on the initial value problem for a system of linear differential equations.

3The properties of matrices were first extensively explored in 1858 in a paper by the English algebraist Arthur Cayley
(1821-1895), although the word “matrix” was introduced by his good friend James Sylvester (1814-1897) in 1850.
Cayley did some of his best mathematical work while practicing law from 1849 to 1863; he then became professor
of mathematics at Cambridge, a position he held for the rest of his life. After Cayley’s groundbreaking work, the
development of matrix theory proceeded rapidly, with significant contributions by Charles Hermite, Georg Frobenius,
and Camille Jordan, among others.

This section and the next are devoted to a brief summary of the facts that will be needed later.
More details can be found in any elementary book on linear algebra. We assume, however,
that you are familiar with determinants and how to evaluate them.

We designate matrices by boldfaced capitals A, B, C, ... , occasionally using boldfaced
Greek capitals @, ¥, ... . A matrix A consists of a rectangular array of numbers, or elements,
arranged in m rows and n columns —that is,

an ap Ain
s ayp - Qop

A= | . A €8]
Am1 [ R Amn

We speak of A as an m x n matrix. Although later in the chapter we will often assume that the
elements of certain matrices are real numbers, in this section we allow for the possibility that
the elements of matrices may be complex numbers. The element lying in the i™ row and j th
column is designated by a;;, the first subscript identifying its row and the second its column.
Sometimes the notation (a;;) is used to denote the matrix whose generic element is a;j.

Associated with each matrix A is the matrix AT, which is known as the transpose of A
and is obtained from A by interchanging the rows and columns of A. Thus, if A = (a;;), then
AT = (aj;). Also, we will denote by @; the complex conjugate of a;;, and by A the matrix
obtained from A by replacing each element a;; by its conjugate @;;. The matrix A is called _t_l;e
conjugate of A. It will also be necessary to consider the transpose of the conjugate matrix A .
This matrix is called the adjoint of A and will be denoted by A*.

For example, let
3 2—1i
A= ‘
4430 —542i

Then
3 4+3i — 3 2+i
AT: . A: ’
2—1 =542 4—-3; —-5-2i
3 4 — 3§
A* = ;
2+i —-5-2i

We are particularly interested in two somewhat special kinds of matrices: square
matrices, which have the same number of rows and columns—that is, m = n; and vectors
(or column vectors), which can be thought of as n x 1 matrices, or matrices having only one
column. Square matrices having n rows and n columns are said to be of order n. We denote
(column) vectors by boldfaced lowercase letters: X, y, €, 7, ... . The transpose x” ofann x 1
column vector is a 1 x n row vector —that is, the matrix consisting of one row whose elements
are the same as the elements in the corresponding positions of x.

Properties of Matrices.

1. Equality. Two m xn matrices A and B are said to be equal if all corresponding elements
are equal —that is, if a;; = b;; for each i and ;.

2. Zero. The symbol 0 will be used to denote the matrix (or vector) each of whose

elements is zero. . '
3. Addition. The sum of two m x n matrices A and B is defined as the matrix obtained

by adding corresponding elements:

A +B = (a;j) + (bij) = (aij + bij). 2)

7.2 Matrices 287
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Y (c) Obtain zeros in the off-diagonal positions (shaded) in the second column by adding the second
row to the first row and adding (—4) times the second row to the third row.

30 1 1
=l-= = 0
10222
51 3 1
0 1 312 2 °

0 0 -5 4 -2 1
(d) Obtaina 1 in the diagonal position (shaded) in the third column by multiplying the third row by

_1
=
3 1 1
B S~ = -0
S B
51 3 1
i QUL
0 1 3172 2
o o 1|4 2 1
5 5 5

3
(e) Obtain zeros in the off-diagonal positions (shaded) in the third column by adding (— 5) times

5
the third row to the first row and adding <— 5) times the third row to the second row.

7 1 3
e
-1
0o 1 0 g —g ?=(IA ¥
i@ 8 -5 35 73
Thus
7 1 3
0 10 10
Al = l _l l
2 2 2
4 2 1
5 5 5

That this matrix is, in fact, the inverse of A can be verified by direct multiplication with the original
matrix A.

This example was made slightly simpler by the fact that the given matrix A had a 1 in the
upper left corner (a;; = 1). If this is not the case, then the first step is to produce a 1 there
by multiplying the first row by 1/a;;, as long as a;; # 0.If a;; = 0, then the first row must
be interchanged with some other row to bring a nonzero element into the upper left position
before proceeding. If this cannot be done, because every element in the first column is zero,
then the matrix has no inverse and is singular. A similar situation may occur at later stages of
the process as well, and the remedy is the same: interchange the given row with a lower row
s0 as to bring a nonzero element to the desired diagonal location. If, at any stage, this cannot
be done, then the original matrix is singular.

Matrix Functions. We sometimes need to consider vectors or matrices whose elements are
functlons of areal variable t. We write

x1(1) ay(t) - an(t)
x(t) = . and A(t) = . ; , (25)
xn (1) A1 () <o+ ama(l)
respectively.
The matrix A(#) is said to be continuous at ¢ = #, or on an interval o < t < (3 if each
element of A is a continuous function at the given point or on the given interval. Similarly,

A(?) is said to be differentiable if each of its elements is differentiable, and its derivative
dA/dt is defined by

dA a’a,:j
—=—; 26

dt

that is, each element of dA / dt is the derivative of the corresponding element of A. In the same
way, the integral of a matrix function is defined as

b b
/ A(t)dt = (/ aij(t)dt) 27)
sint t
A _< 1 cost)’

o [COSE 1 i (2 n2/2
A(t)_( 0 —sint> and /o A(zf)dt_<7T 0 )

Many of the rules of elementary calculus extend easily to matrix functions; in particular,

For example, if

then

dA

—(CA) =C— i ix;

dt(C ) TR where C is a constant matrix; (28)

dA dB
Z(A =

( +B) = 7 +— T (29)
dB dA

—(AB) = A— + —B.

( ) T + ey (30

In equations (28) and (30), care must be taken in each term to avoid interchanging the
order of multiplication. The definitions expressed by equations (26) and (27) also apply as
special cases to vectors.

We conclude this section with an important reminder: some operations on matrices are
accomplished by applying the operation separately to each element of the matrix. Examples
include multiplication by a number, differentiation, and integration. However, this is not true
of many other operations. For instance, the square of a matrix is not calculated by squaring
each of its elements.

Problems
1 -2 0 4 -2 3 -2 1 2
1. fA=| 3 2 —-1]andB=|-1 5 0}, find 3. IfA= 1 0 =3
-2 1 3 6 1 2 2 -1 1
a. 2A+B a. AT
b. A—4B b. BT
¢. AB c. AT +BT
d. BA d_ (A+B)T
1+i =142 i
2. IfA < ) dB=( >f1nd 3-2i  14i
342 -1 - 4. IfA =
A2 2 Gt mep3
a. A-2B T
b. 3A+B a. A
c. AB B &
d. BA c. A

and B =

_), find
1

7.2 Matrices

1 2
3 -1
-2 1

3
=1
0

293
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-2 0 2 -1
5. fA= 3 2 -1],B=|-2 3 3],and
-2 0 3 1 0 2
2 1 0
C=11 2 2|, verify that
0o 1 -1

a. (AB)C = A(BC)

b. (A+B)+C=A+B+0)
c. AB+C)=AB+AC

d. a(A+B) =aA+aB

6. Prove each of the following laws of matrix algebra:
a. A+B=B+A
b. A+(B+C)=(A+B)+C
c. a(A+B)=aA+aB
d. (a+B)A=0cA+[A
e. A(BC) =(AB)C
f. AB+C)=AB+AC

2 -1+
7. Ifx= 3i andy = 2 |, find
1—1 3—1i
a. xTy
b. yTy
¢ (%)
d. (y,y

In each of Problems 8 through 14, if the given matrix is nonsingular,
find its inverse. If the matrix is singular, verify that its determinant is
Zero.

1 2 3
10. 4
3 5 6
1 2 1
11. -2 1 8
1 -2 =7
2 1 0
12. 0o 2 1
0o 0 2

2 3 1
13 -1 2 1

4 -1 -1

1 0 0 -1

0 -1 1 0
14. -1 0 1 o0

0 1 -1 1

15. If A is a square matrix, and if there are two matrices B and C
such that AB = I and CA = I, show that B = C. Thus, if a matrix
has an inverse, it can have only one.

16. IfA(r) = | 2¢ e™! —¢? | and

—e! et 2e%
2e! et 3
B(t) = | —¢ 2 e |, find
3e! —e~t —e2
a. A+3B
b. AB
dA

dr,

C.
1
d. / A(t)dt
0

In each of Problems 17 and 18, verify that the given vector satisfies
the given differential equation.

2 -1 1
17. x’=<3 _2>x+<_1)e',
_((+20e (1), 1\,
x_< 216t )_(Oe+21te

1 1 1
18. xX =12 1 -1 ]x,
0 -1 1
6e™’ 6 0
x= | —8e"+2% | =| -8 |e"+2| 1]
—4e™t — 2% —4 -1

In each of Problems 19 and 20, verify that the given matrix satisfies
the given differential equation.

1 1 e
/ — —_—
19. o= (4 _2>x11, 0 (_48_% 92t>

I =1 4 et e~ &3t
20, W=|3 2 —1|®, W) =|-4e —e 2
2 1 =] __et __e—Zz e3t

7.3 Systems of Linear Algebraic Equations; Linear Independence, E

13 Systems of Linear Algebraic Equations;
Linear Independence, Eigenvalues,
Eigenvectors

In this section we review some results from linear algebra that are particularly important for
the solution of systems of linear differential equations. Some of these results are easily proved
and others are not; since we are interested simply in summarizing some useful information in
compact form, we give no indication of proofs in either case. All the results in this section
depend on some basic facts about the solution of systems of linear algebraic equations.

