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11. By a suitable change of variables it is sometimes possible to
transform another differential equation into a Bessel equation. For
example, show that a solution of

1
xzy// + <a2ﬂ2x2ﬂ 4 Z - y2ﬂ2>y =0, x>0

is given by y = x!/2 f (ax?), where f(£) is a solution of the Bessel
equation of order v.

12. Using the result of Problem 11, show that the general solution
of the Airy equation

Y —xy=0, x>0

2 2
isy =x"2( ¢ fy 5z'x3/2 +cfa 3ix3/2)>,where f1(&) and

f>(&) are a fundamental set of solutions of the Bessel equation of order
one-third.

13. It can be shown that Jy has infinitely many zeros for x > 0.
In particular, the first three zeros are approximately 2.4035, 5.520, and
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8.653 (see Figure 5.7.1). Let A j, j = 1,2, 3, ... , denote the zeros of
Jo; it follows that

I, =0,
(%) = {0 i

Verify that y = Jo(\ jx) satisfies the differential equation
" 1 / 2
y +;y +)\jy=0, x> 0.

Hence show that
1
/ xfo(ij)Jo()\jx)dx =0 if /\,' ;é /\j.
0

This important property of Jy(A;x), which is known as the
orthogonality property, is useful in solving boundary value
problems.

Hint: Write the differential equation for Jo(A;x). Multiply it by
xJo(A jx) and subtract that result from x Jo( \; x) times the differential
equation for Jy(A jx). Then integrate from 0 to 1.
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The Laplace Transform

Many practical engineering problems involve mechanical or electrical systems acted on
by discontinuous or impulsive forcing terms. For such problems the methods described in
Chapter 3 are often rather awkward to use. Another method that is especially well suited
to these problems, although useful much more generally, is based on the Laplace transform.
In this chapter we describe how this important method works, emphasizing problems typical
of those that arise in engineering applications.

e1 Definition of the Laplace Transform

Improper Integrals. Since the Laplace transform involves an integral from zero to infinity,
a knowledge of improper integrals of this type is necessary to appreciate the subsequent
development of the properties of the transform. We provide a brief review of such improper
integrals here. If you are already familiar with improper integrals, you may wish to skip over
this review. On the other hand, if improper integrals are new to you, then you should probably
consult a calculus book, where you will find many more details and examples.

An improper integral over an unbounded interval is defined as a limit of integrals over

finite intervals; thus

0 A

/ f()dt = lim f(1)dt, 1)
a A-oo Ja

where A is a positive real number. If the definite integral from a to A exists for each A > a,

and if the limit of these values as A — oo exists, then the improper integral is said to converge

to that limiting value. Otherwise the integral is said to diverge, or to fail to exist. The following

examples illustrate both possibilities.

EXAMPLE 1

oo
dt .
Does the improper integral / . diverge or converge?
1

Solution:

From equation (1) we have

0 A
dt
/ ﬂ=1im/ — = lim InA.
1 t A—00 J1 t A—o00

Since lim In A = oo, the improper integral diverges.
A—00

241




246 CHAPTERG6 The Laplace Transform

EXAMPLE 7

Find L{sin(at)}. For what values of s is this transform defined?

Solution:

Let f(#) = sin(at), t > 0. Then

Li{sin(at)} = F(s) =/ e *'sin(at)dt,
0

Since

s > 0.

A
F(s) = lim/ e~ sin(ar)dt,
0

A—00

upon integrating by parts, we obtain

F(s)

lim

A oA
- = / e~ cos(at)dt
A—o0 0 aJo

s o0
- — / e*"cos(at)dt.
0

1
a a

a

I:_ e cos(at)

A second integration by parts then yields

2 o0}
1 s*

F(s) = —— — e"sin(at)dt

Now, solving for F(s), we have

a a* ),
1 2
= = e L
a a2
a
F(s) =———, s>0.
(s) 152

s
In Problem 5 you will use a similar process to find L{cos(at)} = m fors > 0.Now

let us suppose that f; and f, are two functions whose Laplace transforms exist for s > a; and
s > a,, respectively. Then, for s greater than the maximum of ¢; and ay,

Licifi(t) + e2fo(t)} = / e (e filt) + 2 fo(1) )dt
0

hence

o0 o0
= C]/ e_“"fl(t)dt +6'2/ €~Stf2(l‘)dt;
0 0

Lici fi(t) +cafa(t)} = a1 L{ f1(1) } + 2 L{ fa() }. (6)

- Equation (6) states that the Laplace transform is a linear operator, and we make frequent use
of this property later. The sum in equation (6) can be readily extended to an arbitrary number
of terms.

EXAMPLE 8

Find the Laplace transform of f(t) = 5e~% — 3sin(4t), t > 0.

Y Solution:

Using equation (6), we write

Then, from Examples 5 and 7, we obtain

5 1
LUFD) = 5

s+2 s2+16°

£{f(} =5c{e7>} —3c{sin(4r) }.

s> 0.
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Problems

In each of Problems 1 through 3, sketch the graph of the given
function. In each case determine whether f is continuous, piecewise

continuous, or neither on the interval 0 < ¢ < 3.
12, 0<t<l1
1. f(r)y=4¢2+1t, 1<t<2
6—t, 2<t<3
2 0<t<l
2. fH=<@-D71, 1<r<2
1, 2<t<3
. 0<t<l1
3. f() =<1, l<t=<2
3—t, 2<t<3

4. Find the Laplace transform of each of the following functions:
a. f(1) =t
b. f(1). =t

C. t) = t", where n is a positive integer
p 24

5. Find the Laplace transform of f(¢) = cos(at), where a is a real
constant.

Recall that
1 1
cosh(bt) = E(eb’ + ¢~ and sinh(br) = E(ef" —eM.

In each of Problems 6 through 7, use the linearity of the Laplace
transform to find the Laplace transform of the given function; ¢ and b
are real constants.

6. f(t) = cosh(bt)
7. f(t) = sinh(bt)
Recall that

L. ; 1% A
cos(bt) = E(e’b' + 7" and sin(br) = E(erbr — iy,

In each of Problems 8 through 11, use the linearity of the Laplace
transform to find the Laplace transform of the given function; a and b
are real constants. Assume that the necessary elementary integration
formulas extend to this case.

8. f(t) =sin(bt)

9. f(t) = cos(bt)
10. (1) = e* sin(bt)
11.  f(t) = e* cos(bt)

In each of Problems 12 through 15, use integration by parts to find the
Laplace transform of the given function; n is a positive integer and a
is a real constant.

12, f(1) =te™

13, f(t) = tsin(at)
14.  f(1) =t"e™

15.  f(t) = ¢?sin(at)

In each of Problems 16 through 18, find the Laplace transform of the
given function.

1, 0<t<m
16. 1) = ? -
Fo {0, T<t< o0
t, 0<t<1
7. =< =
F@ {1, 1<t<
s 0<tr<1
18. f(t)=<(2-t, 1<t<?2
0, 2<t<

In each of Problems 19 through 21, determine whether the given
integral converges or diverges.

00
19. / (2 +1)"ldr
OOO

20. / te 'dt
0
(o]

21. / 12l dt
1

22. Suppose that f and f’ are continuous for + > 0 and of

exponential order as + — oo. Use integration by parts to show that

if F(s) = L{f(#)}, then lim F(s) = 0. The result is actually true
§—=>00

under less restrictive conditions, such as those of Theorem 6.1.2.

