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In each of Problems | through 4, use the method of variation of
parameters to determine the general solution of the given differential
equation.

y" +y' =tant, Tei< X
’ 2 2
2. y///_ —
3. y/// _ 2y// _ y/ 4 2y — e4t
4. y" —y"+y —y=e"sint

In each of Problems 5 and 6, find the general solution of the given
differential equation. Leave your answer in terms of one or more
integrals.

5 ] by = _E_ 1
Sy y'+y —y=sect, 2<z‘< )

6. y"—y =csct, 0<t<m
In each of Problems 7 and &, find the solution of the given initial-value
problem. Then plot a graph of the solution.

©® 7. y'—y'+y—y=sect; y0) =2, y(0)=-1,
y'(0) =1

s Vs
8. y"—y =tant; “1=2 9t =}=1,
(6] y" —y' = tant; y<4) y<4>

Coddington, E. A., An Introduction to Ordinary Differential
Equations (Englewood Cliffs, NJ: Prentice-Hall, 1961; New
York: Dover, 1989).

Coddington, E. A. and Carlson, R., Linear Ordinary Differential
Equations (Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1997).

9. Given that x, x2, and 1 /x are solutions of the homogeneous
equation corresponding to

x3ym +x2y// _ ny’ +2y = 2x4, x>0,

determine a particular solution.

10. Find a formula involving integrals for a particular solution of the
differential equation

ua

Y=Yty -y =2g).
11. Find a formula involving integrals for a particular solution of the
differential equation

(4)

Y —y=g(1).

Hint: The functions sin ¢, cos ¢, sinhz, and cosh# form a fundamental
set of solutions of the homogeneous equation.

12. Find a formula involving integrals for a particular solution of the
differential equation

y/l/_3y//+3y/__y =g(t)

If g(1) = t~2e', determine Y (¢).

Ince, E. L., Ordinary Differential Equations (London: Longmans,
Green, 1927; New York: Dover, 1956).

Series Solutions of
Second-Order Linear
Fquations

Finding the general solution of a linear differential equation depends on determining a
fundamental set of solutions of the homogeneous equation. So far, we have given a systematic
procedure for constructing fundamental solutions only when the equation has constant
coefficients. To deal with the much larger class of equations that have variable coefficients,
it is necessary to extend our search for solutions beyond the familiar elementary functions of
calculus. The principal tool that we need is the representation of a given function by a power
series. The basic idea is similar to that in the method of undetermined coefficients: we assume
that the solutions of a given differential equation have power series expansions, and then we
attempt to determine the coefficients so as to satisfy the differential equation.

512 Review of Power Series

In this chapter we discuss the use of power series to construct fundamental sets of solutions of
second-order linear differential equations whose coefficients are functions of the independent
variable. We begin by summarizing very briefly the pertinent results about power series that
we need. Readers who are familiar with power series may go on to Section 5.2. Those who
need more details than are presented here should consult a book on calculus.

(o]
1. A power series > a,(x — x)" is said to converge at a point x if

n=0
m

lim E an(x — xp)"
m—» 00
n=0
exists for that x. The series certainly converges for x = xo; it may converge for all x, or
it may converge for some values of x and not for others.

o0

The power series Y a,(x — Xo)" is said to converge absolutely at a point x if the
n=0

associated power series

o0 o
> lan(x = x0)" =Y lanllx — xol"
n=0

n=0
converges. It can be shown that if the power series converges absolutely, then the power
series also converges; however, the converse is not necessarily true.

!\J

3. One of the most useful tests for the absolute convergence of a power series is the ratio
test: If a, # 0, and if, for a fixed value of x,

A1 (x — x0)" !
an(x - x())n

. An+1
lim

n—oo

= |x — Xxp| lim
n—o00

= I'x _JC()‘L,

n
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Y Next, shift the index down by 1 and start counting 1 higher. Thus

[o0) (o]
Z (r + n)a,x’ ™ = Z (r+n—Da,_;x"". 7
n=0 n=1

Again, you can easily verify that the two series in equation (7) are identical and that both are exactly
the same as the expression (5).

| EXAMPLE 6

Assume that

co

io:nanx”'1 = Zanx” ©))

n=1 n=0

for all x, and determine what this implies about the coefficients a,,.

Solution:

We want to use statement 10 to equate corresponding coefficients in the two series. In order to do
this, we must first rewrite equation (8) so that the series display the same power of x in their generic
terms. For instance, in the series on the left-hand side of equation (8), we can replace n by n + 1 and
start counting 1 lower. Thus equation (8) becomes

i (n+Da,x" = zoo:a,,x”. 9)

L n=0 n=0
According to statement 10, we conclude that

(n+Vayy=as, n=0,1,2,3, ...

or

all
=~ n=0,1,23, ... (10)

Hence, choosing successive values of # in equation (10), we have

aip do az ag
T @Ey T BTF Ty

and so forth. In general,

dp

2 a=1,23.... (11)
n!

anp =
Thus the relation (8) determines all the following coefficients in terms of ag. Finally, using the
coefficients given by equation (11), we obtain

e} [} 4
E n E o, § X X
apX = —X = — = qpe,
n! n!
i n=0 n=0 n=0

[e'e}

n
where we have followed the usual convention that 0! = 1, and recalled that ¢* = Z % for all
n=0 ’
values of x. (See Problem &.)

S — s e T AT A P I

In each of Problems 1 through 6, determine the radius of convergence
of the given power series.

00
1. Y (x—3)"
n=0
0
n
2 = oen
2. ZZMx
n=0
fo0) x2n
3; —
)
=)
4y o

n=0

& (% —x0)"

n

n—1 n

o] (—1)"1’12(){ +2)/1
6 Y

n=1

In each of Problems 7 through 13, determine the Taylor series about
the point x, for the given function. Also determine the radius of
convergence of the series.