2 tions. A set of n simultaneous linear algebraic
equations in n variables

anXx; +apxs + - -+ apx, = by,

¢

an1X1 + ApaXo + -+ + AppXxy = by
can be written in matrix form as
Ax = b, ¥))

where the n x n matrix A and the n-dimensional vector b are given, and the components of the
n-dimensional vector x are to be determined. If b = 0, the system is said to be homogeneous;
otherwise, it is nonhomogeneous.

If the coefficient matrix A is nonsingular—that is, if det A is not zero—then there is a
unique solution of the system (2) for any vector b. Since A is nonsingular, A~! exists, and the
solution can be found by multiplying each side of equation (2) on the left by A~!; thus

x = A"lp. 3

In particular, the homogeneous problem Ax = 0, corresponding to b = 0 in equation (2), has
only the trivial solution x = 0.

On the other hand, if A is singular—that is, if detA is zero—then, depending on the
specific right-hand side b, solutions of equation (2) either do not exist, or do exist but are
not unique. Since A is singular, A~! does not exist, so equation (3) is no longer valid.

When A is singular, the homogeneous system

Ax =0 (€]

has (infinitely many) nonzero solutions in addition to the trivial solution. The situation for
the nonhomogeneous system (2) is more complicated. This system has no solution unless the
vector b satisfies a certain further condition. This condition is that

(b,y) =0, 5)

for all vectors y satisfying A*y = 0, where A* is the adjoint of A. If condition (5) is met, then
the system (2) has (infinitely many) solutions. These solutions are of the form

x=x0 ¢ ©)

where x(%) is a particular solution of equation (2), and ¢ is the most general solution of the
homogeneous system (4). Note the resemblance between equation (6) and the solution of a
nonhomogeneous linear differential equation. The proofs of some of the preceding statements
are outlined in Problems 21 through 25.

The results in the preceding paragraph are important as a means of classifying the solutions
of linear systems. However, for solving particular systems, it is generally best to use row
reduction to transform the system into a much simpler one from which the solution(s), if

Figenvalues, Eigenvectors
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EXAMPLE 5 which is linearly independent of x(». Therefore, in this example, two linearly independent
l ‘ eigenvectors are associated with the double eigenvalue.

! Find the eigenvalues and eigenvectors of the matrix

0 1 1 An important special class of matrices, called self-adjoint or Hermitian matrices, are
A=|1 0 1) @7 those for which A* = A; that is, @;; = a;;. Hermitian matrices include as a subclass real
11 0 symmetric matrices—that is, matrices that have real elements and for which AT = A.
The eigenvalues and eigenvectors of Hermitian matrices always have the following useful
Solution: properties:

The eigenvalues ) and eigenvectors x satisfy the equation (A — AI)x = 0, or 1. All eigenvalues are real.

=A 1 1\ [/x 0 2. There always exists a full set of n linearly independent eigenvectors, regardless of the
1 =X I|lx]=1]0]. (38) algebraic multiplicities of the eigenvalues.
11 =X/ \x 0 3. If xX(V and x® are eigenvectors that correspond to different eigenvalues, then

(x(V, x(®) = 0. Thus, if all eigenvalues are simple, then the associated eigenvectors
form an orthogonal set of vectors.

The eigenvalues are the roots of the equation

=A 1 1 X 4. Corresponding to an eigenvalue of algebraic multiplicity m, it is possible to choose m
det(A—AD=| 1 —=A 1|==-A"+31+2=0. (39 eigenvectors that are mutually orthogonal. Thus the full set of n eigenvectors can always
1 I =X be chosen to be orthogonal as well as linearly independent.
The roots of equation (39) are \; = 2, A\, = —1, and A3 = —1. Thus 2 is a simple eigenvalue, and The proofs of statements 1 and 3 above are outlined in Problems 27 and 28. Example 5

—1 is an eigenvalue of algebraic multiplicity 2, or a double eigenvalue.
To find the eigenvector x(! corresponding to the eigenvalue Aj, we substitute A = 2 in
equation (38); this gives the system

involves a real symmetric matrix and illustrates properties 1, 2, and 3, but the choice we have
made for x? and x(® does not illustrate property 4. However, it is always possible to choose
an x(? and x® so that (x,x®) = 0. For instance, in Example 5 we could have chosen x(?

-2 1 1 X1 0 as before and x(® by using ¢; = 1 and ¢, = —2 in equation (46). In this way we obtain
1 -2 1 x| =10]. (40) 1 1
1 1 =2 X3 0 x? — 0], x3® = | =2
We can use elementary row operations to reduce this to the equivalent system -1 1
L LW £ g as the eigenvectors associated with the eigenvalue A = —1. These eigenvectors are orthogonal
0 1 -1 w]=10/. (41) to each other as well as to the eigenvector x(! that corresponds to the eigenvalue A = 2.
0 0 0 X3 0
Solving this system yields the eigenvector
1
xXD=[1]. (42)
1 =
| | , | Problems
For A = —1, equations (38) reduce immediately to the single equation
X1+ X2+ x3 = 0. 43) In each of Problems 1 through 5., either sqlve the given system of 5. x — x3=0
equations, or else show that there is no solution. 3 —0
Thus values for two of the quantities x;, X5, X3 can be chosen arbitrarily, and the third is determined X1+ X+ X3 =
from equation (43). For example, if x; = ¢; and x, = ¢, then x3 = —c; — ¢,. In vector notation we 1, X1 — x3=0 X1+ X+ 2x3=0
have ‘
tt+xt+ p=1 In each of Problems 6 through 9, determine whether the members of
€1 1 0 —X] + Xy +2x3 =2 the given set of vectors are linearly independent. If they are linearly
X= 02 =c| O+l 1]. (44) H dependent, find a linear relation among them. In Problems 6 to 9,
2. x1+2x2— X3——1 p
—Cc1—Cy -1 -1 11, and 12, vectors are written as row vectors to save space but may
For example. by choosing ¢ = 1 and ¢, = 0. we obtain the eigenvector 2+ Bt xp=1 be considered as column vectors; that is, the transposes of the given
pie, by ah= S - X1 — Xp+2x3=1 vectors may be used instead of the vectors themselves.
5 1 —
x@ = ol. (45) % mEZm= B= 6. XV =(1,1,0), x@=(0,1,1), x¥=(1,0,1)
1 2x1 + X2 + X3 = 1 1 5 .
- 7. ¥ =(2,1,0), x® =(0,1,0), x?* =(-1,2,0)
X1 — )C2+2.X3 = -1
Any nonzero multiple of x(? is also an eigenvector, but a second linearly independent eigenvector 4 x+2%— x=0 8. x(V =(1,2,-1,0), x?® =(2,3,1,-1),
can be found by making another choice of ¢; and ¢, —for instance, ¢; = 0 and ¢, = 1. In this case 5 ~0 x® =(-1,0,2,2), x® =(3,-1,1,3)
] we obtain Xt Bt =
0 X1 — X +2x3=0 9. X((;)) =(1,2,-2), X((Z)) =(3,1,0),
1 x(3) — 1 ; (46) X = (27 _13 1)? X = (47 3’ —2)

-1




304 CHAPTER7 Systems of First-Order Linear Equations

10. Suppose that each of the vectors xV, ... ,x(™ has n
components, where n < m. Show that x(, ..., x("™) are linearly
dependent.

In each of Problems 11 and 12, determine whether the members of the
given set of vectors are linearly independent for —oo < ¢ < oo. If
they are linearly dependent, find the linear relation among them.

11. xV(p) = (e, 27", xP() = (e, e,
x® (1) = (3e77,0)
12. xV(r) = (2sint, sinz), xP(¢) = (sint,2sin?)

13. Let
(1) - e (2) — 1
x(t) = (te')’ x (1) = (t)

Show that x( (¢) and x(?(¢) are linearly dependent at each point in
the interval 0 < ¢ < 1. Nevertheless, show that x(D(¢) and x(? (1) are
linearly independenton 0 < ¢ < 1.

In each of Problems 14 through 20, find all eigenvalues and
eigenvectors of the given matrix.

w (2 7)
s (G 3)
(

16.

17, ( ﬁ)
1 0 O
18. 2 1 —2)
3 2 1
3
19. 1

—_
—_

%3
|

|
—_ —_— N
ol kP S0l ~_ >

©|
- .
olSoivoin BRI

Nl oAV S

Problems 21 through 25 deal with the problem of solving Ax = b
when det A = 0.

21. a. Suppose that A is a real-valued n x n matrix. Show that
(Ax,y) = (x,ATy) for any vectors x and y. Hint: You may
find it simpler to consider first the case n = 2; then extend the
result to an arbitrary value of n.

b. If A is not necessarily real, show that (Ax, y) = (x, A*y) for
any vectors x and y.

c. If A is Hermitian, show that (Ax,y) = (x,Ay) for any
vectors x and y.

22. Suppose that, for a given matrix A, there is a nonzero vector x
such that Ax = 0. Show that there is also a nonzero vector y such that
A*y =0.

23. Suppose that detA = 0 and that Ax = b has solutions. Show
that (b, y) = 0, where y is any solution of A*y = 0. Verify that this
statement is true for the set of equations in Example 2. Hint: Use the
result of Problem 21b.

24. Suppose thatdet A = 0and thatx = x(?) isa solution of Ax = b.
Show that if £ is a solution of A¢ = 0 and « is any constant, then
x = x(Q 4 o is also a solution of Ax = b.