23. The Gamma Function. The gamma function is denoted by

T'(p) and is defined by the integral

F(p—}—l):/ e *xPdx. @)
0

The integral converges as x — oo for all p. For p < 0 it is also
improper at x = 0, because the integrand becomes unbounded as
x — 0. However, the integral can be shown to converge at x = 0
forp > —1.

a. Show that, for p > 0,

Flp+1) =pI'(p).
b. Show thatI'(1) = 1.
c. If pis a positive integer n, show that
I'n+1) =nl

Since I'( p) is also defined when p is not an integer, this function

provides an extension of the factorial function to nonintegral

values of the independent variable. Note that it is also consistent

to define 0! = 1.

d. Show that, for p > 0,

I'(p+n)
+D(p+2)---(p+n—-1) = ——.
p(p+D(p+2)---(p ()
Thus I'( p) can be determined for all positive values of p if I'( p)
is known in a single interval of unit length—say,0 < p < 1.1Itis
3 11

possible to show that T’ (%) = /7. FindT <-2—) andT (—2—>
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24. Consider the Laplace transform of 7, where p > —1.

’ } a. Referring to Problem 23, show
o0
L{t?} = / e'tPdt =
0
= M, s> 0.
sptl

b. Let p be a positive integer n in part a; show that

L= 2

sntl ’

¢. Show that

It is possible to show that

that © e T
00 e dx = T,
Y e *xPdx 0
s [y hence
LV =4/%, s>o.
s
d. Show that
s> 0. L%y = T s> 0.

253/2°

L%y = 2 ooe_)‘zdx s>0
o ’ '

62 Solution of Initial Value Problems

In this section we show how the Laplace transform can be used to solve initial value problems
for linear differential equations with constant coefficients. The usefulness of the Laplace
transform for this purpose rests primarily on the fact that the transform of f " is related in
a simple way to the transform of f. The relationship is expressed in the following theorem.

Theorem 6.2.1

Suppose that f is continuous and f” is piecewise continuous on any interval 0 < ¢ < A. Suppose
further that there exist constants K, a, and M such that | f(#)| < Ke® for t > M. Then L{ f (1)}
exists for s > a, and moreover,

L{fI(0)) = sLLf(D)} = f(0). @

To prove this theorem, we consider the integral
A
/ e f(t)dt,
0
whose limit as A — o0, if it exists, is the Laplace transform of f’. To calculate this limit we

first need to write the integral in a suitable form. If £’ has points of discontinuity in the interval
0 <t < A, let them be denoted by #, f2, ... , #. Then we can write the integral as

A h [} A
/ e f'(1)d1 =/ e“”f’(t)dt+/ e‘“f’(t)dt+---+/ e f'(1)dt.
0 0 &

151

Integrating each term on the right by parts yields

A
/ e fi()dt = e F(D)| + e (1) jj ot e“"f(t)li
0

+ s

t ) A
/e_‘"f(t)dt-i-/ e‘”f(t)dt+---+/ e““f(t)dt]-
0

h

T

6.2 Solution of Initial Value Problems

Since f is continuous, the contributions of the integrated terms at #;, ,, . . . , t cancel. Further,
the integrals on the right-hand side can be combined into a single integral so that we obtain

A

A
/ e fi(1)dt = e f(A) — f(0) +s/ e f(t)dt. )
0 0

Now we let A — o0 in equation (2). The integral on the right-hand side of this
equation approaches £{ f(¢)}. Further, for A > M, we have | f(A)| < K e ; consequently,
leA f(A)| < Ke~~D4 Hence ¢4 f(A) — 0as A — oo whenever s > a. Thus the
right-hand side of equation (2) has the limit s£{ f(#)} — f(0) . Consequently, the left-hand
side of equation (2) also has a limit, and as noted above, this limit is £{ f'(#) }. Therefore, for
s > a, we conclude that

L{f' (D} = sL{f()} = £(0),
which completes the proof of Theorem 6.2.1.

If f" and f” satisfy the same conditions that are imposed on f and f’, respectively, in
Theorem 6.2.1, then it follows that the Laplace transform of f” also exists for s > a and is
given by

L")} = sLUf (D} = £(0)
= s(sL{f()} = £(0)) — £'(0)
= s’L{f()} = sf(0) — f(0). 3
Indeed, provided the function f and its derivatives satisfy suitable conditions, an expression

for the transform of the n™ derivative (" can be derived by n successive applications of this
theorem. The result is given in the following corollary.

Corollary 6.2.2 |

Suppose that the functions f, f, ..., f"~ are continuous and that f(" is piecewise continuous
on any interval 0 < ¢t < A. Suppose further that there exist constants K, a, and M such that
[F(O)] < Ke®, | ()] < Ke“, ...,|f* V()] < Ke® fort > M. Then L{ f" (1)} exists
for s > a and is given by

L{rmm}=s"L{ )} =" f(0) = —sfP7(0) = FTD(0). @

We now show how the Laplace transform can be used to solve initial value problems.
It is most useful for problems involving nonhomogeneous differential equations, as we
will demonstrate in later sections of this chapter. However, we begin by looking at some
homogeneous equations, which are a bit simpler.

EXAMPLE 1

Find the solution of the differential equation
Y=y -2y=0 )
that satisfies the initial conditions
y(0) =1, y'(0) =0. 6
Solution:
'.l“his initial value problem is easily solved by the methods of Section 3.1. The characteristic equation
is

rP—r—2=(r-2(+1=0,
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6.2 Solution of Initial Value Problems 255

Y 5 2 " wich tiatlow that The most important elementary applications of the Laplace transform are in the study of
Il Congeatdy, & = 2,8 =l b= 3’ and d = g TRal Ralows B mechanical vibrations and in the analysis of electric circuits; the governing equations were
’ ) 5/3 2/3 derived in Section 3.7. A vibrating spring-mass system has the equation of motion
)
= - . 24)
e s2+1+s2+1 s2+4 d*u du
m-ﬁ +"Yd— + ku = F(t), (33)
From lines 5 and 6 of Table 6.2.1, the solution of the given initial value problem is ! t
5 1, where m is the mass, v the damping coefficient, k the spring constant, and F(¢) the applied
- Zsint — — . 25 . . e S . .
o Dot 3 st 3 (28] @) external force. The equation that describes an electric circuit containing an inductance L, a
resistance R, and a capacitance C (an LRC circuit) is
d*Q dg 1
L— +R—+—=0 = E(1), 34
a2 TR TG 0 (1) (34)
EXAMPLE 3
where Q(t) is the charge on the capacitor and E(?) is the applied voltage. In terms of the
Find the solution of the initial value problem current I(¢) = dQ(t) /dt, we can differentiate equation (34) and write
4 - 2
y® —y=0, (26) d°I dr 1 dE
L—+R—+ —=1=—(1). 35
dr2+ dt+C dz() o)
y(0) =0, y(0) =1, y'(0)=0, »"(0)=0. @7

Suitable initial conditions on u, @, or I must also be prescribed.

Solution:

In this problem we need to assume that the solution y(#) satisfies the conditions of Corollary 6.2.2
for n = 4. The Laplace transform of the differential equation (26) is

We have noted previously, in Section 3.7, that equation (33) for the spring-mass system
and equations (34) or (35) for the electric circuit are identical mathematically, differing only
in the interpretation of the constants and variables appearing in them. There are other physical

problems that also lead to the same differential equation. Thus, once the mathematical problem
is solved, its solution can be interpreted in terms of whichever corresponding physical problem
is of immediate interest.

In the problem lists following this and other sections in this chapter are numerous initial-

s*Y(s) — s3y(0) — 5%y/'(0) — sy"(0) — y"(0) = Y(s) = 0.

Then, using the initial conditions (27) and solving for Y (s), we have

2 value problems for second-order linear differential equations with constant coefficients. Many

S
Y(s) = a1 28) can be interpreted as models of particular physical systems, but usually we do not point this

out explicitly.