7. sinx, xp=0
8 ¢, x=0
9. x, x=1
10. x2, xp=-1

11. Inx, xy=1

o0
4. Lety = nx".
n=0
a. Compute y’ and write out the first four terms of the series.
b. Compute y” and write out the first four terms of the series.
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_ o0
15, Lety =) apx".
n=0
a. Compute y" and y” and write out the first four terms of each
series, as well as the coefficient of x” in the general term.
b. Show that if y” = y, then the coefficients ap and a; are
arbitrary, and determine a, and a5 in terms of ap and a;.
a

¢. Show thata, , = n=0,1,2,3,....

n
(n+2)(n+1)°
In each of Problems 16 and 17, verify the given equation.

o0 (o]
16. > an(x— D" =3"a, (x—1)"
=0

n=1

o0 (o] o0
ke k+1 _
17 Y ap1x* + 3" apx** = a) + 3 (g + ) x*
k=0 k=0 k=1
In each of Problems 18 through 22, rewrite the given expression as a
single power series whose generic term involves x”.

00
18. S n(n — Dagx"2
n=2

00 2]
19. x> nayx" '+ 5 apxk
k=0

n=1

o0 (o]
20. Y m(m—Damx™ 2 +x 3 kagxt!
m=2 k=1

o0 o]
21, Y napx"™ M 4x Y auxt
n=1 n=0

o0 o0
22. x ) n(n—Dax"2+ 3 ax"

n=2 n=0
23.  Determine the a,, so that the equation
[o/e] [oe]
E napx"" 1 42 Zanx” =0
n=1 n=0

igo satisfied. Try to identify the function represented by the series

> anxt
n=0

2 Series Solutions Near an Ordinary

Point, Part |

In Chapter 3 we described methods of solving second-order linear differential equations with
constant coefficients. We now consider methods of solving second-order linear equations
When the coefficients are functions of the independent variable. In this chapter we will denote
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Finally, we emphasize that it is not particularly important if, as in Example 3, we are
unable to determine the general coefficient a,, in terms of ay and a;. What is essential is that
we can determine as many coefficients as we want. Thus we can find as many terms in the
two series solutions as we want, even if we cannot determine the general term. While the
task of calculating several coefficients in a power series solution is not difficult, it can be
tedious. A symbolic manipulation package can be very helpful here; some are able to find a
specified number of terms in a power series solution in response to a single command. With a
suitable graphics package we can also produce plots such as those shown in the figures in this

section.

In each of Problems 1 through 11:
a. Seek power series solutions of the given differential equation
about the given point x¢; find the recurrence relation that the
coefficients must satisfy.
b. Find the first four nonzero terms in each of two solutions y;
and y, (unless the series terminates sooner).
c. By evaluating the Wronskian W[yj, y21(xo), show that y,
and y, form a fundamental set of solutions.
d. If possible, find the general term in each solution.

I. y"—y=0, x=0

2. y'"+3y'=0, x,=0

3. y'—xy'—y=0, x=0

4. y'—xy'—y=0, x=1

5. y"4+k?x%2y =0, xy=0, kaconstant
6. (1=x)y"+y=0, x =0

7. y” +xy’ + 2y =0, xp= 0

8 xy"+y +xy=0, x=1
9. 3—=x»)y"=3xy'—y=0, x=0

10, 2y"4+xy'+3y=0, x,=0

1L 2y +(x+ 1Dy +3y=0, x=2

In each of Problems 12 through 14:
a. Find the first five nonzero terms in the solution of the given
initial-value problem.
@ b. Plot the four-term and the five-term approximations to the
solution on the same axes.
¢. From the plot in part b, estimate the interval in which the
four-term approximation is reasonably accurate.

12. y"—xy'—y=0, y(0)=2, y'(0) =1; seeProblem 3

13. y"+xy'+2y=0, y(0) =4, y'(0) =-1; seeProblem7

14, (1—=x)y"+xy'—y=0, y(0)=-3, y(0)=2

15. a. By making the change of variable x — 1 = ¢ and assuming
that y has a Taylor series in powers of ¢, find two series solutions
of

Y+ =D+ -1Dy=0

in powers of x — 1.
b. Show that you obtain the same result by assuming that y

has a Taylor series in powers of x — 1 and also expressing the
coefficient x> — 1 in powers of x — 1.

16. Prove equation (10).

17. Show directly, using the ratio test, that the two series solutions
of Airy’s equation about x = 0 converge for all x; see equation (20)
of the text.

18. The Hermite Equation. The equation
Y —2xy'+Ay =0, —oo<x< 00,

where )\ is a constant, is known as the Hermite® equation. It is an
important equation in mathematical physics.
a. Find the first four nonzero terms in each of two solutions
about x = 0 and show that they form a fundamental set of
solutions.
b. Observe that if A is a nonnegative even integer, then one
or the other of the series solutions terminates and becomes a
polynomial. Find the polynomial solutions for A = 0, 2, 4, 6,
8, and 10. Note that each polynomial is determined only up to a
multiplicative constant.
¢. The Hermite polynomial H,(x) is defined as the polynomial
solution of the Hermite equation with A = 2n for which the

coefficient of x" is 2". Find Hy(x), Hi(x), ..., Hs(x).

19. Consider the initial-value problem y’ = 1/1 — 2, (0) = 0.
a. Show that y = sinx is the solution of this initial-value
problem.

b. Look for a solution of the initial-value problem in the form of
a power series about x = 0. Find the coefficients up to the term
in x? in this series.
In each of Problems 20 through 23, plot several partial sums in a
series solution of the given initial-value problem about x = 0,
thereby obtaining graphs analogous to those in Figures 5.2.1 through
5.2.4 (except that we do not know an explicit formula for the actual
solution).