25. Suppose that detA = 0 and that y is a solution of A*y = 0.
Show that if (b, y) = 0 for every such y, then Ax = b has solutions.
Note that this is the converse of Problem 23; the form of the solution is
given by Problem 24. Hint: What does the relation A*y = 0 say about
the rows of A? It may be helpful to consider the case n = 2 first.

26. Prove that A = 0 is an eigenvalue of A if and only if A is
singular.
27. 1In this problem we show that the eigenvalues of a Hermitian
matrix A are real. Let x be an eigenvector corresponding to the
eigenvalue A.

a. Show that (Ax, x) = (x, Ax). Hint: See Problem 2 1c.

b. Show that A(x, X) = A(X, X). Hint: Recall that Ax = Ax.

c. Show that A = \; that is, the eigenvalue ) is real.
28. Show thatif A\; and \, are eigenvalues of a Hermitian matrix A,
and if \; % A, then the corresponding eigenvectors x(1) and x? are
orthogonal. Hint: Use the results of Problems 2 1c and 27 to show that
(A = A (xD, xP) =0.
29. Show that if \; and ), are eigenvalues of any matrix A, and
if \; # A, then the corresponding eigenvectors x(!) and x(? are
linearly independent. Hint: Start from c;x(D + ¢,x(? = 0; multiply
by A to obtain c; A ;X + ¢, Ax(? = 0. Then show thatc; = ¢, = 0.

74 Basic Theory of Systems of First-Order
Linear Equations

. The general theory of a system of n first-order linear equations
x; = pu(®)x + -+ pin()xn + g1(1),

)

x;l1 = pui() X1+« + pun(8) Xn + gn(2)

T

closely parallels that of a single linear equation of nth order. The discussion in this section
therefore follows the same general lines as that in Sections 3.2 and 4.1. To discuss the
system (1) most effectively, we write it in matrix notation. That is, we consider
X = x1(8), ..., x, = x,(¢) to be components of a vector x = x(¢); similarly,

81(1), ... , gu(t) are components of a vector g(¢), and p;(t), ..., pu(t) are elements of
an n X n matrix P(z). Equation (1) then takes the form
X =P(t)x + g(1). ®)

The use of vectors and matrices not only saves a great deal of space and facilitates calculations
but also emphasizes the similarity between systems of differential equations and single (scalar)
differential equations.

A vector x = x(7) is said to be a solution of equation (2) if its components satisfy the
system of equations (1). Throughout this section we assume that P and g are continuous on
some interval o < ¢ < f3; that is, each of the scalar functions piy, ..., pun, 81, - - . » 8 iS
continuous there. According to Theorem 7.1.2, this is sufficient to guarantee the existence of
solutions of equation (2) on the interval @ < ¢ < f3.

It is convenient to consider first the homogeneous equation

x =P(t)x 3)

obtained from equation (2) by setting g(¢) = 0. Just as we have seen for a single linear
differential equation (of any order), once the homogeneous equation has been solved, there
are several methods that can be used to solve the nonhomogeneous equation (2); this is taken
up in Section 7.9.

We use the notation

x11(2) x1()
xD(sy = le_(f) L xB( = x2k.(f) @
X (1) Xai (1)

to designate specific solutions of the system (3). Note that x;;(¢) = xi(j )(t) refers to the ™
component of the j® solution x(/)(¢). The main facts about the structure of solutions of the
system (3) are stated in Theorems 7.4.1 to 7.4.5. They closely resemble the corresponding
theorems in Sections 3.2 and 4.1; some of the proofs are left to you as exercises.

Theorem7.4.1 |

Principle of Superposition

If the vector functions x(! and x(? are solutions of the system (3), then the linear combination
c1xM + ¢,x? is also a solution for any constants ¢; and c,.

The principle of superposition is proved simply by differentiating ¢;x(V + ¢,x(?
and using the facts that (") and x(? satisfy equation (3). As an example, it can be verified

that
“o=(2)=0) o=(D)-(De o
satisfy the equation
; 1 1
X = ( 4 1>x. (6)
Then, according to Theorem 7.4.1,

x=cxV(0) +ex?(1) = ¢ <;>€3t+cz< ;)e_’=( e+ o ) ™)

2¢1€% — 2cye

also satisfies equation (6).

7.4 Basic Theory of Systems of First-Order Linear Equations
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Problems

In Problems 1 through 6 you are given a homogeneous system of first-
order linear differential equations and two vector-valued functions,

xD and x(?,

a.

C.

Show that the given functions are solutions of the given
system of differential equations.

b. Show that x = c;x" + ¢,x(? is also a solution of the given
system for any values of ¢; and c;.

Show that the given functions form a fundamental set of

solutions of the given system.

d. Find the solution of the given system that satisfies the initial

condition x(0) = (1,2)7.
e. Find W [x(”, x(z)](t).

Finally, it may happen (just as for second-order linear equations) that a system whose
coefficients are all real-valued may give rise to solutions that are complex-valued. In this
case, the following theorem is analogous to Theorem 3.2.6 and enables us to obtain real-valued
solutions instead.

Theorem 7.4.5 : ,

Consider the system (3)
x = P(1)x,
where each element of P is a real-valued continuous function. If x = u(¢) +iv(#) is a complex-valued

solution of equation (3), then its real part u(#) and its imaginary part v( t) are also solutions of this
equation.

To prove this result, we substitute u(¢) + iv(t) for x in equation (3), thereby obtaining
X —P(H)x =u'(t) —P(H)u(r) +i(v(t) =P(t)v(2)) = 0. a7

We have used the assumption that P(¢) is real-valued to separate equation (17) into its real
and imaginary parts. Since a complex number is zero if and only if its real and imaginary parts
are both zero, we conclude that w'(z) — P(#)u(t) = 0 and v/(#) — P(#)v(¢) = 0. Therefore,
u(t) and v(t) are solutions of equation (3).

To summarize the results of this section:

1. Any set of n linearly independent solutions of the system x' = P(#)x constitutes a
fundamental set of solutions.

2. Under the conditions given in this section, such fundamental sets always exist.

3. Every solution of the system x' = P(#)x can be represented as a linear combination of
any fundamental set of solutions.

5. tx' = (g :;)x (t> 0);xD = <}>LX(2) = (;)Fl
6. 1x = <3 :3) (t>0);x\D = (;)ﬂ,xm = <?>t2

7. Prove the generalization of Theorem 7.4.1, as expressed in the
sentence that includes equation (8), for an arbitrary value of the
integer k.

8. In this problem we outline a proof of Theorem 7.4.3 in the case

n = 2. Let x(V and x(? be solutions of equation (3) for o < t < S,
and let W be the Wronskian of x( and x(?,

9. Show that the Wronskians of two fundamental sets of solutions
of the system (3) can differ at most by a multiplicative constant.
Hint: Use equation (15).

10. Ifx; = y and x, = ¥/, then the second-order equation

Y +p®)y +4q(t)y=0 (18)
corresponds to the system

x| = X,

x; = —q(t)x; — p(£)x. 19)

Show that if x() and x(® are a fundamental set of solutions of
equations (19), and if y( and y(® are a fundamental set of solutions
of equation(18), then W[y, y?] = cW[xD,x?], where ¢
is a nonzero constant. Hint: yV(¢) and y™® (t) must be linear
combinations of x11(#) and x1,(%).

11. Show that the general solution of x' = P(¢)x + g(t) is the sum
of any particular solution x(?) of this equation and the general solution
x(©) of the corresponding homogeneous equation.

2
12. Consider the vectors x(I (¢) = (i) and x? (1) = <;t>

a. Compute the Wronskian of x(!) and x(?.

b. In what intervals are x(!) and x(? linearly independent?

¢. What conclusion can be drawn about the coefficients in the
system of homogeneous differential equations satisfied by x(!
and x(??

d. Find this system of equations and verify the conclusions of
partc.

7.5 Homogeneous Linear Systems with Constant Coefficients 309

13. Consider the vectors x(V(7) =

f andxd(s) = (&
2 x7(1) = ot |>and

answer the same questions as in Problem 12.

Problems 14 and 15 indicate an alternative derivation of
Theorem 7.4.2.
14. LetxD, ..., x( be solutions of X' = P(¢)x on the interval

o < t < (. Assume that P is continuous, and let 7y be an arbitrary
point in the given interval. Show that x(V, ... x("™ are linearly
dependent for o < t < @ if (and only if) xD (%), ... ,x(™ (1))
are linearly dependent. In other words, x(V, ..., x("™ are linearly
dependent on the interval («, 3) if they are linearly dependent at any
point in it. Hint: There are constants ¢y, . .. , ¢, that satisfy

e1xP(tg) + -+ + cmx™ () = 0.

Let z(t) = ¢ xX(V(1) + -+ + cux"™(2), and use the uniqueness
theorem to show that z(¢) = 0 foreachtina < ¢t < 3.
15. Let x(V, ..., x{" be linearly independent solutions of x' =
P(t)x, where P is continuouson o < t < 3.

a. Show that any solution x = z(¢) can be written in the form

2(t) = XV (1) + - + cx (1)

for suitable constants ¢y, . . . , ¢,. Hint: Use the result of Problem
10 of Section 7.3, and also Problem 14 above.

b. Show that the expression for the solution z(¢) in part a is
unique; that is, if z(t) = kxxV() + -+ + k,x("(2), then
k[ =C1y o ,k,, = Cp.