A partial fraction expansion of Y (s) is

as+b cs+d
Y(5) = ——+ 51, (29)
) s2—1 * s2+1
and it follows that
(as +B)(s® + 1) + (cs +d) (s? — 1) = 52 (30) Problems
for all 5. In this problem we use a combination of substituting values of s and equating coeffi.cients In each of Problems 1 through 7, find the inverse Laplace transform 10, y”" —2y +2y=0; y(0) =0, y'(0) =1
of like powers of s. First, setting s = 1 and s = —1, respectively, in equation (30), we obtain the of the given function. 11. y' =2y +4y=0; y(0)=2, y(0)=0
pair of equations ; s
1. F(s) = 214 12. y"+2y +5y=0; y(0) =2, y(0)=-1
2(a -+ b) = 1, 2( —a + b) = ]., 4 13' y(4) _ 4y/// + 6y// _ 4y/ + y = O y(o) = 0,
1 2. F(s)=—— '(0) =1, y"(0) =0, y"(0) =1
and therefore a = 0 and b = l If we set s = 0 in equation (30), then b —d = 0, so d = ~. Finally, (s —1)3 Y Y Y
2 . . 2 2 4. y® —y=0; y0) =1, y(0) =0, y"(0) =1,
equating the coefficients of the cubic terms on each side of equation (30), we find thata +¢ = 0, so 3. F(s) = 5 y"(0) =0
=0.Th s2+3s5—4
e B . i ) 2542 15. ' +wly =cos(20), w?#4 ¥(0) =1, ¥(0) =0
¥ =gt s (31 = e s 16. y' =2y +2y=e y(0) =0, y(0) =1
. . o y L 25 —3 In each of Problems 17 through 19, find the Laplace transform Y (s) =
l 1 and from lines 7 and 5 of Table 6.2.1, the solution of the initial value problem (26), (27) is 5. F(s) = . 175} o the eolistion of s given fftial valis probles. A matod of
1 o 6.3. Y
‘ . . determining the inverse transform is developed in Section 6.3. You
== ; 32 2 _
y(1) 2(smht +sint) 2 6. F(s) = 81%_}-)_1_2_ may wish to refer to Problems 16 through 18 in Section 6.1.
s(s< 4
We conclude by noting that we could have looked for a partial fraction expansion of ¥(s) in 1—2s 17. 3 +4y= {1, O<t<m, YOy =1, y(0) =0
the form 7. F(s) = > 0, m<t< oo
5 4 .0 t, 0=<tr<1
Y(s) = a4 b + 8 + d. In each of Problems & through 16, use the Laplace transform to solve 18, y” +4y = { ’ - " y(0) =0, ¥Y(0)=0
s=1 s+1 s2+1 the given initial value problem. L, 1=t<o

t, 0<r<1,
19. y'4+y=<2—1t, 1<t<2, y0) =0 »(0)=0
0, 2<t< o0

We used the form in equation (29) because Table 6.2.1 includes entries for both 1 / (s2+1) and

2 8. Y=y —6y=0 y0) =1 y(0)=-1
s/(s* £ 1).

9. Y +3y+2y=0; y0) =1, y(0)=0
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20. The Laplace transforms of certain functions can be found
conveniently from their Taylor series expansions.
a. Using the Taylor series for sin?
*® ( _ 1) nt2n+l
inf— ). il
s < 2+ D!

n=i

and assuming that the Laplace transform of this series can be
computed term-by-term, verify that

1
L{sint} = ——, > 1.
{sint} 71 s
b. Let

sin ¢

=y ¢ 0’
f)y =9 t 7

1; t=0.

Show that f(¢) is continuous for all real values of ¢. Find the
Taylor series for f about r = 0. Assuming that the Laplace
transform of this function can be computed term-by-term, verify
that

L{f()}= arctan(%), § > 1

¢. The Bessel function of the first kind of order zero, Jy, has the
Taylor series (see Section 5.7)

09 (_1)71t2n
WO =D iy
n=0

Assuming that the following Laplace transforms can be computed
term-by-term, verify that

L{h®}=E+D72, s>1
and
E{JO(«/;)} =57l VW) o5,
Problems 21 through 27 are concerned with differentiation of the

Laplace transform.
21. Let

F(s) = / e~ £ (1) dt.
0

It is possible to show that as long as f satisfies the conditions of
Theorem 6.1.2, it is legitimate to differentiate under the integral sign
with respect to the parameter s when s > a.
a. Show that F/(s) = L{—tf(2)}.
b. Show that F(™(s) = L{(—1)" f(2)}; hence differentiating
the Laplace transform corresponds to multiplying the original
function by —1.

In each of Problems 22 through 25, use the result of Problem 21 to find
the Laplace transform of the given function; a and b are real numbers
and n is a positive integer.

22. f(t) =te*

23, f(t) =t*sin(bt)

(3]

(]
e

f( I) e tneat
f(t) = te” sin(bt)

N
wn

26. Consider Bessel’s equation of order zero
ty"+y +ty=0.

Recall from Section 5.7 that ¢+ = 0 is a regular singular point for this
equation, and therefore solutions may become unbounded as ¢t — 0.
However, let us try to determine whether there are any solutions that
remain finite at # = 0 and have finite derivatives there. Assuming that
there is such a solution y = ¢ (), let Y(s) = L{¢ (1)}

a. Show that Y (s) satisfies

(14+s)Y'(s) +sY(s) =0.

b. Show that Y(s) = c(1 + s2)~'/2, where c is an arbitrary
constant.

¢. Writing (1 + s2)71/2 = §71(1 + s72)~1/2, expanding in
a binomial series valid for s > 1, and assuming that it is
permissible to take the inverse transform term-by-term, show that

0 (_1)nt2n

EYIEY =cJy(1),
0

y=c¢

n=l

where Jj is the Bessel function of the first kind of order zero. Note
that Jo(0) = 1 and that J; has finite derivatives of all orders at
t = 0. It was shown in Section 5.7 that the second solution of this
equation becomes unbounded as t — 0.

27. For each of the following initial value problems, use the results
of Problem 21 to find the differential equation satisfied by Y(s) =
L{y(t)}, where y(#) is the solution of the given initial value problem.

a. y"—ty=0; y(0) =1, y(0) =0 (Airy’s equation)
b. (1-t¥)y"=2ty'+a(a+1)y=0; y0) =0, y'(0) =1
(Legendre’s equation)

Note that the differential equation for Y (s) is of first-order in
part a, but of second-order in part b. This is due to the fact
that ¢ appears at most to the first power in the equation of
part a, whereas it appears to the second power in that of part b.
This illustrates that the Laplace transform is not often useful in
solving differential equations with variable coefficients, unless
all the coefficients are at most linear functions of the independent
variable.

28. Suppose that

g(t):/ f(r)dr.
0

If G(s) and F(s) are the Laplace transforms of g(z) and f(1),
respectively, show that

29. In this problem we show how a general partial fraction
expansion can be used to calculate many inverse Laplace transforms.
Suppose that

P
Fs) = 28
Q(s)
where Q(s) is a polynomial of degree n with n distinct zeros
1, - .. »Tn,and P(s) is a polynomial of degree less than n. In this case

it is possible to show that P(s)/ Q(s) has a partial fraction expansion
of the form

P(s) _ Ay + Ay

Q(s) —s—rl S —7Tn

) (36)

where the coefficients Aq, ... , A, must be determined.

a. Show that

Q(s).
P,
&= 0’ =1y s m b. Show that

Hint: One way to do this is to multiply equation (36) by s —7; and
then to take the limit as s — 7. Note that limits are used because
it is not appropriate to simply evaluate equation (36) multiplied

63 Step Functions

In Section 6.2 we outlined the general procedure involved in solving initial value problems
by means of the Laplace transform. Some of the most interesting elementary applications of
the transform method occur in the solution of linear differential equations with discontinuous
or impulsive forcing functions. Equations of this type frequently arise in the analysis of the
flow of current in electric circuits or the vibrations of mechanical systems. In this section and
the remaining sections in Chapter 6, we develop some additional properties of the Laplace
transform that are useful in the solution of such problems. Unless a specific statement is made
to the contrary, all functions appearing below will be assumed to be piecewise continuous and
of exponential order, so that their Laplace transforms exist, at least for s sufficiently large.