G 20. y'+xy+2y=0, y(0) =0, y’(0) =1, see Problem 7
21. (4—x2y" +2y=0, y(0)=0, y(0)=1

B 22. y'+x%y=0, y(0) =1, y'(0)=0; seeProblem 5
23. (1—=x)y"+xy —2y=0, y(0)=0, y(0)=1

SCharles Hermite (1822-1901) was an influential French analyst and
algebraist. An inspiring teacher, he was professor at the Ecole Polytechnique
and the Sorbonne. He introduced the Hermite functions in 1864 and showed in
1873 that e is a transcendental number (that is, e is not a root of any polynomial
equation with rational coefficients). His name is also associated with Hermitian
matrices (see Section 7.3), some of whose properties he discovered.
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53 Series Solutions Near an Ordinary
Point, Part Il

In the preceding section we considered the problem of finding solutions of
P(x)y"+ Q(x)y' + R(x)y =0, 6

where P, Q, and R are polynomials, in the neighborhood of an ordinary point xo. Assuming
that equation (1) does have a solution y = ¢ (x) and that ¢ has a Taylor series

$(x) =D an(x — x0)" @

n=0

that converges for |x — xo| < p, where p > 0, we found that the a, can be determined by
directly substituting the series (2) for y in equation (1).

Let us now consider how we might justify the statement that if x, is an ordinary point
of equation (1), then there exist solutions of the form (2). We also consider the question of
the radius of convergence of such a series. In doing this, we are led to a generalization of the
definition of an ordinary point.

Suppose, then, that there is a solution of equation (1) of the form (2). By differentiating
equation (2) m times and setting x equal to xo, we obtain

mlay, = ¢™ (x0). 3)

Hence, to compute a, in the series (2), we must show that we can determine ¢ (xo) for
n=0,1,2, ... from the differential equation (1).

Suppose that y = ¢ (x) is a solution of equation (1) satisfying the initial conditions
y(x0) = Yo, ¥'(x0) = ;. Then ap = yo and a; = Y. If we are solely interested in finding
a solution of equation (1) without specifying any initial conditions, then ay and @; remain
arbitrary. To determine qﬁ(”)(xo) and the corresponding a, for n = 2,3, ..., we turn to
equation (1) with the goal of finding a formula for ¢”(x), ¢"'(x), ... . Since ¢ is a solution
of equation (1), we have

P(x)¢"(x) + Q(x)¢'(x) + R(x) ¢ (x) =0.
For the interval about x, for which P is nonzero, we can write this equation in the form
¢"(x) = —p(x)¢'(x) —q(x) ¢ (x), ©)
where p(x) = Q(x)/P(x) and g(x) = R(x)/P(x).Observe that, at x = xo, the right-hand
side of equation (4) is known, thus allowing us to compute ¢"(xo): Setting x equal to xo in
equation (4) gives
¢"(x0) = —p(x0)¢'(x0) — q(x0) ¢ (x0) = —p(x0)a1 — q(Xo)do.
Hence, using equation (3) with m = 2, we find that a, is given by
2lay = ¢"(x0) = —p(x0)a1 — q(xo)do- ®)
To determine a3, we differentiate equation (4) and then set x equal to x(, obtaining
3la; = ¢ (x0) = ~(p(x)$'(x) +q(X)$ (%)) |x=x,

= —2!p(x0)a; — (p'(x0) + q(x0))a; — q'(x0) ao. (6)

Substituting for a, from equation (5) gives a3 in terms of a; and ap.

205
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EXAMPLE 3

What is the radius of convergence of the Taylor series for (x2 — 2x + 2)~! about x = 0? about
x =17
Solution:
First notice that
x*—2x+2=0

has solutions x = 1 & i. The distance in the complex plane from x = O to either x = 1 + i or
x=1—1iis \/5; hence the radius of convergence of the Taylor series expansion i a,x™ about
x =0is \/E "=

The distance in the complex plane from x = 1 to O%ither x=1+iorx =1—iis1; hence the

radius of convergence of the Taylor series expansion » | b,(x — 1)" about x = 1s 1.
n=0

According to Theorem 5.3.1, the series solutions of the Airy equation in Examples 2 and
3 of the preceding section converge for all values of x and x — 1, respectively, since in each
problem P(x) = 1 and hence is never zero.

A series solution may converge for a wider range of x than indicated by Theorem 5.3.1,
so the theorem actually gives only a lower bound on the radius of convergence of the series
solution. This is illustrated by the Legendre polynomial solution of the Legendre equation
given in the next example.

EXAMPLE 4

Determine a lower bound for the radius of convergence of series solutions about x = 0 for the
Legendre equation

(1-x%y"—2xy' + ala +1)y =0,
where « is a constant.

Solution:
Note that P(x) = 1 —x2, Q(x) = —2x,and R(x) = a(a + 1) are polynomials, and that the zeros

o0
of P, namely, x = =1, are a distance 1 from x = 0. Hence a series solution of the form >_ a,x"

n=0
converges at least for |x| < 1, and possibly for larger values of x. Indeed, it can be shown that if
« is a positive integer, one of the series solutions terminates after a finite number of terms, that is,
one solution is a polynomial, and hence converges not just for |x| < 1 but for all x. For example, if
a = 1, the polynomial solution is y = x. See Problems 17 through 23 at the end of this section for
a further discussion of the Legendre equation.

EXAMPLE 5

Determine a lower bound for the radius of convergence of series solutions of the differential equation
(1+x2)y" +2xy +4x*y =0 (10)

about the point x = 0; about the point x = —%.

Solution:

Again P, O, and R are polynomials, and P has zeros at x = =i. The distance in the complex plane

. Lo VA - B
from O to & is 1, and from ) tokiisy/1+ 1= 3" Hence in the first case the series ) | a,x"
n=0

00 1 B
converges at least for [x| < 1, and in the second case the series Z by (x + -2—> converges at least

n=0
e

x—}—l
2

2

for

n=0
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An interesting observation that we can make about equation (10) follows from Theorems 3.2.1
and 5.3.1. Suppose that initial conditions y(0) = y, and y'(0) = y(’) are given. Since 1+ x2 = 0 for
all x, we know from Theorem 3.2.1 that there exists a unique solution of the initial-value problem
on —00 < x < 00. On the other hand, Theorem 5.3.1 only guarantees a series solution of the

o0
form E apx™ (with ag = yp, a1 = y(/)) for —1 < x < 1. The unique solution on the interval

—00 < x < oo may not have a power series about x = 0 that converges for all x.

EXAMPLE 6

and if so, what is the radius of convergence?