Hint: Show that (k; — c)xV(8) 4+ -+ 4 (kn — cu)xM(2) =0
for each t in & < t < (3, and use the linear independence of
xD) L x(,

75 Homogeneous Linear Systems with

Constant Coefficients

We will concentrate most of our attention on systems of homogeneous linear equations with

constant coefficients—that is, systems of the form

x = Ax,

(6]

where A is a constant n x n matrix. Unless stated otherwise, we will assume further that all

the elements of A are real (rather than complex) numbers.

. a. Show that
f.  Show that the Wronskian, W = W [x(l), x(z)] , found ine is ,
a solution of Abel’s equation: W' = (p11(2) + pn(t))W. dxil) dxiz) xil) xi )
2 -1 1\ _ dw i
1. x'= )x; xV = e, x? = e aw _ | dt dr | 4 _
3 =2 1 3 dt o o dx;l) dxf)
1 1 1 1 X x5
2, (- () =3t «(2) — 2t 2 2 dt dt
2 x_<4 _z)x,x _(_4>e r (1>

p (2 =5\, 1 _ Scost
= X_<1 —2 )** 7 =\ 2cost +sint )’

2 — .5 sint
2sint — cost

, (4 2 Co(l) 2 @ _ 2 0
4. X_(S _4>x,x ={4 )7 =14 t+ 1

b. Using equation (3), show that

% = (pu +p)W.

¢. Find W(r) by solving the differential equation obtained in
part b. Use this expression to obtain the conclusion stated in
Theorem 7.4.3.

d. Prove Theorem 7.4.3 for an arbitrary value of n by
generalizing the procedure of parts a, b, and c.

If n = 1, then the system reduces to a single first-order equation

dx

P ax, 2)
whose solution is x(¢#) = ce®. Note that x = 0 is the only critical point when a # O.
If a < 0, then all nontrivial solutions approach x(#) = 0 as ¢ increases, and in this case
we say that x(#) = 0 is an asymptotically stable equilibrium solution. On the other hand, if
a > 0, then every solution (except the equilibrium solution x(¢#) = 0 itself) moves further
from the equilibrium solution as ¢ increases. Thus, in this case, x(¢) = 0 is unstable.

For systems of n equations, the situation is similar but more complicated. Equilibrium
solutions are found by solving Ax = 0. We usually assume that detA # 0, sox = 0is
the only equilibrium solution. An important question is whether other solutions approach this
equilibrium solution or depart from it as ¢ increases; in other words, is x = 0 asymptotically
stable or unstable? Or are there still other possibilities?
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Problems
In each of Problems | through 4:
@ a. Draw a direction field.
b. Find the general solution of the given system of equations and
describe the behavior of the solution as ¢ — 00.
@ c. Plot a few trajectories of the system.

3 =2
1. x’=(2 _2>x
x = L _Zx
I <
x = = =T X
T \3 =2
4. ¥ =

Blwh|W
Alpbh|lWwW
»

In each of Problems 5 and 6 the coefficient matrix has a zero
eigenvalue. As a result, the pattern of trajectories is different from
those in the examples in the text. For each system:

@ a. Draw a direction field.

b. Find the general solution of the given system of equations.

@ c. Draw a few of the trajectories.

~ , 4 -3
5 %= X
8 —6
6. X = ., 6 X
R S )

In each of Problems 7 through 9, find the general solution of the given
system of equations.

1 1 2
7. =11 2 1]|x
2 1 1
3 2 4
8. xX=12 0 2]x
4 2 3
1 -1 4
9, x¥=13 2 —-1]|x
2 1 -1

In each of Problems 10 through 12, solve the given initial value
problem. Describe the behavior of the solution as 7 — oo.

L (5 -1 (2

10. x' = (3 1>x, x(0) = (_1)
. (2 1 (1

11. x' = <_5 4>x, x(0) = <3>

0 0 -1
12. x' = 2 0 0]x, x(0)={5
—1 2 4

13. The system rx' = Ax is analogous to the second-order Euler
equation (Section 5.4). Assuming that x = &¢”, where £ is a constant
vector, show that £ and » must satisfy (A —rI)€ = 0in order to obtain
nontrivial solutions of the given differential equation.

Referring to Problem 13, solve the given system of equations in each
of Problems 14 through 16. Assume thatz > 0.

2 -1
14. X' = (3 _2>x

5 —1
15. x' = (3 1>x

4 -3
16. X' = <8 —6)X

In each of Problems 17 through 19, the eigenvalues and eigenvectors
of a matrix A are given. Consider the corresponding system X’ = Ax.
@ a. Sketch a phase portrait of the system.
@ b. Sketch the trajectory passing through the initial point
(2,3).
@ c. For the trajectory in part b, sketch the graphs of x; versus
t and of x, versus ?.

—1 1
17' rn = —11 6(1) = ( 2>’ ry = _2s E(Z) == <2>
=1 1
18. =1, £<”=< 2>; rp=-2 £?= (2)
1 1
19. =1, &Y= <2>; rn=2 £?= (—2>

20. Consider a2 x 2 system X' = Ax. If we assume that ry # 7y,
the general solution is x = ¢;€ (Ve +c,€ @€', provided that £ D
and £ @ are linearly independent. In this problem we establish the
linear independence of € () and £ (¥ by assuming that they are linearly
dependent and then showing that this leads to a contradiction.
a. Explain how we know that £ (V) satisfies the matrix equation
(A — D)€ = 0; similarly, explain why (A — r,1)€ @ = 0.
b. Show that (A —r,D)EM = (r; —r) €D,
¢. Suppose that £V and £® are linearly dependent. Then
€D 4 0,6 = 0 and at least one of ¢; and c; (say, ¢;) is
not zero. Show that (A — D) (c;€ D + ¢,£€®) = 0, and also
show that (A — roI) (¢ €D + 0,6 @) = ¢(r] —r2) € (V. Hence
¢, = 0, which is a contradiction. Therefore, £ (" and & are
linearly independent.
d. Modify the argument of part ¢ if we assume that c; # 0.
e. Carry out a similar argument for the case A is 3 x 3; note that
the procedure can be extended to an arbitrary value of n.

21. Consider the equation
ay” + by +cy=0, (35)

where a, b, and c are constants with a # 0. In Chapter 3 it was shown
that the general solution depended on the roots of the characteristic
equation

ar* +br+c¢=0. (36)

a. Transform equation (35) into a system of first-order equations
by letting x; = y, x, = ¥'. Find the system of equations x' = Ax
. X

satisfied by x = I
b. Find the equation that determines the eigenvalues of the
coefficient matrix A in part a. Note that this equation is just the
characteristic equation (36) of equation (35).

22. The two-tank system of Problem 19 in Section 7.1 leads to the
initial value problem

1 3
’r_ —E 26 _ —17
X = 1 1% x(0) = (_21>,
10

where x; and x, are the deviations of the salt levels Q; and Q, from
their respective equilibria.
a. Find the solution of the given initial value problem.
@ b. Plot x; versus ¢ and x, versus ¢ on the same set of axes.
@ c. Find the smallest time 7 such that |x;(#)| < 0.5 and
lx2(2)| < 0.5forallt > T.

Consider the system
X = bl X
“\—a -1)7

1
a. Solve the system for oo = 5 What are the eigenvalues of the

(]
W

coefficient matrix? Classify the equilibrium point at the origin as
to type.

b. Solve the system for o = 2. What are the eigenvalues of the
coefficient matrix? Classify the equilibrium point at the origin as
to type.

c. In parts a and b, solutions of the system exhibit two
quite different types of behavior. Find the eigenvalues of the
coefficient matrix in terms of «, and determine the value of «

1
between 3 and 2 where the transition from one type of behavior

to the other occurs. This value of « is called a bifurcation value
for this problem.
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Electric Circuits. Problems 24 and 25 are concerned with the electric
circuit described by the system of differential equations in Problem 18
of Section 7.1:

_Rl 1
d I\ L L 1 160 7
7\v )= ] | V,()—o,V(0)=V0.
€ CR,
(37
24. a. Find the general solution of equation (37) if Ry = 1 Q,
3
R2:§Q,L:2H,andC=§F.

b. Show that I(t) — 0 and V() — 0ast — oo, regardless
of the initial values I, and V.

25. Consider the preceding system of differential equations (37).
a. Find a condition on Ry, Ry, C, and L that must be satisfied
if the eigenvalues of the coefficient matrix are to be real and
different.
b. If the condition found in part a is satisfied, show that both
eigenvalues are negative. Then show that both 7(#) — 0 and
V(t) — 0ast — oo, regardless of the initial conditions.
¢. If the condition found in part a is not satisfied, then the
eigenvalues are either complex or repeated. Do you think that
I(t) — Oand V(t) — 0ast — oo in these cases as well?
Hint: In part c, one approach is to change the system (37) into
a single second-order equation. We also discuss complex and
repeated eigenvalues in Sections 7.6 and 7.8.

76 Complex-Valued Eigenvalues

In this section we consider again a system of n linear homogeneous equations with constant

coefficients

x = Ax,

0

where the coefficient matrix A is real-valued. If we seek solutions of the form x = £€e'’, then
it follows, as in Section 7.5, that » must be an eigenvalue and & a corresponding eigenvector

of the coefficient matrix A. Recall that the eigenvalues ry, . .
characteristic equation

det(A —rl) =0

., 1, of A are the roots of the

@

and that the corresponding eigenvectors are nonzero vectors that satisfy

(A —rDE = 0.