To deal effectively with functions having jump discontinuities, it is very helpful to
introduce a function known as the unit step function or Heaviside function. This function
will be denoted by u, and is defined by

0, t<e,
uc(r) —{1’ £2 g (€]

Since the Laplace transform involves values of ¢ in the interval [0, oo), we are also interested
only in nonnegative values of c. The graph of y = wu.(#) is shown in Figure 6.3.1. We
have somewhat arbitrarily assigned the value one to u. at + = c. However, for a piecewise
continuous function such as u., the value at a discontinuity point is usually irrelevant. The
step can also be negative. For instance, Figure 6.3.2 shows the graph of y = 1 — u.(?).

Y Y

] p——O

|
I
|
|
é
( t

Graphof y = 1 —u.(1).

If we associate the value 1 with “on” and O with “off,” then the function u.(t) represents

a switch that is turned on at time c. Likewise, 1 — u.(#) represents a switch being turned off
at time c.

EXAMPLE 1

Sketch the graph of y = h(t), where
h(t) = ux(t) —uze (¢), t2=0.

n

LHF$)Y =)

k=1

6.3 Step Functions

P(ry)
Q'(n)

e

it

257

by s — 7 because equation (36) is not defined at each root of
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Theorem 6.3.2

If F(s) = L{f(¢#)} exists for s > a > 0, and if ¢ is a constant, then

L f()}=F(s—¢), s>a+ec %)
Conversely, if f(t) = L~{F(s)}, then
e f(1) = LTHF(s — o)} ®)

According to Theorem 6.3.2, multiplication of () by e results in a translation of the
transform F(s) a distance c in the positive s direction, and conversely. To prove this theorem,
we evaluate L{e f(t)}. Thus

L{e f(1)} = / Ooe-”e“ f(t)dt = / ooe—“—C)' f(t)dt
0

0
= F(s —c¢),

which is equation (7). The restriction s > a + ¢ follows from the observation that, according
to hypothesis (ii) of Theorem 6.1.2, | ()| < Ke“;hence |e“ f(1)| < Ke'“T9!, Equation (8)
is obtained by taking the inverse transform of equation (7), and the proof is complete.

The principal application of Theorem 6.3.2 is in the evaluation of certain inverse
transforms, as illustrated by Example 5.

EXAMPLE 5

Find the inverse Laplace transform of

1

G(s) = ————.
) s2—4s+5

Solution:
First, to avoid dealing with the complex-valued roots of the denominator s> — 4s + 5, we complete
the square in the denominator:

G(s) = F(s —2),

(s—22+1
where F(s) = (s + 1)L, Since L7{F(s)} = sint, it follows from Theorem 6.3.2 that

g(1) = L7YG(s)} = ¥ sint.

The results of this section are often useful in solving differential equations, particularly
those that have discontinuous forcing functions. The next section is devoted to examples
illustrating this point.

Problems

In each of Problems 1 through 4, sketch the graph of the given function
on the interval ¢ > 0.

Lo g(t) = uy() 4 2u3(r) — 6uy(r)

2. g(t) = f(t —mus(t), where f(t) = 1>
3. g(t) = f(t —3)us(t), where f(t) =sint

4. g(1) = (t — Dug(1) = 2(¢ — ua(1) + (¢ — 3)us(t)

In each of Problems 5 through &:
a. Sketch the graph of the given function.
b. Express f(¢) in terms of the unit step function u(z).

(0, 0<t<3,
-2, 3<t<5,
P Jifh= 2, 5<t<1,
1, t=17.
(1, 0<r<1,
-1, 1<t<?2,
6. f(1)= 1, 2<t<3,
-1, 3<t<4,
L 0, t>4
1, 0<r<?2,
7.8 f(t)={e_(,_2), 53,
t, 0<t<?2,
25 2<t<5,
8 fl) = Tt 32127,
0, t>1.

In each of Problems 9 through 12, find the Laplace transform of the
given function.

o, f(t):{o’ t<2
(t—=2)2% t>2
0, t<

10. f(t)=<Lt—-m, w<t<2mw
0, t>2m

11, f(t) = u1(8) + 2us(t) — 6uq(t)
12, f(t) = (t = Bus(t) — (t = Dus(1)

In each of Problems 13 through 16, find the inverse Laplace transform
of the given function.

13. F ———3!
H (s) = Go2)¢
—2s
14. F(s) = ————
(s) s24s5—2
2s — e
15. = —
F(s) s2—2s+2
—5 —2s _ ,—3s __ ,—4s
16. F(s) = e +e e e

s
17.  Suppose that F(s) = L{ f(¢)} exists fors > a > 0.
a. Show that if ¢ is a positive constant, then

cisen==F(2), s>ca

S
e
b. Show that if k is a positive constant, then

crds = 2(3).

¢. Show that if @ and b are constants with a > 0, then

L YF(as +b)} = le—‘"/“f( )
a

t
a
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In each of Problems 18 through 20, use the results of Problem 17 to
find the inverse Laplace transform of the given function.

2ntly)
18. F(S) = —;—l’l-f-_l
25 +1

19. F =
(s) 452 +4s + 5

1
20. F P S —
(s) Os2 — 125 +3

In each of Problems 21 through 23, find the Laplace transform of the
given function. In Problem 23, assume that term-by-term integration
of the infinite series is permissible.

1, 0<t<1
21. f(r)={0 o
, 0<t<1
0, 1<tr<2
e S8 = 1, 2<t<3
0, t>3
(oo}
23. f(1) = 1+Z(—l)kuk(t). See Figure 6.3.8.
k=1
y
Ly—bh L4 ? p—
| | | | |
| | | | |
s 5 ¢ & —
1 2 3 4 5

The function f(¢) in Problem 23;

a square wave.

24. Let f satisfy f(tr + T) = f(¢) forall t > 0 and for some
fixed positive number T'; f is said to be periodic with period T on

0 <t < 00. Show that
T
/ e f(t)dt

0
1—esT

L{fD} =

In each of Problems 25 through 28, use the result of Problem 24 to
find the Laplace transform of the given function.

1, 0<st<l, f(t+2)=f().
B fin= {O, 1<t<2;
Compare with Problem 23.

1, 0<t<1, f(t+2) =f().
- f(t)_{—l, 1<t<2;
See Figure 6.3.9.

y

1 Q ¢ Q
I | I I |
| | | | |
11 2| 31 4 5[ ..
| | | | | t
| | [ | !
| | | | |

- —— — —

The function f(z) in Problem 26; a

square wave.
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- _ ) Y This problem governs the charge on the capacitor in a simple electric circuit with a unit voltage pulse
27. fO =t 0=r<l fa+l) =50 - ‘l'_If (f (t)c =1 ;x.lélt;’rofgll:mﬁq{ lf 0 Bhsteliiber gyl for 5 <t < 20. Alternatively, y may represent the response of a damped oscillator subject to the
See Figure 6.3.10. y = f(#). Compare wi £ applied force g(¢).
b. Let g(t) = / f(&) dé&, where the function f is defined in
y 0 P Solution:
part a. Sketch the graph of y = g(¢) and find £{g(¢)}. Use your . .
1 expression for £{g(#)} to find an explicit formula for g(7). The Laplace transform of equation (1) is
; | . 1 Hint: See Problem 28 i Section 6.2, . 257 (s) — 25y(0) = 2Y'(0) +s¥(5) = y(0) +2Y(s) = L{us(1)} = L{uzo(1)}
| | I / c. Let h(t) = g(t) — u(t)g(¢t — 1), where g is defined in q
= = = = - part b, Sketch the graph of y = A(¢) and find L{h(¢)}. Use your = = (g—5-‘ = 6—205)_

‘l 1 ‘ 3 4 expression for £{h(t)} to find an explicit formula for A(?). s
_ 3 RE = s% The function £(¢) in 30. Consider the function p defined by Introducing the initial values (3) and solving for Y (s), we obtain
VA b 4 _5; BN
Problem 27; a sawtooth wave. ‘ 0<t<l1, ) P = =55 — g=20s ”

= - t = p(1). 2 #

- p(1) {Z—t, l<t<2: p(t+2) = p() £(25% +5 +2)

28. f(n=sint, 0<t<m; f(t+m)=f(). To find y(¢), it is convenient to write Y () as
See Figure 6.3.11. a. Sketch the graph of y = p(t). s
b. Find £{p(r)} by noting that p is the periodic extension of the Y(s) =(e™ —e ") H(s), %)
y function A in Problem 29¢; then use the result of Problem 24. where
c. Find L{p(t)} by noting that
1
t H(s) = —ger—eeeer, (6)
1 p() = | f(n)dt, s(252+5+2)
0
. o . . 621 Then, if h(1) = L7'{H(s)}, we have
h is the function in P 26; then use Theorem 6.2.1.