Solution:

n=0

Y+ (sinx)y + (1+x%)y =0,

Can we determine a series solution about x = 0 for the differential equation

For this differential equation, p(x) = sinx and g(x) = 1 4 x2. Recall from calculus that sin x has

a Taylor series expansion about x = 0 that converges for all x. Further, g also has a Taylor series

expansion about x = 0, namely, g(x) = 1 + x2, that converges for all x. Thus there is a series
o0

solution of the form y = Z ayx" with ay and a; arbitrary, and the series converges for all x.

Problems

In each of Problems | through 3, determine ¢”(xy), ¢"(xo), and
™ (x¢) for the given point xg if y = ¢ (x) is a solution of the given
initial-value problem.

Lo y'+xy'+y=0; »(0) =1, »'(0)=0

2. x%y'+(1+x)y +3(nx)y=0; y(1)=2, y(1)=0

30 Y%y + (sinx)y =0;  y(0) =ap, Y(0) =a
In each of Problems 4 through 6, determine a lower bound for the
radius of convergence of series solutions about each given point xg
for the given differential equation.

4. y'+4y +6xy=0; x=0, xo=4

5. (2=2x-3)y"+xy' +4y=0; xo=4, xo=-4 x=0

6. (1+x)y"+4xy'+y=0; x =0 xo=2

7. Determine a lower bound for the radius of convergence of series
solutions about the given x, for each of the differential equations in
Problems | through 11 of Section 5.2.

8. The Chebyshev Equation. The Chebyshev’ differential
equation is

(1=xy" —xy' +a’y =0,
where « is a constant.

a. Determine two solutions in powers of x for |x| < 1, and
show that they form a fundamental set of solutions.

7Pa.fnuty L. Chebyshev (1821-1894), the most influential nineteenth-century
Russian mathematician, was for 35 years professor at the University of St.
Petersburg, which produced a long line of distinguished mathematicians. His
study of Chebyshev polynomials began in about 1854 as part of an investigation
of the approximation of functions by polynomials. Chebyshev is also known
for his work in number theory and probability.

b. Show that if o is a nonnegative integer n, then there is
a polynomial solution of degree n. These polynomials, when
properly normalized, are called the Chebyshev polynomials.
They are very useful in problems that require a polynomial
approximation to a function defined on —1 < x < 1.

¢. Find a polynomial solution for each of the cases @« = n =0,
1,2,3.

For each of the differential equations in Problems 9 through 11, find
the first four nonzero terms in each of two power series solutions about
the origin. Show that they form a fundamental set of solutions. What
do you expect the radius of convergence to be for each solution?

9. y"+(sinx)y =0
10. y"+xy=0
11. (cosx)y”+xy ' —2y=0

12. Lety = x and y = x? be solutions of a differential equation
P(x)y" + Q(x)y" + R(x)y = 0. Can you say whether the point
x = 0 is an ordinary point or a singular point? Prove your answer.

First-Order Equations. The series methods discussed in this section

are directly applicable to the first-order linear differential equation

P(x)y' 4+ Q(x)y = 0 at a point xg, if the function p = Q/ P has

a Taylor series expansion about that point. Such a point is called an

ordinary point, and further, the radius of convergence of the series
o0

¥y = > an(x — xp)" is at least as large as the radius of convergence
n=0

of the series for Q/ P. In each of Problems 13 through 16, solve the
given differential equation by a series in powers of x and verify that
ay is arbitrary in each case. Problem 17 involves a nonhomogeneous
differential equation to which series methods can be easily extended.
Where possible, compare the series solution with the solution obtained
by using the methods of Chapter 2.
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13. y—y=0
14. y —xy=0
15. (1—-x)y'=y

16. y' —y=x2
The Legendre Equation. Problems 17 through 23 deal with the
Legendre® equation

(1=x»y"=2xy +a(a+1Dy=0.

As indicated in Example 4, the point x = 0 is an ordinary point of
this equation, and the distance from the origin to the nearest zero
of P(x) = 1 — x? is 1. Hence the radius of convergence of series

solutions about x = 0 is at least 1. Also notice that we need to
consider only o > —1 because if @« < —1, then the substitution
a = —(1 4+ 7), where v > 0, leads to the Legendre equation

(1 —-x)y" = 2xy' +v(y + 1y =0.
17. Show that two solutions of the Legendre equation for |x| < 1
are

a(a+1) n ala—2)(a+1D(a+3) o

n@ =1-== 41

> na(a=2m+D(a+D) - (a+2m—1) ,,
+> (=D T X,

m=3

(a—D(a+2) ,
(a=Dl@+2)

3!
+(a —D(a=3)(a+2)(ax+4) I

5!
+ Y (="

m=3

ya(x) = x —

(a=1 - (a—=2m+1D(a+2) (a+2m) 5,4
X X .
(2m + 1)!

18. Show that if o is zero or a positive even integer 2n, the series
solution y; reduces to a polynomial of degree 2n containing only even
powers of x. Find the polynomials corresponding to o = 0, 2, and 4.
Show that if o is a positive odd integer 2n + 1, the series solution y,
reduces to a polynomial of degree 2n + 1 containing only odd powers
of x. Find the polynomials corresponding to o = 1, 3, and 5.

19. The Legendre polynomial P,(x) is defined as the polynomial
solution of the Legendre equation with o = n that also satisfies the
condition P,(1) = 1.

a. Using the results of Problem 18, find the Legendre

polynomials Py(x), ..., Ps(x).
@ b. Plot the graphs of Py(x), ..., Ps(x) for—1 <x < 1.
@ c. Find the zeros of Py(x), ..., Ps(x).

é.:/.\.c.lnen—Marie Legendre (1752-1833) held various positions in the French

Académie des Sciences from 1783 onward. His primary work was in the fields
of elliptic functions and number theory. The Legendre functions, solutions of
Legendre’s equation, first appeared in 1784 in his study of the attraction of
spheroids.

20. The Legendre polynomials play an important role in
mathematical physics. For example, in solving Laplace’s equation
(the potential equation) in spherical coordinates, we encounter the
equation

d?F(p) dF(p)

+ cotp +nn+1)F(p) =0, 0<p<m,
dp? dp

where 7 is a positive integer. Show that the change of variable
x = cos i leads to the Legendre equation with v = n for
y = f(x) = F(arccos x).