3

If A is real-valued, then the coefficients in the polynomial equation (2) for r are real-
valued, and any complex-valued eigenvalues must occur in conjugate pairs. For example, if
71 = \+iu, where \ and p arereal, is an eigenvalue of A, then sois 7, = A —iu. To explore
the effect of complex-valued eigenvalues, we begin with an example.
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Y

Figure 7.6.4(b) shows a superposition of the trajectories for the two masses in their respective phase
planes. Both graphs are ellipses, the inner one corresponding to the first mass and the outer one to
the second. The trajectory on the inner ellipse starts at (3, 0), and the trajectory on the outer ellipse
starts at (—4, 0). Both are traversed clockwise, and a circuit is completed in time 7. The origin is a
center in the respective y; y3- and y,y,s-planes. Once again, similar graphs are obtained from v(? or

from a linear combination of u‘® and v(?.

(@) (b)

(a) A plot of y; versus ¢ (solid blue) and y, versus ¢ (dashed red) for the solution
uY(¢). (b) Superposition of projections of trajectories in the y;y;- and y,ys-planes for the
solution u‘V (¢).

NS
I

= 4y +y5% =36

2

(a) (b)

r | (a) A plot of y; versus ¢ (solid blue) and y, versus ¢ (dashed red) for the solution
u@ (1). (b) Superposition of projections of trajectories in the y; y3- and y,y4-planes for the solution
u?@ ().

The types of motion described in the two preceding paragraphs are called fundamental
modes of vibration for the two-mass system. Each of them results from fairly special initial
conditions. For example, to obtain the fundamental mode of frequency 1, both of the constants
c; and ¢4 in equation (31) must be zero. This occurs only for initial conditions in which
3y,(0) = 2y;(0) and 3y4(0) = 2y5(0). Similarly, the mode of frequency 2 is obtained only when
both of the constants ¢; and ¢, in equation (31) are zero—that is, when the initial conditions are such
that 3y,(0) = —4y1(0) and 3y,(0) = —4y;(0).

For more general initial conditions the solution is a combination of the two fundamental modes.
A plot of y; versus ¢ for a typical case is shown in Figure 7.6.5(a), and the projection of the
corresponding trajectory in the y; y;-plane is shown in Figure 7.6.5(b). Observe that this latter figure
may be a bit misleading in that it shows the projection of the trajectory crossing itself. This cannot be
the case for the actual trajectory in four dimensions, because it would violate the general uniqueness
theorem: there cannot be two different solutions issuing from the same initial point.

<
il
<
el
Sy
-

‘ | A solution of the system (25) satisfying the
initial condition y(0) = (—1,4, 1, 1)T. (a) A plot of Y1 Versust.
(b) The projection of the trajectory in the y; y;-plane. As stated
in the text, the actual trajectory in four dimensions does not
intersect itself.

Problems

In each of Problems | through 4: 2 =5
© a. Draw a direction field and sketch a few trajectories. 2. x'= (1 __2> X
b. Express the general solution of the given system of equations
in terms of real-valued functions. 3 ¥= (1 _1> X
¢. Describe the behavior of the solutions as t — 0. 5 -3
, (-1 -4 4 o 2
1. ¥ = < | _1>x 4. ¥ = <_5 _1>x
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In each of Problems 5 and 6, express the general solution of the given
system of equations in terms of real-valued functions.

1 0o o0
S: ¥=1[2 1 =2 |x
3 2 1
-3 0 2
6. x' = 1 -1 0]x
-2 -1 0

In each of Problems 7 and 8, find the solution of the given initial-value
problem. Describe the behavior of the solution as t — oo.

, 1 -5 (1
7. ¥ = <1 _3>X7 x(0) = (l)

, -3 2 _ 1
8. ¥ = (_1 _1>x, x(0) = (_2>

In each of Problems 9 and 10:
a. Find the eigenvalues of the given system.
@ b. Choose an initial point (other than the origin) and draw the
corresponding trajectory in the x;x,-plane.
@ c. For your trajectory in part b, draw the graphs of x; versus
t and of x, versus 7.
@ d. For your trajectory in part b, draw the corresponding graph
in three-dimensional tx;x,-space. Note that the projections of
this plot onto each of the coordinate planes should produce the
three plots produced in parts b and c.

L
9, x’: 4 5 X
1 ==
4
4
—— 2
10. x = 3 6 |X
-1 he
5

In each of Problems 11 through 15, the coefficient matrix contains a
parameter .. In each of these problems:
a. Determine the eigenvalues in terms of c.
b. Find the bifurcation value or values of o where the qualitative
nature of the phase portrait for the system changes.
® c. Drawa phase portrait for a value of « slightly below, and
for another value slightly above, each bifurcation value.

11. x’:(a 1)x
-1 «

B w=lC iy
1 o

3

4

5

4

-1 «
14. x' =
x (_1 5 1) x

; 4 «

X = X
8 —6

In each of Problems 16 and 17, solve the given system of equations by
the method of Problem 13 of Section 7.5. Assume that ¢ > 0.

-1 -1
16. =
wa{ s

1

9]

; 2 =5
17. tx—<1 _2)x

In each of Problems 18 and 19:
a. Find the eigenvalues of the given system.
@ b. Choose an initial point (other than the origin) and draw
the corresponding trajectory in the x;x,-plane. Also draw the
trajectories in the x;x3- and x,x3-planes.
@ c. For the initial point in part b, draw the corresponding
trajectory in xqxpx3-space.

1
—= 1 0
4
1
f— | _ - 0
18. x 1 1 X
0 0 L
4
1
- 0
7 1
1
9, xX=1| - - 0
1 X 1 i X
1
0 0 m

20. Consider the electric circuit shown in Figure 7.6.6. Suppose that
1
Ri=R,=40Q,C= 5F,andL=8H.

a. Show that this circuit is described by the system of
differential equations
1 1

d(n\_| 2 8|(! 32
dt<V>_ ) 1 (V) 32)
2

where I is the current through the inductor and V is the voltage
drop across the capacitor. Hint: See Problem 18 of Section 7.1.
b. Find the general solution of equations (32) in terms of real-
valued functions.

c. Find I(t) and V(¢) if I(0) =2 Aand V(0) =3 V.

d. Determine the limiting values of 7(¢) and V(¢) ast — o0.
Do these limiting values depend on the initial conditions?

R,

| The circuit in Problem 20.

21. The electric circuit shown in Figure 7.6.7 is described by the
system of differential equations

1
0 o
d (1 T (1
LY B I 33
dt(V> Lk (V) o
¢ TRE

where I is the current through the inductor and V is the voltage
drop across the capacitor. These differential equations were derived
in Problem 16 of Section 7.1.
a. Show that the eigenvalues of the coefficient matrix are real
and different if L > 4R2C; show that they are complex conju-
gates if L < 4R2C.

1 .
b. Supposethat R =19Q,C = 3 F,and L = 1 H. Find the

general solution of the system (33) in this case.

T

c. Find I(t) and V(2) if I(0) =2 Aand V(0) =1 V.
d. For the circuit of part b, determine the limiting values of 7(¢)
and V(t) ast — oo. Do these limiting values depend on the
initial conditions?

C

> 1

™

R
>—ANA——@
L
LYYy —

71| The circuit in Problem 21.

22. In this problem we indicate how to show that u(r) and v(t), as
given by equations (17), are linearly independent. Let r; = A + iy
and 77 = A — iy be a pair of conjugate eigenvalues of the coefficient
matrix A of equation (1); let £V = a+/band £&(D = a —ibbe
the corresponding eigenvectors. Recall that it was stated in Section 7.3
that two different eigenvalues have linearly independent eigenvectors,
soif 7 # 77, then £ () and & (V) are linearly independent.
a. First we show that a and b are linearly independent. Consider
the equation c;a +c,b = 0. Express a and b in terms of £ (V) and
€ and then show that (¢; —ic) €D + (¢ +icy) €D = 0.
b. Show that ¢; —ic; = 0and ¢; +ic, = 0 and then that¢; = 0
and ¢, = 0. Consequently, a and b are linearly independent.
¢. Toshow thatu(z) and v(¢) are linearly independent, consider
the equation cyu(#y) +c,v(#y) = 0, where f, is an arbitrary point.
Rewrite this equation in terms of a and b, and then proceed as in
part b to show that ¢; = 0 and ¢, = 0. Hence u(¢) and v(#) are
linearly independent at the arbitrary point #,. Therefore, they are
linearly independent at every point and on every interval.

23. A mass m on a spring with constant k satisfies the differential
equation (see Section 3.7)

mu” + ku = 0,
where u(t) is the displacement at time ¢ of the mass from its
equilibrium position.
a. Letx; = u, x, = v/, and show that the resulting system is

0 1
x = k X.
—-—— 0
m

b. Find the eigenvalues of the matrix for the system in part a.
c. Sketch several trajectories of the system. Choose one of your
trajectories, and sketch the corresponding graphs of x; versus ¢
and x, versus 7. Sketch both graphs on one set of axes.

7.7 Fundamental Matrices
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d. What is the relation between the eigenvalues of the
coefficient matrix and the natural frequency of the spring-mass
system?
24. Consider the two-mass, three-spring system of Example 3 in
the text. Instead of converting the problem into a system of four
first-order equations, we indicate here how to proceed directly from
equations (22).
a. Show that equations (22) can be written in the form

3
) =
X' = 4 x = Ax. (34)
= =3
3

b. Assume that x = £ e’* and show that
(A-rDE=0.

Note that 2 (rather than r) is an eigenvalue of A corresponding
to an eigenvector &.

c. Find the eigenvalues and eigenvectors of A.

d. Write down expressions for x; and x,. There should be four
arbitrary constants in these expressions.

e. By differentiating the results from part d, write down
expressions for x| and x;. Your results from parts d and e should

agree with equation (31) in the text.