I T or 3 t where f is the function in Problem en us () = us(t)h(t — 5) — upo(£)h(t — 20). %
The function f(#) in Observe that we have used Theorem 6.3.1 to write the inverse transforms of e~>*H(s) and
Problem 28; a rectified sine wave. e 2% H(s), respectively. Finally, to determine A(t), we use the partial fraction expansion of H(s):

a bs+c
H$) =4 ——m—. 8
ke) s+2s2+s+2 ®
1 1
Upon determining the coefficients, we find that a = 3 b=-1l,andc = —3 Thus
1 4 1 e 1
. T3 1 1)73
§)==§—————==§— =
2 252 + s + 2 2 2 1 2 15
s+ - —
. | o (+3) +&
s4 Differential Equations with
i’ 1 v/ 15
L o L] ® s — —
Discontinuous Forcing Functions _L1 4 ! : o
2
e 5 1\> (/15 v 1\° 15
In this section we turn our attention to some examples in which the nonhomogeneous term, or Lk 4 + 4 5% 2 + 4
forcing function, is discontinuous.
Then, by referring to lines 9 and 10 of Table 6.2.1, we obtain

h(t) = % ~ % <e"/4cos (—@t) + —\/l?e_'/“ sin(\/F:> ) (10)

In Figure 6.4.1 the graph of y(¢) from equations (7) and (10) shows that the solution consists
of three distinct parts. For 0 < ¢ < 5, the differential equation is

EXAMPLE 1

Find the solution of the differential equation y
2y"+y +2y =0, (11)

" / _
2y"+y +2y =), @ and the initial conditions are given by equation (3). Since the initial conditions impart no energy

to the system, and since there is no external forcing, the system remains at rest; that is, y = 0 for

where 0 < t < 5. This can be confirmed by solving equation (11) subject to the initial conditions (3). In
1, 5<t<20, particular, evaluating the solution and its derivative at # = 5, or, more precisely, as ¢ approaches 5

' g(t) = us(t) —uy(t) = {0 O0<t<5ort>20. 2 from below, we have
y(5) =0, ¥'(5)=0. (12)

Assume that the initial conditions are

Once ¢ > 5, the differential equation becomes
y(0) =0, »'(0) =0. €]

2" +y +2y=1, (13)
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A 4

Thus the solution of the initial value problem (17), (18), (19) is
1
¥(8) = 3 (us(Dh(1 = 5) = wio(h(t = 10)), (24)

where A(t) is the inverse transform of H(s).
The partial fraction expansion of H(s) is
1/4

_ _1/4
TO="7 " axe 3

and it then follows from lines 3 and 5 of Table 6.2.1 that
1 1
h(t) = Zt —~a sin(27). (26)

The graph of y(¢) is shown in Figure 6.4.3. Observe that it has the qualitative form that we
indicated earlier. To find the amplitude of the eventual steady oscillation, it is sufficient to locate one
of the maximum or minimum points for # > 10. Setting the derivative of the solution (24) equal to
zero, we find that the first maximum is located approximately at (10.642, 0.2979), so the amplitude

y
0.30

0.20 -

0.10

of the oscillation is approximately 0.2979 — 0.25 = 0.0479.

| | | |

points.

5 10 15 20 t

! Solution of the initial value problem (12), (13), (14).

SN

Note that in this example, the forcing function g is continuous, but g’ is discontinuous at t = 5
and ¢ = 10. It follows that the solution y(¢) and its first two derivatives are continuous everywhere,
but y”(¢) has discontinuities at # = 5 and at t = 10 that match the discontinuities in g’ at those

Problems

In each of Problems 1 through 8:
a. Sketch the graph of the forcing function on an appropriate
interval.
" b. Find the solution of the given initial value problem.
© c. Plot the graph of the solution.
d. Explain how the graphs of the forcing function and the
solution are related.

L y'+y=f; y0)=0, y(0)=1;
f(t):{l’ 0<t<3rm

0, 3n <t< o0

2. y'+2y +2y=hn(t); y(0)=0, y'(0)=1;
1, m<t<2nw
h(t) =

0, 0<t<m or t>2r

3. y'+4y =sint —uy, (1) sin(t —27); y(0) =0, y'(0) =0
4. y'+3y'+2y= f(1); y(0)=0, y'(0)=0;

1, 0<tr<10
1) =
F@ {0, t>10
" / 5 ™ !
S. y'+y +Zy=t—uﬁ/z(t) t_E ;o y(0) =0, y'(0)=0

, 5
6. y'+y+-y=g(t); »0)=0, y(0)=0;

4
() = sinf, 0<t<nm
85 =10, t>7

7. ¥ 44y =ur(t) —uz(1); y(0) =0, y'(0)=0

8. ¥y +5y"+4y=1—ur(1); y(0) =0, y(0) =0,
yll(o) — O, y///(o) = 0

9. Find an expression involving u.(t) for a function f that ramps
up from zero at t = #, to the value h at t =ty + k.

10. Find an expression involving u.(t) for a function g that ramps
up from zero at ¢t = f, to the value 4 at t = #o +k and then ramps back
down to zero at t = ty + 2k.

11. A certain spring-mass system satisfies the initial value problem
1
u” + Zu' +u=kg(t), u(0)=0, u/(0)=0,

where g(#) = u3/5(#) — us/2(t) and k > 0 is a parameter.
a. Sketch the graph of g(¢). Observe that it is a pulse of unit
magnitude extending over one time unit.
b. Solve the initial value problem.
@ c. Plot the solution for k = 1/2, k = 1, and k = 2. Describe
the principal features of the solution and how they depend on k.
( d. Find, to two decimal places, the smallest value of k for
which the solution u(t) reaches the value 2.
@ e. Suppose k = 2. Find the time 7 after which |u(#)| < 0.1
forallt > 7.

12. Modify the problem in Example 2 of this section by replacing
the given forcing function g(#) by

1
£ =7 (s =39 —usp(D(t =5-10)) / k.

a. Sketch the graph of f(7) and describe how it depends on k.
For what value of k is f(¢) identical to g(¢) in the example?
b. Solve the initial value problem

y'+4y = f(1), y(0)=0, y'(0)=0.

@ c. The solution in part b depends on k, but for sufficiently
large ¢, the solution is always a simple harmonic oscillation about
y = 1/4. Try to decide how the amplitude of this eventual
oscillation depends on k. Then confirm your conclusion by
plotting the solution for a few different values of k.

Resonance and Beats. In Section 3.8 we observed that an undamped
harmonic oscillator (such as a spring-mass system) with a sinusoidal
forcing term experiences resonance if the frequency of the forcing term
is the same as the natural frequency. If the forcing frequency is slightly
different from the natural frequency, then the system exhibits a beat. In
Problems 13 through 17 we explore the effect of some nonsinusoidal
periodic forcing functions.

13. Consider the initial value problem
Y'+y=f1, y0) =0, y(0) =0,

where

n
£ =uo(0) +2Y_(=DFugr ().
k=1
a. Draw the graph of f(¢) on an interval suchas0 <t < 67.
b. Find the solution of the initial value problem.
@ c. Letn = 15. Plot the graph of the solution for 0 < ¢ < 60.
Describe the solution and explain why it behaves as it does.
d. Investigate how the solution changes as n increases. What
happens as n — 00?