21. Show that for n = 0, 1, 2, 3, the corresponding Legendre
polynomial is given by

Pa(x) = —— 42 1y,

2"n! dx"

This formula, known as Rodrigues’s formula,” is true for all positive
integers 7.

22. Show that the Legendre equation can also be written as
((1=xy) =—ala +Dy.
Then it follows that

(1= x)Pyx)) = —n(n + 1) Pa(x)

and

(L=x)Pp(x))" = —m(m + 1) Pa().

By multiplying the first equation by P, (x) and the second equation
by P,(x), integrating by parts, and then subtracting one equation from
the other, show that

1
/ Py(x) Pp(x)dx =0 ifn #m.

1

This property of the Legendre polynomials is known as the
orthogonality property. If m = n, it can be shown that the value of
the preceding integral is 2/(2n + 1).

23. Given a polynomial f of degree n, it is possible to express f as
a linear combination of Py, Py, Py, ... , Py:

n

F) = axP(x).

k=0

Using the result of Problem 22, show that

2%+1 !
ap = C; / f(x) Pe(x)dx.
—1

9Benjamin Olinde Rodrigues (1795-1851) published this result as part of his
doctoral thesis from the University of Paris in 1815. He then became a banker
and social reformer but retained an interest in mathematics. Unfortunately, his
later papers were not appreciated until the late twentieth century.

5.4 Euler Equations; Regular Singular Points

s4 Euler Equations; Regular Singular Points

In this section we will begin to consider how to solve equations of the form
P(x)y"+ Q(x)y' + R(x)y =0 )

in the neighborhood of a singular point xy. Recall that if the functions P, Q, and R are
polynomials having no factors common to all three of them, then the singular points of
equation (1) are the points for which P(x) = 0.
“uler Equations. A relatively simple differential equation that has a singular point is the
Euler equation'®

Lyl =x*y"+axy' + By =0, )
where o and 3 are real constants. Then P(x) = x?, Q(x) = ax, and R(x) = 3.If B # 0,
then P(x), Q(x), and R(x) have no common factors, so the only singular point of equation (2)

is x = 0; all other points are ordinary points. For convenience we first consider the interval
x > 0; later we extend our results to the interval x < 0.

Observe that (x")’ = rx"~! and (x")” = r(r — 1)x"2. Hence, if we assume that
equation (2) has a solution of the form
y=x", 3)
then we obtain
LIx"] = x2(x")" + ax(x") + Bx
= x%r(r — Dx" 2+ ax(rx™1) + Bx"
=x"(r(r=1) +ar+p). )
If » is a root of the quadratic equation
F(ry=r(r—=1)4ar+6=0, 5)

then L[x"] is zero, and y = x" is a solution of equation (2). The roots of equation (5) are

~(a-D++(a-1D2-4
a—1) 2(a ) 5, ©

and the quadratic polynomial F(r) defined in equation (5) can also be written as F(r) =
(r — r1)(r — rp). Mirroring the treatment of second-order linear differential equations with
constant coefficients, we consider separately the cases in which the roots are real and different,
real but equal, and complex conjugates. Indeed, the entire discussion of Euler equations is
similar to the treatment of second-order linear equations with constant coefficients in Chapter
3, with e’ replaced by x".

ry,rn=

Re If F(r) = 0 has real roots r; and r,, with r; = r,, then y;(x) = x"
and y,(x) = x" are solutions of equation (2). Since

W™, x2] = (r; — 1)z
is nonzero for r;  r, and x > 0, it follows that the general solution of equation (2) is
y=rcx" +cx”?, x> 0. @)

Note that if 7 is not a rational number, then x” is defined by x" = e’ "*,

EXAMPLE 1

Solve

2x%y"+3xy' =y =0, x>0. ®)

10y o s . . - .
This equation is sometimes called the Cauchy -Euler equation or the equidimensional equation. Euler studied it in
about 1740, but its solution was known to Johann Bernoulli before 1700.

2
&

11
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Y and

For x = 2 we have

x—>2

lim(x —2) p(x) = lim(x —2)

lim x2¢(x) = lim W =
x—0 x—0 2x(x - 2)

Since these limits are finite, x = 0 is a regular singular point.

= lim s
x—2 2(x — 2)2 x—2 2(x — 2) )

so the limit does not exist; hence x = 2 is an irregular singular point.

EXAMPLE 6

Solution:

and

COos x
x—7m/2 3! 5! ’

Determine the singular points of

2
(x — %) y" + (cosx)y’ + (sinx)y =0

and classify them as regular or irregular,

s v ™ . ¢ y
The only singular point is x = 7 To study it, we consider the functions

o _ T O(x)  cosx
(x 2>p(x)“(x 2>P(x)_x—7r/2

PR P G A W (CO N
2 qg(x) = x ) P(x)_smx.
W

Starting from the Taylor series for cos x about x = % e find that

__1+(x—7r/2)2_(x—7r/2)4+'“

which converges for all x. Similarly, sin x is analytic at x = % Therefore, we conclude that T isa

regular singular point for this equation.

In each of Problems 1 through 8, determine the general solution of the
given differential equation that is valid in any interval not including
the singular point.

1. x%y" +4xy +2y=0

2. (x+ D%y +3(x+1)y +0.75y =0
3. x%y" —3xy' +4y=0

4. x2y// _ xy/ 4 y = 0

5. x%y"+ 6xy' —y =0

6. 2x2y" —4xy +6y =0

7. x%y" —5xy' +9y =0

8. (x—=2%y"+5(x—-2)y'+8y=0

In each of Problems 9 through 11, find the solution of the given initial-
value problem. Plot the graph of the solution and describe how the
solution behaves as x — 0.

O 9 2x%y"+xy —-3y=0, y(1)=1, y(1)=4

G 10. 4x%y"4+8xy'+17y=0, y(1) =2, y(1) =-3

O 11. x2y" —3xy +4y=0, y(-1)=2, y(-1)=3

In each of Problems 12 through 23, find all singular points of the given
equation and determine whether each one is regular or irregular.