25. Consider the two-mass, three-spring system whose equations of
motion are equations (22). Letm; = 1, my = 4/3,k; = 1,ky = 3,
and k3 = 4/3.
a. As in Example 3, convert the system to four first-order
equations of the form y’ = Ay. Determine the coefficient matrix
A.
b. Find the eigenvalues and eigenvectors of A.
¢. Write down the general solution of the system.
@ d. Describe the fundamental modes of vibration. For each
fundamental mode, draw graphs of y; versus ¢ and y, versus ¢.
Also draw the corresponding trajectories in the y; y3- and y,y,-
planes.
@ e. Consider the initial conditions y(0) = (2,1,0,0)7.
Evaluate the arbitrary constants in the general solution in
part c. What is the period of the motion in this case? Plot graphs
of y; versus t and y, versus z. Also plot the corresponding
trajectories in the y; y3- and y,y,-planes. Be sure you understand
how the trajectories are traversed for a full period.
@ f. Consider other initial conditions of your own choice, and
plot graphs similar to those requested in part e.

The structure of the solutions of systems of linear differential equations can be further

illuminated by introducing the idea of a fundamental matrix. Suppose thatx(V (¢), ... , x™(¢)
form a fundamental set of solutions for the equation
X =P(t)x €h)
on some interval < ¢t < (3. Then the matrix
xV@) (1)
(1) = (x| - [ x00) = | S @
w0 (1) " (1)
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Problems

In each of Problems | through 8:
a. Find a fundamental matrix for the given system of equations.
b. Find the fundamental matrix ®(¢) satisfying ®(0) = L

1. ¥ = 2 —zx
2 =2

[

x\

Il
o

|
o] = K| W
|

Al W=

»

1 -1 4
8. xX=[3 2 -1 ]x
2 1 -1

9. Use the fundamental matrix ®(¢) found in Problem 4 to solve
the initial value problem

i [ =4 (3
x_<1 _l)x, x(O)_<1>‘

10. Show that ®(¢) = (1) ¥~ (1), where ®() and ¥(¢) are as
defined in this section.

11. The fundamental matrix ®(z) for the system (3) was found in
Example 2. Show that ®(7) ®(s) = ®(¢ + s) by multiplying ®(1)
and ®(s).

12. Let ®(¢) denote the fundamental matrix satisfying ® = A®,
®(0) = L In the text we also denoted this matrix by exp(At). In
this problem we show that ® does indeed have the principal algebraic
properties associated with the exponential function.
a. Show that ®(¢)®(s) = P(¢ + s); that is, show that
exp(Atr) exp(As) = exp(A(t + s)). Hint: Show thatif s is fixed
and ¢ is variable, then both ®(#) ®(s) and ®(r + s) satisfy the
initial value problem Z' = AZ, Z(0) = ®(s).

b. Show that ®(¢) ®(—t) =1, thatis, exp(At) exp(A(—1)) =1
Then show that ®(—1) = ®~1(z).
c. Show that ®(z —s5) = ®(1) P ().

13. Show that if A is a diagonal matrix with diagonal elements
ai, ay, ... ,ay, then exp(At) is also a diagonal matrix with diagonal
elements exp(ait), exp(ast), ... ,exp(aut).

14. Consider an oscillator satisfying the initial value problem
u' +w?u=0, u(0)=uy u'(0)=nv. (50)

a. Letx; = u, x, = u/, and transform equations (53) into the
form

X =Ax, x(0) =x" (51)
b. Use the series (23) to show that

exp(Ar) = Lcos(wt) + Asm((:”) . (52)

¢. Find the solution of the initial value problem (51).

15. The method of successive approximations (see Section 2.8) can
also be applied to systems of equations. For example, consider the
initial value problem

X =Ax, x(0) =x°, (53)

where A is a constant matrix and x° is a prescribed vector.
a. Assuming that a solution x = ¢(#) exists, show that it must
satisfy the integral equation

(1) =x° +/ Ad(s) ds. (54)
0

b. Start with the initial approximation ¢(? () = x°. Substitute
this expression for ¢(s) on the right-hand side of equation (51)
and obtain a new approximation ¢! (7). Show that

oV (1) = I+ ANX°. (55)
c. Repeat this process and thereby obtain a sequence of

approximations (¥, b, &P, ..., d™, ... . Useaninduc-
tive argument to show that

2 "
(1) = (I+At+A25+---+A”m)x°. (56)

d. Letn — oo and show that the solution of the initial value
problem (53) is

&(1) = exp(Ar)x°. (57

78 Repeated Eigenvalues

We conclude our consideration of the linear homogeneous system of differential equations
with constant coefficients

X/ = AX (1)

with a discussion of the case in which the matrix A has a repeated eigenvalue. Recall that
in Section 7.3 we stated that a repeated eigenvalue with algebraic multiplicity m > 2 may
have a geometric multiplicity less than m. In other words, there may be fewer than m linearly
independent eigenvectors associated with this eigenvalue. The following example illustrates
this possibility.

EXAMPLE 1

Find the eigenvalues and eigenvectors of the matrix
1 -1
A= . 2
G 7) o

The eigenvalues r and eigenvectors £ satisfy the equation (A — rI)€ = 0, or

<1 v 3——1r> @) - <8) 3

The eigenvalues are the roots of the equation

Solution:

det(A —rD) = =rl—4dr+4=(r-2)2=0. @)

1—r -1
1 3—r

Thus the two eigenvalues are ry = r, = 2; that is, the eigenvalue 2 has algebraic multiplicity 2.
To determine the eigenvectors, we must return to equation (3) and use r = 2. This gives

-1 -1 0
&) _ _ ®)
1 1/\& 0
Hence we obtain the single condition &; + &, = 0, which determines &, in terms of £, or vice versa.
Thus the eigenvector corresponding to the eigenvalue » = 2 is

1
(1)
& = (_1), ©)

or any nonzero multiple of this vector. Observe that there is only one linearly independent eigenvector
associated with the double eigenvalue.

Returning to the system (1), suppose that » = p is an m-fold root of the characteristic
equation
det(A —rI) =0. 7
Then p is an eigenvalue of algebraic multiplicity m of the matrix A. In this event, there
are two possibilities: either there are m linearly independent eigenvectors corresponding to
the eigenvalue p, or else, as in Example 1, there are fewer than m linearly independent
eigenvectors.
In the first case, let £, ..., €™ be m linearly independent eigenvectors associated
with the eigenvalue p of algebraic multiplicity m. Then there are m linearly independent
solutions x(V (1) = £€Wer!, ..., xM (1) = €™er? of equation (1). Thus in this case, it

makes no difference that the eigenvalue » = p is repeated; there is still a fundamental set of

7.8 Repeated Eigenvalues
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Consider again the matrix A given by equation (2). To transform A into its Jordan form,
we construct the transformation matrix T with the single eigenvector £ from equation (6) in its
first column and the generalized eigenvector ) from equation (17) with k = 0 in the second
column. Then T and its inverse are given by

1 0 » 1 0
T (_1 _1> and T <_1 _1) (28)

As you can verify, it follows that

2 1
—1Am i
T AT = (0 2) =J. (29)

The matrix J in equation (29) is the Jordan form of A. It is typical of all Jordan forms in
that it has a 1 above the main diagonal in the column corresponding to the eigenvector that is
lacking (and is replaced in T by the generalized eigenvector).

If we start again from equation (1)

x = Ax,
the transformation x = Ty, where T is given by equation (28), produces the system
y =1y, (30)
where J is given by equation (29). In scalar form the system (30) is
=214y, ¥y =2y 31

These equations can be solved readily in reverse order—that is, by starting with the equation
for y,. In this way we obtain

yo(t) = cre” and (1) = cite® + cre*. (32)

Thus two independent solutions of the system (30) are

1 t
y(l)(t) o (0>62r and y(2)(l) = <1) le’ (33)
and the corresponding fundamental matrix is
R o2 et
W(1) = < 5 e2’>' G4

Since ¥(0) = I, we can also identify the matrix in equation (34) as exp(J¢). The same result
can be reached by calculating powers of J and substituting them into the exponential series
(see Problems 19 through 21). To obtain a fundamental matrix for the original system, we now
form the product

2t

e te?
W(r) = Texp(Jt) = (_ezr g2 — te2t>’ (35)

which is the same as the fundamental matrix given in equation (25).

We will not discuss n x 7 systems x' = Ax in more detail here. For large it is possible that
there may be eigenvalues of high algebraic multiplicity m, perhaps with much lower geometric
multiplicity ¢, thus giving rise to m — g generalized eigenvectors. Problems 17 and 18 explore
the use of Jordan forms for systems of three differential equations. For n > 4 there may also
be repeated complex eigenvalues. A full discussion’ of the Jordan form of a general n x n
matrix requires a greater background in linear algebra than we assume for most readers of this
book.

9For example, see the books listed in the References at the end of this chapter.

The amount of arithmetic required in the analysis of a general n x n system may be
prohibitive to do by hand even if # is no greater than 3 or 4. Consequently, suitable computer
software should be used routinely in most cases. This does not overcome all difficulties by any
means, but it does make many problems much more tractable. Finally, for a set of equations
arising from modeling a physical system, it is likely that some of the elements in the coefficient
matrix A result from measurements of some physical quantity. The inevitable uncertainties in
such measurements lead to uncertainties in the values of the eigenvalues of A. For example,
in such a case it may not be clear whether two eigenvalues are actually equal or are merely
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close together.

Problems

In each of Problems 1 through 3:
a. Draw a direction field and sketch a few trajectories.
@ b. Describe how the solutions behave as t — oo.
c. Find the general solution of the system of equations.

1. ¥ = 3 _4x
1 -1
4 =2
2. X =
X (8 _4)x
3 1
2
I =
3. ¥= 1 1 ]x
4 2

In each of Problems 4 and 5, find the general solution of the given
system of equations.