14. Consider the initial value problem
Y +0.1y' +y=f(n, »0)=0, y'(0)=0,

where f(¢) is the same as in Problem 13.
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@ a. Plot the graph of the solution. Use a large enough value
of n and a long enough ¢-interval so that the transient part of
the solution has become negligible and the steady state is clearly
shown.

b. Estimate the amplitude and frequency of the steady-state part
of the solution.

c. Compare the results of part b with those from Section 3.8 for
a sinusoidally forced oscillator.

15. Consider the initial value problem
Y'+y=g, »0) =0, y'(0)=0,

where

g(t) =ug() + Y _(=D*uer (1),

k=1

a. Draw the graph of g(¢) on an interval suchas 0 <t < 6.
Compare the graph with that of f(#) in Problem 13a.

b. Find the solution of the initial value problem.

@ c. Letn = 15. Plot the graph of the solution for 0 < ¢ < 60.
Describe the solution and explain why it behaves as it does.
Compare it with the solution of Problem 13.

d. Investigate how the solution changes as n increases. What
happens as n — 00?

16. Consider the initial value problem
Y'+0.1y +y=g(1, y0)=0, y'(0)=0,

where g(¢) is the same as in Problem 15.
@ a. Plot the graph of the solution. Use a large enough value
of n and a long enough z-interval so that the transient part of
the solution has become negligible and the steady state is clearly
shown.
@ b. Estimate the amplitude and frequency of the steady-state
part of the solution.
¢. Compare the results of part b with those from Problem 15 and
from Section 3.8 for a sinusoidally forced oscillator.

17. Consider the initial value problem
Y'+y=n1), y0) =0, y'(0) =0,

where

n
h(t) =up() +2 > _ (=D uine/a(0).
k=1

Observe that this problem is identical to Problem 15, except that the
frequency of the forcing term has been increased somewhat.

a. Find the solution of this initial value problem.

@ b. Let n > 33 and plot the solution for 0 < ¢ < 90 or longer.

Your plot should show a clearly recognizable beat.

@ c. From the graph in part b, estimate the “slow period” and

the “fast period” for this oscillator.

d. For a sinusoidally forced oscillator, it was shown in Section

1
3.8 that the “slow frequency” is given by §|w — wyl|, where
wy is the natural frequency of the system and w is the forcing
1
frequency. Similarly, the “fast frequency” is E(w + wyp). Use

these expressions to calculate the “fast period” and the “slow
period” for the oscillator in this problem. How well do the results
compare with your estimates from part c?
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Then from equation (11) it follows that
L{6(t —ty)} = e, (13)
Equation (13) defines £{6(¢ — fy)} for any #5 > 0. We extend this result, to allow #, to be
zero, by letting ) — O™ on the right-hand side of equation (13); thus
L{5()} = lim e =1, (14)

to— 0t
It is reassuring to see that the Laplace transform formulas derived in equations (13) and (14)
are consistent with the Laplace transform of a horizontally shifted function:
LI6(t —ty)} = e L{5(1)} = e N,

In a similar way, it is possible to define the integral of the product of the delta function
and any continuous function f. We have

/oo 5(t —t())f(t)dt = lim

7—0t J —00

o0

d-(t —1o) f(2)dt. 15)

Using the definition (4) of d(¢) and the mean value theorem for integrals, we find that

o0 1 to+T7
/ 4t —t) f(Ndt = — [ fF(oyde

27— th—T

1 * *
= 5= 2 f(0) = £(1),

T

where tp — 7 < t* < o+ 7. Hence t* — fy as 7 — 0T, and it follows from equation (15)
that

/m §(t — 10) f(Ddt = f(10). 16)

-0

The following example illustrates the use of the delta function in solving an initial value
problem with an impulsive forcing function.

EXAMPLE 1

Find the solution of the initial value problem

2y"+y +2y=6(t-9), (17

y(0) =0, »'(0)=0. (18)

Solution:

This initial value problem arises from the study of the same electric circuit or mechanical oscillator
as in Example 1 of Section 6.4. The only difference is in the forcing term.

To solve the given problem, we first take the Laplace transform of the differential equation and
use the initial conditions, obtaining

(252 +s5s+2)Y(s) = e,
Thus

Y(s) = = . (19)

\/B t) (20)

Y Hence, by Theorem 6.3.1, we have

y(1) = L7THY(s)} =

2 us()e /4 gin \/—E(r;s) @21
V15 4

which is the formal solution of the given problem. It is also possible to write y(¢) in the form

0, 1 <5,

= 2 \/15 22
¥ —Se—<’—5>/4sin<T(t—5)), t>5. @

Vi

The graph of equation (22) is shown in Figure 6.5.3. Since the initial conditions at ¢ = 0 are
homogeneous and there is no external excitation until # = 5, there is no response in the interval
0 < ¢ < 5. The impulse at # = 5 produces a decaying oscillation that persists indefinitely. The
response is continuous at ¢ = 5 despite the singularity in the forcing function at that point. However,
the first derivative of the solution has a jump discontinuity at # = 5, and the second derivative has
an infinite discontinuity there. This is required by the differential equation (17), since a singularity
on one side of the equation must be balanced by a corresponding singularity on the other side.

y
03}
02}
0.1}
| | |
5 10 15\_~ 20 ¢
~0.1}

| Solution of the initial value problem (17), (18):
2y"+y +2y=6(t-95), y(0) =0, y'(0) =0.

In dealing with problems that involve impulsive forcing, the use of the delta function
usually simplifies the mathematical calculations, often quite significantly. However, if the
actual excitation extends over a short, but nonzero, time interval, then an error will be
introduced by modeling the excitation as taking place instantaneously. This error may be
negligible, but in a practical problem it should not be dismissed without consideration. In
Problem 12 you are asked to investigate this issue for a simple harmonic oscillator.

Problems

In each of Problems | through 8:
a. Find the solution of the given initial value problem.
@ b. Plot a graph of the solution.

YH2y +2y=6(—7); y0) =1, y(0)=0
Y'+dy=06(t—7)—6(t—2m); y(0) =0, y'(0) =0
Y'+3y' 42y =6(t=5) +uio(); y(0) =0, y'(0) =1/2

Y +4y=26(t—7/4)

® N2 ;oA

W b

y' 42y + 3y =sint + 6(t — 37);
Y +y=46(t—2rm)cost;

Y 2y +2y =cost +6(t —7/2);
. YD —y=50-1);
¥"(0) =0, y"(0)=0
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y(0) =0, y'(0) =0
y(0) =0, y'(0) =1

;0 ¥(0) =0, y(0)=0

¥(0) =0, »'(0) =0
¥(0) =0, »'(0) =0,
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9. Consider again the system in Example 1 of this section, in which
an oscillation is excited by a unit impulse at # = 5. Suppose that it is
desired to bring the system to rest again after exactly one cycle—that
is, when the response first returns to equilibrium moving in the positive
direction.

 a. Determine the impulse k6 (¢ — ) that should be applied
to the system in order to accomplish this objective. Note that
k is the magnitude of the impulse and 7y is the time of its

application.
@ b. Solve the resulting initial value problem, and plot its
solution to confirm that it behaves in the specified manner.

@ 10. Consider the initial value problem
Y4y +y=580—-1, »0)=0, y(0) =0,

where + is the damping coefficient (or resistance).
Ba. Lety = % Find the solution of the initial value problem
and plot its graph.
b. Find the time #; at which the solution attains its maximum
value. Also find the maximum value y; of the solution.
© c. Lety = ; and repeat parts a and b.
d. Determine how #; and y; vary as v decreases. What are the
values of #; and y; wheny = 0?

11. Consider the initial value problem
Y 4y +y=k6(t—1), y(0)=0, y(0) =0,

where k is the magnitude of an impulse at # = 1, and -y is the damping
coefficient (or resistance).