12 xy"4+(1=x)y +xy=0

13, x2(1—x)%y"4+2xy +4y =0
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v D; _ " _ ’r_ — o0
14, x*(1—x)y" +(x =2y —3xy=0 form | a,x”. Show that (except for constant multiples) there is only
2 2 i _ n=0
15 *(L—x%)y"+ (;) ¥ fely =4 one nonzero solution of this form in Problem 30 and that there are
N _ / _ no nonzero solutions of this form in Problem 3 |. Thus in neither case
16. (1—x7%" +a(l ;)y +(1+x)y=0 ) can the general solution be found in this manner. This is typical of
17. x%y"+xy' +(x*—v?)y =0 (Bessel equation) equations with singular points.
18. (x+2X(x =1y +3(x -1y —2(x+2)y=0 30. 2xy" 43y +xy=0
19. x3-x)y"+(x+1Dy -2y=0 31, 2x%y" 4 3xy — (1 +x)y=0

20. xy"+e'y +(3cosx)y=0 32. Singularities at Infinity. The definitions of an ordinary point
21. y'+(njx])y +3xy=0 and a regular singular point given in the preceding sections apply
22. (sinx)y’+xy +4y =0 only i'f the.p(.)int Xo is finite. In more gdvanced vfzork i{l d'if.ferenti;.ﬂ
. , equations, it is often necessary to consider the point at infinity. This

3. (xsinx)y”+3y +xy=0

is done by making the change of variable ¢ = 1/x and studying the
4. Find all values of o for which all solutions of

s resulting equation at £ = 0. Show that, for the differential equation
2y +axy + 37 = 0 approach zero as x — 0. P(x)y" + Q(x)y + R(x)y =0,

25, Find all values of 3 for which all solutions of
y" 4+ By = 0 approach zero as x — 0.

the point at infinity is an ordinary point if

X

26. Find ~y so that the solution of the initial-value problem = 11/5) <2P(£1/€) B Q(512/£)> and E_ﬁg(li%

x2y" =2y =0, y(1) =1, /(1) =~ is bounded as x — 0.

27. Consider the Euler equation x2y” 4+ axy’ + By = 0. Find  have Taylor series expansions about £ = 0. Show also that the point at

conditions on « and 3 so that: infinity is a regular singular point if at least one of the above functions
a. All solutions approach zero as x — 0. does not have a Taylor series expansion, but both

b. All solutions are bounded as x — 0. 3 2P(1/6)  Q(1/€) R(1/€)
¢. All solutions approach zero as x — oo. P(1/6) ( ¢ T T ) and £2p(1/€)

d. All solutions are bounded as x — oo.
e. All solutions are bounded both as x — 0 and as x — oo. do have such expansions.

28. Using the method of reduction of order, show that if 7; is a  In each of Problems 33 through 37, use the results of Problem 32 to
repeated root of determine whether the point at infinity is an ordinary point, a regular

rr—1)+ar+f8 =0, singular point, or an irregular singular point of the given differential

equation.
then x"! and x! In x are solutions of x2y” +axy' +By = 0forx > 0. 33, /4y =0
29. Verify that W[x* cos(u Inx), x* sin(p Inx)] = px?*=1. 3. x2y" 4+xy' —4y=0
In each of Problems 30 and 31, show that the point x = Oisa 35 (1—x2)y”" —2xy' +a(a+1)y=0 (Legendre equation)
regular singular point. In each problem try to find solutions of the 36. y'—2xy'+Ay=0 (Hermite equation)

37. y"—xy=0 (Airy equation)

55 Series Solutions Near a Regular
Singular Point, Part |

We now consider the question of solving the general second-order linear differential equation
P(x)y"+ 0(x)y'+ R(x)y =0 )

in the neighborhood of a regular singular point x = x,. For convenience we assume that
xo = 0. If xy # 0, the equation can be transformed into one for which the regular singular
point is at the origin by letting x — x, equal 7.

The assumption that x = 0 is a regular singular point of equation (1) means that
xQ(x)/P(x) = xp(x) and x>R(x) / P(x) = x2q(x) have finite limits as x — 0 and are
analytic at x = 0. Thus they have convergent power series expansions of the form

xp(x) =Y pax",  x2q(x) =) gux", @)

n=0 n=0
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Y

For each root ; and r, of the indicial equation, we use the recurrence relation (17) to determine a

set of coefficients ay, a, ... . Forr = r{ = 1, equation (17) becomes
a, = __i__l__. n>1
" @Qn+Dn” T
Thus
ap
a) = ———,
! 3.1
a ap
dy = —

5.2 (3-5(1-2)°

and
as ap

BE T3S TE A2

In general, we have

_ (_1):1
an_(3.5.7...(2n+1))n!a0, n >4 s

If we multiply both the numerator and denominator of the right-hand side of equation (18) by
2:4.6-----2n =2"n!, we can rewrite a, as

(_1)”2”
) K > 1.
= nyprte =

Hence, if we omit the constant multiplier a,, one solution of equation (8) is

[ee]
( _ 1) non n
yl(x) =X 1+Zlmx , x>0 (19)
n=
To determine the radius of convergence of the series in equation (19), we use the ratio test:
. 20x|
= m ———=
n—so0 (21 +2)(2n +3)
for all x. Thus the series converges for all x.

n+1
. App1X
lim | ————

n—oo

a”x”

1 .
Corresponding to the second root r = r, = 3 we proceed similarly. From equation (17) we

have
iy 55— ap—1 . ap—1 , n> 1.
2n (n - %) n(2n —1)
Hence
ag
ay = _1—79
L R S
2.3 (1-2)(1-3)
ay ap
a3 = ——— =

3.5 (1-2:3)(1-3-5)°
and, in general,

B (__1)11 ;
Tall-3.5-..2n—-1)”

an n >4 (20

Just as in the case of the first root r{, we multiply the numerator and denominator by
2:4-6----- 2n = 2"n!. Then we have

(__1)11211
an = —(2—’;)—'—a0, n > 1.