1 1 1
4., x' =12 1 —1]x
0 -1 1
0o 1 1
5 ¥=(1 0 1]x
1 1 0

In each of Problems 6 through 8:
a. Find the solution of the given initial value problem.
b. Sketch the trajectory of the solution in the x;x,-plane, and
also sketch the graph of x; versus ¢.

i L =4 (3
6. x_<4 _7>x, X(O)—(Z)

5 3

) 5 3
7. & = % % X, x(0)=< 1)

2 3

i 3 9 _ (2
8. x = (_1 _3>x, x(0) = (4)

In each of Problems 9 and 10:
a. Find the solution of the given initial value problem.
@ b. Draw the corresponding trajectory in x;x,x3-space.
c. Sketch the graph of x; versus z.

1 0 0 ~1
9. ¥=|-4 1 0]x, x(0)= 2
36 2 -30

5
—= 1
2
, 5
10. x' = 1 —3 1]x, x(0)= 3
-1
o1 22
2

In each of Problems 11 and 12, solve the given system of equations by
the method of Problem 13 of Section 7.5. Assume that z > 0.

11. tx’:(3 _4>x
1 -1
1 —4
12: =
=t s

13. Show that all solutions of the system

X = i X
“\e d
approach zero as t — oo if and only if a + d < 0 and ad — bc > 0.

Compare this result with that of Problem 28 in Section 3.4.

14. Consider again the electric circuit in Problem 21 of Section 7.6.
This circuit is described by the system of differential equations

1

d (1Y _ ¢ L 1
dt\v) 1 1 V)
C RC
a. Show that the eigenvalues are real and equal if L = 4R?C.

b. Suppose that R =1, C = 1 F, and L = 4 H. Suppose also
that 7(0) = 1 A and V(0) =2 V. Find I(¢) and V(z).

15. Consider again the system

NI i (36)
—] = X

1 3
that we discussed in Example 2. We found there that A has a double
eigenvalue ry = r, = 2 with a single independent eigenvector

&M = (1, —=1)7, or any nonzero multiple thereof. Thus one solution
of the system (36) is xX(V(1) = £Me? and a second independent
solution has the form

x(Z)(t) e Stezt + 77€2t,

where & and 7 satisfy
(A-2D¢é=0, (A-2Dn=E¢&. 37

In the text we solved the first equation for £ and then the second
equation for 7. Here, we ask you to proceed in the reverse order.
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a. Show that n satisfies (A — 2I)2n = 0.

b. Show that (A — 2I)? = 0. Thus the generalized eigenvector
7 can be chosen arbitrarily, except that it must be independent of
;,:(1),

c. Letnp = (0,—1)T. Then determine £ from the second of
equations (37) and observe that £ = (1, —=1)7 = £, This
choice of 1 reproduces the solution found in Example 2.

d. Let n = (1,007 and determine the corresponding
eigenvector &.

e. Letn = (ki,ky)T, where k; and k, are arbitrary numbers.
What condition on k; and k, ensures that n and £ are
linearly independent? Then determine &. How is it related to the
eigenvector £1?

16. In Example 2, with A given in equation (36) above, it was
claimed that equation (16) is solvable even though the matrix A — 21
is singular. This problem justifies that claim.
a. Find all eigenvalues and eigenvectors for A*, the adjoint
of A.
b. Show that the eigenvectors of A and the corresponding
eigenvectors of A* are orthogonal.
c. Explain why this proves that equation (16) is solvable.

Eigenvalues of Multiplicity 3. If the matrix A has an eigenvalue of
algebraic multiplicity 3, then there may be either one, two, or three
corresponding linearly independent eigenvectors. The general solution
of the system X' = Ax is different, depending on the number of
eigenvectors associated with the triple eigenvalue. As noted in the text,
there is no difficulty if there are three eigenvectors, since then there
are three independent solutions of the form x = &e"*. The following
two problems illustrate the solution procedure for a triple eigenvalue
with one or two eigenvectors, respectively.

17. Consider the system

1 1 1
X =Ax = 2 1 —-1]x (38)
-3 2 4

a. Show that » = 2 is an eigenvalue of algebraic multiplicity
3 of the coefficient matrix A and that there is only one
corresponding eigenvector, namely,

0
E(l) — 1
-1
b. Using the information in part a, write down one solution
x(D (1) of the system (38). There is no other solution of the purely
exponential form x = £e'".
¢. To find a second solution, assume that x = &te* + ne*.
Show that ¢ and 7 satisfy the equations

(A-2DE=0, (A-2Dn=¢.
Since £ has already been found in part a, solve the second
equation for 7. Neglect the multiple of £V that appears in 7,
since it leads only to a multiple of the first solution x(". Then

write down a second solution x(? (¢) of the system (38).
d. To find a third solution, assume that

2
X= 5732’ +nte® + ¢

Show that &, 1, and ¢ satisfy the equations
(A-2DE=0, (A-2Dn=¢ (A-2DC=n.

The first two equations are the same as in part ¢, so solve the third
equation for ¢, again neglecting the multiple of £(1) that appears.
Then write down a third solution x(® () of the system (38).

e. Write down a fundamental matrix ¥(¢) for the system (38).
f. Form a matrix T with the eigenvector £ in the first column
and the generalized eigenvectors 1 and ¢ in the second and third
columns. Then find T~! and form the product J = T~'AT. The
matrix J is the Jordan form of A.

18. Consider the system

5 =3 =2
X =Ax = 8 —5 —4|x (39)
-4 3 3
a. Show that » = 1 is a triple eigenvalue of the coefficient

matrix A and that there are only two linearly independent
eigenvectors, which we may take as

1 0
eV=[0], 2= 2|. (40)
2 -3

Write down two linearly independent solutions x(V(#) and
x(? (1) of equation (39).

b. To find a third solution, assume that x = £te’ + me’; then
show that & and ) must satisfy

(A-DE =0, 41)
(A-Dn =¢&. (42)

c. Equation (41) is satisfied if £ is an eigenvector, so one way
to proceed is to choose £ to be a suitable linear combination of
¢ and €@ so that equation (42) is solvable, and then to solve
that equation for n. However, let us proceed in a different way
and follow the pattern of Problem 15. First, show that 7 satisfies

(A=D%n=0.

Further, show that (A—I)2 = 0. Thus 1 can be chosen arbitrarily,
except that it must be independent of £V and £ .

d. A convenient choice for n is n = (0,0, 1)7. Find the cor-
responding & from equation (42). Verify that £ is an eigen-
vector of A.

e. Write down a fundamental matrix W(¢) for the system (39).
f. Form a matrix T with the eigenvector €1 in the first column
and with the eigenvector £ from part d and the generalized
eigenvector 7 in the other two columns. Find T~! and form the
product J = T~'AT. The matrix J is the Jordan form of A.

A 1
19. LetJ = (0 )\) , where A is an arbitrary real number.

a. Find J2, J?, and J*.

2" /\n—l
b. Use an inductive argument to show that J" = <0 " N >

¢. Determine exp(Jt).

d. Use exp(Jt) to solve the initial value problem x' = Jx,
x(0) = x°.
20. Let
A 0 0
J=10 A 1],
0 0 A

where \ is an arbitrary real number.

a. Find J?, J?, and J*.
b. Use an inductive argument to show that

A0 0
=0 a at
0 0 A

c. Determine exp(J?).

d. Observe that if you choose A = 1, then the matrix J in this
problem is the same as the matrix J in Problem 18f, Using the
matrix T from Problem 18f, form the product T exp(Jt) with
A=1,

e. Is the resulting matrix the same as the fundamental matrix
W(t) in Problem 18e? If not, explain the discrepancy.

21. Let

A 1 0
J=10 A 1],
0 0 A
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where ) is an arbitrary real number.
a. Find J?, J3, and J*.
b. Use an inductive argument to show that

A" pAr! %n(n — A2

=19 A" nA"1
0 0 A"

¢. Determine exp(Jt).

d. Note that if you choose A = 2, then the matrix J in this
problem is the same as the matrix J in Problem 17f. Using the
matrix T from Problem 17f, form the product T exp(Jt) with
A = 2. The resulting matrix is the same as the fundamental matrix
W(t) in Problem 17¢. If not, explain the discrepancy.

79 Nonhomogeneous Linear Systems

In this section we turn to the nonhomogeneous system of linear first-order differential

equations

X =P()x+g(1),

(€3]

where the n x n matrix P(¢) and n x 1 vector g(¢) are continuous for « < t < (3. By the
same argument as in Section 3.5 (see also Problem 12 in this section), the general solution of

equation (1) can be expressed as

x=cxX0(8) + -+ e x™ (1) + (1),

@

where ¢;x(V () + - -+ 4+ ¢,x(" (¢) is the general solution of the corresponding homogeneous
system X' = P(¢)x, and v(¢) is a particular solution of the nonhomogeneous system (1). We

will briefly describe several methods for determining v(#).

Di

nalization. We begin with systems of the form

x = Ax+g(1),

©)

where A is an n x n diagonalizable constant matrix. By diagonalizing the coefficient matrix
A, as indicated in Section 7.7, we can transform equation (3) into a system of equations that

is readily solved.