1
Oa. Lety = 3 Find the value of k for which the response has
a peak value of 2; call this value ;.
1

@ b. Repeat part (a) fory = e

¢. Determine how k; varies as y decreases. What is the value of

ky when v = 0?7
12. Consider the initial value problem

Yy +y=fi(t), ¥0)=0, y'(0)=0,

1
where fi(t) = ﬂ(u4_k(z) — ugi (1)) with 0 < k < 1.

a. Find the solution y = ¢ (¢, k) of the initial value problem.
b. Calculate lim ¢ (¢, k) from the solution found in part a.
k=0t
¢. Observethat lim fi(¢) = §(¢+—4).Find the solution ¢(?)
k=0t
of the given initial value problem with fi(¢) replaced by 6(t—4).
Is it true that ¢o(¢) = lim ¢ (¢, k)?
k=0Tt

1 1
@ d. Plot ¢ t, 3 ) # (1, - ), and ¢o(t) on the same axes.

4
Describe the relation between ¢ (¢, k) and ¢o(1).

Problems 13 through 16 deal with the effect of a sequence of impulses
on an undamped oscillator. Suppose that

y'+y=f®, y0)=0, y'(0)=0.
For each of the following choices for f(#):
a. Try to predict the nature of the solution without solving the
problem.
© b. Test your prediction by finding the solution and plotting
its graph.
c. Determine what happens after the sequence of impulses ends.

20

13, f(t) =, 6(t —km)
k=1
20

14.  f(r) = S (—D)*18(t —kmr)
k=1
15

15. f(r) = > 6(t —(2k—1m)
k=1

40 11
16.  f(1) = S, (=¥ (: - —4—k>
k=1

17. The position of a certain lightly damped oscillator satisfies the
initial value problem
20
Y01y +y =Y (=D —km), ¥(0) =0, y'(0) =0.
k=1
Observe that, except for the damping term, this problem is the same
as Problem 14.

a. Try to predict the nature of the solution without solving the
problem.
© b. Test your prediction by finding the solution and drawing
its graph.
¢. Determine what happens after the sequence of impulses ends.

@ 18. Proceed as in Problem 17 for the oscillator satisfying

15
Y 401y +y= 8(t—(2k=Dm), ¥0) =0, y(0)=0.
k=1

Observe that, except for the damping term, this problem is the same
as Problem 15.

19. a. By the method of variation of parameters, show that the
solution of the initial value problem

y'+2y +2y=f(); ¥(0) =0, ¥'(0)=0
is
y:/ U= f(1) sin(t — 7) dT.
0

b. Show that if f(¢) = &(t — ), then the solution of part a
reduces to

y = ur (£)e "™ sin(t — ).

¢. Use a Laplace transform to solve the given initial value
problem with f(t) = 6(¢t — ), and confirm that the solution
agrees with the result of part b.

66 The Convolution Integral

Sometimes it is possible to identify a Laplace transform H(s) as the product of two other
Laplace transforms F(s) and G(s), the latter transforms corresponding to known functions f
and g, respectively. In this event, we might anticipate that H(s) would be the transform of the
product of f and g. However, this is not the case; in other words, the Laplace transform cannot
be commuted with ordinary multiplication. On the other hand, if an appropriately defined
“generalized product” is introduced, then the situation changes, as stated in the following
theorem.

Theorem6.6.1 | Convolution Theorem

If F(s) = L{ f(¢)} and G(s) = L{g(t)} both exist for s > a > 0, then
H(s) = F(s)G(s) = L{h(t)}, s> a, 1)

where

h(t)=/0 f(t—T)g(T)dT=/ f(r)g(t —7)dr. )
0

The function £ is known as the convolution of f and g; the integrals in equation (2) are called
convolution integrals.

The equality of the two integrals in equation (2) follows by making the change of variable
t — 7 = £ in the first integral. Before giving the proof of this theorem, let us make some
observations about the convolution integral. According to this theorem, the transform of the
convolution of two functions, rather than the transform of their ordinary product, is given by
the product of the separate transforms. It is conventional to emphasize that the convolution
integral can be thought of as a “generalized product” by writing

h(t) = (f *g)(1). (©)
.In parti’cular, the notation (f*xg)(¢) serves to indicate the first integral appearing
in equation (2); the second integral in equation (2) is denoted as (g * f)(z).

H The convolution f * g has many of the properties of ordinary multiplication. For example,
it is relatively simple to show that

fxg=gxf (commutative law) “)
F#(g1+8) = f*g1 + f*gy (distributive law) 6))
(fxg)xh= f*x(g*h) (associative law) ©6)
f*x0=0x%xf=0. (zero property) @)

In equation (7) the zeros denote not the number 0 but the function that has the value 0 for each
value of ¢. The proofs of these properties are left to you as exercises.

. However, there are other properties of ordinary multiplication that the convolution
integral does not have. For example, it is not true in general that f 1 is equal to f. To see
this, note that

(f*l)(t):/ f(l—T)-ldT:/tf(t—T)dT.
0 0

If, for example, f() = cost, then

t T=t
(fx1)(2) :/ cos(t —7)dT = —sin(t — 7)
0 7=0
= —sin0 + sint
= sint.

Clearly, ( f % 1)(z) # f(¢) in this case. Similarly, it may not be true that f * f is nonnegative.
See Problem 3 for an example.

6.6 The Convolution Integral
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The initial value problem (15), (16) is often referred to as an input-output problem. The
coefficients a, b, and ¢ describe the properties of some physical system, and g(t) is the input
to the system. The values y, and y; describe the initial state, and the solution y is the output
at time ¢.

Taking the Laplace transform of equation (20) and using initial conditions (21), we obtain

(as®+ bs + ) Y(s) — (as + b)yo — ayy = G().

If we let
/
then we can write
Y(s) =®(s) +T(s). (23)
Consequently,
y(1) = ¢ (1) + (), 24)

where ¢ (1) = LY@ (s)}and ¥ (1) = LT (s5)}. Observe that ¢ () is the solution of the
initial value problem

y(0) = yo, ¥'(0) =y, 25)

obtained from equations (20) and (21) by setting g(#) equal to zero. Similarly, 9 () is the
solution of

ay” +by +cy=0,

ay”" + by +cy=g(t), y(0)=0, y'(0) =0, (26)

in which the initial values y, and y are each replaced by zero.

Once specific values of a, b, and ¢ are given, we can use Table 6.2.1 to find
# (1) = L7H® (s)}, possibly in conjunction with a translation or a partial fraction expansion.
To find ¥ (1) = L7{¥(s)}, it is convenient to write ¥ (s) as

U(s) = H(s)G(s), 1))

where H(s) = (as® + bs + ¢)~'. The function H is known as the transfer function® and
depends only on the properties of the system under consideration; that is, H(s) is determined
entirely by the coefficients a, b, and c. On the other hand, G(s) depends only on the external
excitation g(¢) that is applied to the system. By the Convolution Theorem (Theorem 6.6.1)
we can write

W(1) = L7 {H(s)G(s)) =/ W(t — 7)g(r) dr, (8)
0

where h(t) = L7'{H(s)}, and g(¢) is the given forcing function.

To obtain a better understanding of the significance of (), we consider the case in which
G(s) = 1; consequently, g(#) = 6(¢) and ¥ (s) = H(s). This means that y = h(t) is the
solution of the initial value problem

ay” +by +cy=46(t), y(0) =0, y'(0)=0, (29)

obtained from equation (26) by replacing g(#) by 6(#). Thus h(t) is the response of the system
to a unit impulse applied at # = 0, and it is natural to call h(t) the impulse response of the

- system. Equation (28) then says that 1 (¢) is the convolution of the impulse response and the

forcing function.

Referring to Example 2, we note that the transfer function is H(s) = 1/ (s +4) and
the impulse response is h(t) = % sin(27). Also, the first two terms on the right-hand side of
equation (19) constitute the function ¢ (7), the solution of the corresponding homogeneous
equation that satisfies the given initial conditions.