Again omitting the constant multiplier a,, we obtain the second solution

o (_1)n2n
(2n)!

n=1

ya(x) =x'2| 1+ |, x>o0. 1)

g5
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Y Asbefore, we can show that the series in equation (21) converges for all x. Since y; and y, behave like

x and x!/2, respectively, near x = 0, they are linearly independent and so they form a fundamental
set of solutions. Hence the general solution of equation (8) is

Yy =cyi(x) +eya(x), x> 0.

The preceding example illustrates that if x = 0 is a regular singular point, then sometimes
there are two solutions of the form (7) in the neighborhood of this point. Similarly, if there is
a regular singular point at x = x,, then there may be two solutions of the form

y=(x =%)"Y an(x — xo)" (22)

n=0

that are valid near x = x,. However, just as an Euler equation may not have two solutions of
the form y = x”, so a more general equation with a regular singular point may not have two
solutions of the form (7) or (22). In particular, we show in the next section that if the roots
ry and r, of the indicial equation are equal or differ by an integer, then the second solution
normally has a more complicated structure. In all cases, though, it is possible to find at least
one solution of the form (7) or (22); if r; and r, differ by an integer, this solution corresponds
to the larger value of r. If there is only one such solution, then the second solution involves a
logarithmic term, just as for the Euler equation when the roots of the characteristic equation are
equal. The method of reduction of order or some other procedure can be invoked to determine
the second solution in such cases. This is discussed in Sections 5.6 and 5.7.

If the roots of the indicial equation are complex, then they cannot be equal or differ by an
integer, so there are always two solutions of the form (7) or (22). Of course, these solutions
are complex-valued functions of x. However, as for the Euler equation, it is possible to obtain
real-valued solutions by taking the real and imaginary parts of the complex solutions.

Finally, we mention a practical point. If P, O, and R are polynomials, it is often much
better to work directly with equation (1) than with equation (3). This avoids the necessity
of expressing x Q(x)/P(x) and sz(x)/P(x) as power series. For example, it is more
convenient to consider the equation

x(14+x)y"+2y +xy=0

than to write it in the form

x2 " e 2x / SE x2 =0
¥ T+% Yty 3 y =0,
, . 2 x> .
which would entail expanding e and T in power series.
X

In each of Problems | through 6: 1. 2xy"+y +xy=0
a. Show that the given differential equation has a regular
singular point at x = 0.

b. Determine the indicial equation, the recurrence relation, and

[ ]

9

the roots of the indicial equation. 3oy +y=0
¢. Find the series solution (x > 0) corresponding to the larger 4. xy"+y —y=0
a. Tt okt s v i by s g . 0 o+ 0B =D
d. t t t
e roots are unequal and do not differ by an integer, fin 6. 1y +(1—x)y —y=0

the series solution corresponding to the smaller root also.

1
x2y" +xy' + <x2 - —)y =0
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7. The Legendre equation of order « is
(1—x3y"=2xy +a(a+1)y=0.

The solution of this equation near the ordinary point x = 0 was
discussed in Problems |7 and 18 of Section 5.3. In Example 4 of
Section 5.4, it was shown that x = +1 are regular singular points.
a. Determine the indicial equation and its roots for the point
x =1
b. Find a series solution in powers of x — 1 forx — 1 > 0.
Hint: Write 1 +x = 2 4+ (x — )andx = 1 + (x — 1).
Alternatively, make the change of variable x — 1 = ¢ and
determine a series solution in powers of 7.

8. The Chebyshev equation is
(1=x%)y" —xy' +a’y =0,

where « is a constant; see Problem 8 of Section 5.3.
a. Show thatx = 1 and x = —1 are regular singular points, and
find the exponents at each of these singularities.
b. Find two solutions about x = 1.

9. The Laguerre!? differential equation is
'+ (1 =x)y +Ay=0.

a. Show that x = 0 is a regular singular point.

b. Determine the indicial equation, its roots, and the recurrence
relation.

¢. Find one solution (for x > 0). Show that if A =m, a
positive integer, this solution reduces to a polynomial. When
properly normalized, this polynomial is known as the Laguerre
polynomial, L,,(x).

10.  The Bessel equation of order zero is

xzy"~|—xy'+x2y=0.

13Edmond Nicolas Laguerre (1834-1886), a French geometer and analyst,
studied the polynomials named for him about 1879. He is also known for an
algorithm for calculating roots of polynomial equations.

a. Show that x = 0 is a regular singular point.
b. Show that the roots of the indicial equation are r; = r, = 0.
¢. Show that one solution for x > 0 is

( l)n 2n
Jo(x) =1+ Z ETEDER
n=1
The function J;, is known as the Bessel function of the first kind
of order zero.
d. Show that the series for Jy(x) converges for all x.

11. Referring to Problem 10, use the method of reduction of order
to show that the second solution of the Bessel equation of order zero
contains a logarithmic term.

Hint: If y,(x) = Jo(x)v(x), then

d
»(x) = Jo<x)/—x;.
x (Jo(x))

Find the first term in the series expansion of St
® (Jo (x) )
12. The Bessel equation of order one is

2y//+xy/+(x2_ 1)y=0

a. Show that x = 0 is a regular singular point.

b. Show that the roots of the indicial equation are r; = 1 and
ry = —1.

¢. Show that one solution for x > 0 is

( 1)11 2n
Ji(x) = 22(71—}—1)'11'22”'

The function J; is known as the Bessel function of the first kind
of order one.

d. Show that the series for J;(x) converges for all x.