Let T be the matrix whose columns are the eigenvectors & (U, ..

anew dependent variable y by

., €M of A, and define

x = Ty. C))
Then, substituting for x in equation (3), we obtain
Ty = ATy +g(t).
When we multiply this equation (on the left) by T~, it follows that
Y =(T'AT)y + T~'g(s) = Dy + h(1), )
where h(z) = T~ 'g(¢) and where D is the diagonal matrix whose diagonal entries are the
eigenvalues rq, ..., r, of A, arranged in the same order as the corresponding eigenvectors
€M, .., & that appear as columns of T. Equation (5) is a system of n uncoupled first-
order linear differential equations for y;(¢), ..., y»(#); as a consequence, the differential

equations can be solved separately. In scalar form, equation (5) has the form

y;(t) = rjyj(t) +hj(t), j = Lyass

21, 6)
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Y is afundamental matrix. Then the solution x of equation (35) is given by x = W(¢)u(¢), where u(z)
satisfies W (¢)u'(t) = g(1), or

e—3t e! ull _ et (37)
_e 3t et ufz 3t /°
Solving equation (37) by row reduction, we obtain

3
uy = e — Ete3‘,

uy =1+ %te’.
Hence
ui(t) = %62’ - %te3’ + ée” +cq,
uy(t) =t + %te' = —;-e' + ¢,
and

x = U()u(r)

ol Ve e (Nor e 1 Voo (Naor o (Vs L4
= 2\ ) Tl ) )t ) G

which is the same as the solution obtained in Example 1 (compare with equation (15)) and is
equivalent to the solution obtained in Example 2 (compare with equation (21)).

Laplace nsforms. We used the Laplace transform in Chapter 6 to solve linear equations
of arbltrary order It can also be used in very much the same way to solve systems of equations.
Since the transform is an integral, the transform of a vector is computed component by
component. Thus £{x(#)} is the vector whose components are the transforms of the respective
components of x(¢), and similarly for £{x'(#)}. We will denote L{x(#)} by X(s). Then, by an
extension of Theorem 6.2.1 to vectors, we also have

LIX'(£)} = sX(s) —x(0). (39)

EXAMPLE 4

Use the method of Laplace transforms to solve the system

(2 1 27\ _
— L s X+ 5 J= x+g(1). (40)

This is the same system of equations as in Examples 1, 2, and 3.

Solution:

We take the Laplace transform of each term in equation (40), obtaining

sX(s) —x(0) = AX(s) + G(s), (41)
where G(s) is the transform of g(7). The transform G(s) is given by
2
G(s) = Sng . (42)
2

To proceed further we need to choose the initial vector x(0) . For simplicity let us choose x(0) = 0.
Then equation (41) becomes

(sI— A)X(s) = G(s), 43)

e 2

Y where, as usual, I is the 2 x 2 identity matrix. Consequently, X(s) is given by

X(s) = (sI — A)7'G(s). (44)

The matrix (sI — A) ™! is called the transfer matrix because multiplying it by the transform of the
input vector g(¢) yields the transform of the output vector x(¢). In this example we have

s+2 -1
SI—A= ; @5)
-1 s+2
and by a straightforward calculation, we obtain
1 s+2 1
I-A) e — ———— ; 46
CI=7=5 +1)(s+3)< 1 s+2> L

Then, substituting from equations (42) and (46) in equation (44) and carrying out the
indicated multiplication, we find that

2(s +2) 3
1)2 3 2 1 3
X(s) = (s+D2(s+3)  s*2(s+D(s+3) . )
2 3(s+2)

s+ D2(s+3)  s2(s+D(s+3)

Finally, we need to obtain the solution x(#) from its transform X(s). This can be done by expanding
the expressions in equation (47) in partial fractions and using Table 6.2.1, or (more efficiently) by
using appropriate computational tools. In any case, after some simplification the result is

AV Y AR \ U AN S AU U L
xm_@e 3<_l>e +(1)te +(2)t 3(5) 8)

Equation (48) gives the particular solution of system (40) that satisfies the initial condition x(0) = 0.
As a result, it differs slightly from the particular solutions obtained in the preceding three examples.
To obtain the general solution of equation (40), you must add to the expression in equation (48) the
general solution (10) of the homogeneous system corresponding to equation (40).

Each of the methods for solving nonhomogeneous equations has its own advantages and
disadvantages. The method of undetermined coefficients requires no integration, but it is
limited in scope and may entail the solution of several sets of algebraic equations. The method
of diagonalization requires finding the inverse of the transformation matrix and the solution of
a set of uncoupled first-order linear differential equations, followed by a matrix multiplication.
Its main advantage is that for Hermitian coefficient matrices, the inverse of the transformation
matrix can be written down without calculation—a feature that is more important for large
systems. The method of Laplace transforms involves a matrix inversion to find the transfer
matrix, followed by a multiplication, and finally by the determination of the inverse transform
of each term in the resulting expression. It is particularly useful in problems with forcing
functions that involve discontinuous or impulsive terms. Variation of parameters is the most
general method. On the other hand, it involves the solution of a set of linear algebraic equations
with variable coefficients, followed by an integration and a matrix multiplication, so it may
also be the most complicated from a computational viewpoint. For many small systems with
constant coefficients, such as the one in the examples in this section, all of these methods work
well, and there may be little reason to select one over another.

Problems

In each of Problems 1 through 8 find the general solution of the given

3 1 1 e
system of equations. JSox=1, p)xt

Lx=(5 ) ()
¢ F=Hy 4 -2

3 -2 d 4. x’:( >x+(
2 . 2 =5 x4 —Cost .
" EFTR =3 sint
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5. o — 1 1 - 2 o
R VR | ~1
6. x = 4 =1 ! e
3 =2 1
7. X/:-
5

x+(
(2 S ()
X+

— 0
8. x’:(2 ) ( ), o<t<m
1 -2 cost

9. The electric circuit shown in Figure 7.9.1 is described by the
system of differential equations

1 1
ix [72 % E
== D lx+ (2 )10, (49)
4 2 == 0

where x; is the current through the inductor, x, is the voltage drop
across the capacitor, and I(¢) is the current supplied by the external
source.
a. Determine a fundamental matrix W(¢) for the homogeneous
system corresponding to equation (49). Refer to Problem 20 of
Section 7.6.
b. If I(1) = e~'/2, determine the solution of the system (49)
that also satisfies the initial conditions x(0) = 0.

L =8 henrys
1
C= Efarad

R =4 ohms R =4 ohms

The circuit in Problem 9.

In each of Problems 10 and 11, verify that the given vector is the
general solution of the corresponding homogeneous system, and then
solve the nonhomogeneous system. Assume that ¢ > 0.

10. x' = (i :;>x+ (1 —Z>,
x(9) = ¢ (1) t+c (;) 1

11. ' = (z ii)x—i— <t4__21t>,
x(© = ¢ (;)1_1 + e (?) 12

12. Let x = &(¢) be the general solution of X' = P(¢)x + g(1),
and let x = v(#) be some particular solution of the same system. By
considering the difference d(#) —v(z), show that d(7) = u(z) +v(1),
where u(r) is the general solution of the corresponding homogeneous
system x' = P(7)x. ,

Alternate Derivation of Variation of Parameters. When we
first encountered variation of parameters for a second-order linear
differential equation in Section 3.6 and again for higher-order linear

differential equations in Section 4.4, some of the equations used
to determine the unknown variable coefficients appeared to have
been chosen primarily to prevent higher-order derivatives of the
unknown variable coefficients from entering into the process. In fact,
as we show in Problems 13 through 15, the variation of parameter
equations are completely explained when viewed from the perspective
of the equivalent system of first-order linear differential equations.
Problems 13 and 14 reconsider two problems from Section 3.6;
Problem 15 shows that this connection is true for any second-order
linear differential equation. The same ideas can be used to explain
variation of parameters for higher-order linear differential equations.'?
In Problems 13 and 14, you are given a nonhomogeneous
second-order linear differential equation and two linearly independent
solutions, y; and y,, to the corresponding homogeneous differential
equation. Use this information to complete the following steps:
a. Find the equivalent nonhomogeneous system of first-order
linear differential equations for x; = y and x, = y'.
b. Show that XV = (y;,y))7 and x®? = (y,, y5)7 are
solutions to the homogeneous system of differential equations
corresponding to the system found in a. (As a consequence,
U = (x(l) | x(z)) is a fundamental matrix for the same homo-
geneous system.)
c. Find the variation of parameters equations that have to be
satisfied for y = y(#)u1(¢) + y2(t)u(t) to be a particular
solution of the given nonhomogeneous second-order differential

equation.
d. Find the variation of parameters equations that have to be
satisfied for x = W(r)u(s) to be a particular solution of

the nonhomogeneous system of first-order linear differential
equations found in a.

e. Use the definition of x(1 and x(® in b to show that the
systems of equations found in ¢ and the equations found in d are
equivalent.

13, y"—5y' 46y =2¢',y; = e*,y, = ¢ (Problem 1, Section 3.6)

14. 2y —t@+2)Y + (@ +y =230 > 0),y, =t,y, =te
(Problem 11, Section 3.6)

15. Carry out steps a through e for the general nonhomogeneous
second-order linear differential equation y” + p(¢) y'+q(#)y = g(1),
where y; = y1(#) and y, = y,(¢) form a fundamental set of solutions
to the corresponding homogeneous differential equation.

16. Consider the initial value problem
X = Ax+g(1), x(0) =x°.

a. By referring to Problem 12¢ in Section 7.7, show that
x=®(1)x" + /t (1 — 5)g(s)ds.
0
b. Show also that
x = exp(AN)x’ + /’ exp(A(r — 5))g(s)ds.
0

Compare these results with those of Problem 22 in Section 3.6.

10These problems were motivated by correspondence with Weishi Liu,
University of Kansas.

17. Use the Laplace transform to solve the system

o f=3 1 2\ _, “
X = 1 3 X+ 3 )= x + g(1) (50)

used in the examples in this section. Instead of using zero initial
conditions, as in Example 4, let
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