6This terminology arises from the fact that H(s) is the ratio of the transforms of the output and the input of the
problem (20).

Problems

1. Prove the commutative, distributive, and associative properties
of the convolution integral.
a. fxg=gxf
b. f*(g1+g)=/[f*g+f*g
c fx(gxh) =(f*g)*h
2. Find an example different from the one in the text showing that
(f *1)(¢) need not be equal to f(1).

3. Show, by means of the example f(¢#) = sint, that f * f is not
necessarily nonnegative.

In each of Problems 4 through 6, find the Laplace transform of the
given function.

4. f(t):/(t—'r)zcos(ZT)dT
0

w

t
f(t):/ e "DsinT dr
0

6. f([):/sin(t—T)COSTdT
0

In each of Problems 7 through 9, find the inverse Laplace transform
of the given function by using the convolution theorem.

1
e =
Fs) sH(s2+1)
8 F(s)=——>
(s+1)(s2+4)
9. F(s) 1

T G+ DA+

10. a. If f(r) = ¢" and g(¢t) = t", where m and n are positive
integers, show that

1
f *g = tm+n+1/ um(l _u)n du.
0
b. Use the convolution theorem to show that
. m!n!
/ Ww(l—uw)dy = ———M—8M8—.
0 (m+n+1)!

¢. Extend the result of part b to the case where m and n are
positive numbers but not necessarily integers.

In each of Problems 11 through 15, express the solution of the given
initial value problem in terms of a convolution integral.

1. y"+w?y=g(); y(0) =0, y'(0) =1
12, 4y" +4y' + 17y =g(1); y(0) =0, y'(0) =0

5
13. y"+y' + =1 un();

14. y" 43y’ +2y = cos(at);

15, y& 4+ 5y" + 4y = g(1);
yl/(O) s 0’ y///(o) e 0

y(0) =1, y(0) =-1

y(0) =1, y'(0) =0
y(0) =1, ¥'(0) =0,
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16. Consider the equation
é (1) +/ k(t =& ¢ (&) d§ = f(1),
0

in which f and k are known functions, and ¢ is to be determined. Since
the unknown function ¢ appears under an integral sign, the given
equation is called an integral equation; in particular, it belongs to
a class of integral equations known as Volterra integral equations’.
Take the Laplace transform of the given integral equation and obtain
an expression for £{¢ (¢)} in terms of the transforms £{ f(¢)} and
L{k(t)} of the given functions f and k. The inverse transform of
L{¢ (1)} is the solution of the original integral equation.

17. Consider the Volterra integral equation (see Problem 16)
t
@ (1) +/ (t =8¢ (&) d§ = sin(21). (30)
0

a. Solve the integral equation (30) by using the Laplace
transform.

b. By differentiating equation (30) twice, show that ¢ (¢)
satisfies the differential equation

¢"(t) + ¢ (1) = —4sin(2t).
Show also that the initial conditions are
$(0) =0, ¢'(0)=2.

¢. Solve the initial value problem in part b, and verify that the
solution is the same as the one in part a.

In each of Problems 18 and 19:
a. Solve the given Volterra integral equation by using the
Laplace transform.
b. Convert the integral equation into an initial value problem, as
in Problem 17b.
¢. Solve the initial value problem in part b, and verify that the
solution is the same as the one in part a.

18. ¢(t)+/(t—§)¢>(€)d£=1
0

19. ¢(z)+2/ cos(t — £) ¢ (£) dE = e

0
There are also equations, known as integro-differential equations, in
which both derivatives and integrals of the unknown function appear.
In each of Problems 20 and 21:
a. Solve the given integro-differential equation by using the
Laplace transform.
b. By differentiating the integro-differential equation a
sufficient number of times, convert it into an initial value
problem.
¢. Solve the initial value problem in part b, and verify that the
solution is the same as the one in part a.

20. ¢’(I)+/(I—€)¢>(£)d§=t, ¢(0) =0
0

1 t
21. ¢’<r>—5/(z—£>2¢<s>d£=—r, $(0) =1
0

7See the footnote about Vito Volterra in Section 9.5.
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22. The Tautochrone. A problem of interest in the history
of mathematics is that of finding the tautochrone® —the curve
down which a particle will slide freely under gravity alone,
reaching the bottom in the same time regardless of its starting
point on the curve. This problem arose in the construction of
a clock pendulum whose period is independent of the amplitude
of its motion. The tautochrone was found by Christian Huygens
(1629-1695) in 1673 by geometric methods, and later by Leibniz
and Jakob Bernoulli using analytic arguments. Bernoulli’s solution
(in 1690) was one of the first occasions on which a differential
equation was explicitly solved. The geometric configuration is
shown in Figure 6.6.2. The starting point P(a,b) is joined
to the terminal point (0,0) by the arc C. Arc length s is

y A
P(a, b)

\Q

8The word “tautochrone” comes from the Greek words tauto, which means
“same,” and chronos, which means “time.”
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measured from the origin, and f(y) denotes the rate of change of s
with respect to y:

d a5
N X
f(}’)=£=(1+<d—y>) . (31)

Then it follows from the principle of conservation of energy that the
time 7'(b) required for a particle to slide from P to the origin is

£y

1 b
TEA vb—y

a. Assume that 7(b) = Ty, a constant, for each b. By taking
the Laplace transform of equation (32) in this case, and using the
convolution theorem, Theorem 6.6.1, show that

T(b) = dy. (32)

2g T()
F(s) =4/ ——; 33
(s) e (33)
then show that
A 2g TQ
fN=—7 (34)
T
Hint: See Problem 24 of Section 6.1.
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2 —
6 _ 22 (35)
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Systems of First-Order
Linear Equations

Many physical problems involve a number of separate but interconnected components. For
example, the current and voltage in an electrical network, each mass in a mechanical system,
each element (or compound) in a chemical system, or each species in a biological system have
this character. In these and similar cases, the corresponding mathematical problem consists
of a system of two or more differential equations, which can always be written as first-order
differential equations. In this chapter we focus on systems of first-order linear differential
equations and, in particular, differential equations having constant coefficients, utilizing some
of the elementary aspects of linear algebra to unify the presentation. In many respects this
chapter follows the same lines as the treatment of second-order linear differential equations in
Chapter 3.

71 Introduction

Systems of simultaneous ordinary differential equations arise naturally in problems involving
several dependent variables, each of which is a function of the same single independent
variable. We will denote the independent variable by ¢ and will let x;, x5, x3, ... represent
dependent variables that are functions of 7. Differentiation! with respect to ¢ will be denoted

d
by, for example, = or %«

Let us begin by considering the spring—mass system in Figure 7.1.1. The two masses
move on a frictionless surface under the influence of external forces F;(t) and F,(t), and
they are also constrained by the three springs whose constants are k;, k,, and k3, respectively.
We regard motion and displacement to the right as being positive.

(F(2) | Fo(t)
B =
ky : i k2 : ks
m AW 7o |
| | l
! | | |

| %2
|———>

| A two-mass, three-spring system.

Using arguments similar to those in Section 3.7, we find the following equations for the
coordinates x; and x, of the two masses:
&
mlgtyl = ka(x2 — x1) — kyxy + F1(8) = — (ki + ko) x1 + koxp + F1(2),
d2X2
My = —k3xy — ka(x2 — x1) + Fa(1) = koxy — (ky + k3) x2 + Fa(2).

¢

See Problem 14 for a full derivation of the system of differential equations (1).
Next, consider the parallel LRC circuit shown in Figure 7.1.2. Let V be the voltage drop
across the capacitor and 7 the current through the inductor. Then, referring to Section 3.7 and

'In some treatments you will see differentiation with respect to time represented with a dot over the function, as in
dx 1

2
; X1 3 . ; ; ; ;
X = -y and ¥ = o We reserve this notation for a specific purpose, which will be introduced in Section 9.6.
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