¢. Show that it is impossible to determine a second solution of
the form

56 Series Solutions Near a Regular
Singular Point, Part I

Now let us consider the general problem of determining a solution of the equation

Lly) = x%" +x(xp(x))y + (@) )y = 0, ©
where
xp(x) = Z pnx", XZLI(X) = anx"’ 2)
n=0 =

and both series converge in an interval |x| < p for some p > 0. The point x = 0 is a regular
singular point, and the corresponding Euler equation is

2//

+ poxy’ +qoy = 0. 3)

5.6 Series Solutions Near a Regular Singular Point, Part |

We seek a solution of equation (1) for x > 0 and assume that it has the form
o [o¢]
y=(na) =2 Y axt =) g, @
n=0 n=0

where ap # 0, and we have written y = ¢ (7, x) to emphasize that ¢ depends on r as well as
x. It follows that

¥ = i (r+n)ax ™1,y = i (r+n)(r+n—1)ax" ™2 )
n=0 n=0
Then, substituting from equations (2), (4), and (5) in equation (1) gives
LIp)(r, x) = agr(r — Dx" +ai(r + Dra’™ - ay(r +n)(r +1— Da™" 4 ...
+(po+ prix+ -+ pax"+--) (aorx’ +a(r+Dx™t o a,(r ) )
+(go+qx+- -+ gux"+--) (aox" Fax™ )
=0.
Multiplying the infinite series together and then collecting terms, we obtain
L[$1(r, x) = apF(r)x" + [a F(r + 1) + ao(pir + q1) |x™!
+ [@F(r 4+ 2) + ao( par + q2) +ar(pi(r+1) +q) x>
+ o [ F(r +n) 4+ ao( par + qn) + a1 (paci(r + 1) + g,y
+otan (pr+n—1) +q1)]x "+ ... =0,
or, in a more compact form,
Ll¢] = agF(r)x"

n—1

+ S Fotma+ S s +0mtan | =0, @©
=1 k=0
where
F(r) =r(r — 1) + por + qo. @)

For equation (6) to be satisfied for all x > 0, the coefficient of each power of x must be zero.

Since ay # 0, the term involving x” yields the equation F(r) = 0. This equation is
called the indicial equation; note that it is exactly the equation we would obtain in looking for
solutions y = x" of the Euler equation (3). Let us denote the roots of the indicial equation by
ryand rp with r; > r, if the roots are real. If the roots are complex, the designation of the roots
is immaterial. Only for these values of » can we expect to find solutions of equation (1) of the
form (4). The roots r; and r, are called the exponents at the singularity; they determine the
qualitative nature of the solution in the neighborhood of the singular point.

Setting the coefficient of x"*" in equation (6) equal to zero gives the recurrence relation

n—1

F(r +n)an + Zak((r +k)pn—k +Qn—k) = 0, n= 1. (€]
k=0

Equation (8) shows that, in general, @, depends on the value of r and all the

preceding coefficients ag, ay, ... ,a,_;. It also shows that we can successively compute
a1, a, ..., 4y, ... in terms of ap and the coefficients in the series for xp(x) and x2g(x),
provided that F(r + 1), F(r +2), ..., F(r+n), ... are not zero. The only values of r for

which F(r) = 0arer = r; and r = ry; since r; > ry, it follows that 7, + 7 is not equal to 7,
orr, forn > 1. Consequently, F(r; +n) 5 0forn > 1. Hence we can always determine one
solution of equation (1) in the form (4), namely,

o0
N =x" {1+ a(r)x" |, x> 0. ©

n=1
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Setting » = ry in equation (15), we find that L[¢](ry, x) = 0; hence, as we already know,
y1(x) given by equation (9) is one solution of equation (1). But more important, it also follows
from equation (15), just as for the Euler equation, that

L [%ﬂ(n,x) = ao% (x"(’ = rl)z) ‘,:,l

= ay ((r—rl)zx’ 1nx+2(r—r1)xr) =0. (16)

r=ry
Hence, a second solution of equation (1) is

0o (r, x ) o

—(b('(ir ) = x| ap+ Zla,,(r)x”

n=

r=ry r=ry

»(x) =

[oe] o0
=(x"Inx) | ao+ Zan(rl)x” + x Za,’l(rl)x”

n=1 n=1

0
= yi(x) Inx + x" Zaf,(rl)x”, x>0, (17

n=1

da
where a;,(r;) denotes —~ evaluated at r = ry.

Although equation (17) provides an explicit expression for a second solution y,(x), it may
turn out that it is difficult to determine a,(r) as a function of » from the recurrence relation
(8) and then to differentiate the resulting expression with respect to #. An alternative is simply
to assume that y has the form of equation (17). That is, assume that

[o¢]
y = yi(x) Inx + x" Zb,,x", x>0, (18)

n=1

where y;(x) has already been found. The coefficients b, are calculated, as usual, by
substituting into the differential equation, collecting terms, and setting the coefficient of each
power of x equal to zero. A third possibility is to use the method of reduction of order to find
y-(x) once y;(x) is known.

ey e Differing by an Integer N.  For this case the derivation of the second
solutlon is con51derab1y more comphcated and will not be given here. The form of this solution
is stated in equation (24) in the following theorem. The coefficients c,(r,) in equation (24)
are given by

cn(ry) = %[(r —ry)au(r)] gy mEE1,2, 000, (19)
r=ry
where a,(r) is determined from the recurrence relation (8) with ay = 1. Further, the coefficient
a in equation (24) is
a = lim(r —ry)ay(r). (20)
| e )
If ay(r,) is finite, then a = 0 and there is no logarithmic term in y,. A full derivation of
formulas (19) and (20) may be found in Coddington (Chapter 4).

In practice, the best way to determine whether a is zero in the second solution is simply to
try to compute the a, corresponding to the root r, and to see whether it is possible to determine
an(r,). If so, there is no further problem. If not, we must use the form (24) with a = 0.

When r; — r, = N, there are again three ways to find a second solution. First, we can
calculate a and ¢, (r,) directly by substituting the expression (24) for y in equation (1). Second,
we can calculate ¢, (7,) and a of equation (24) using the formulas (19) and (20). If this is the
planned procedure, then in calculating the solution corresponding to » = ry, be sure to obtain
the general formula for a, () rather than just a,(7;). The third alternative is to use the method
of reduction of order.

The following theorem summarizes the results that we have obtained in this section.
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Theorem 5.6.1 '

Consider the differential equation (1)
2y 4+ x(xp(a)y + (x%q(x))y =0,

where x = 0is a regular singular point. Then xp(x) and x?>q(x) are analytic at x = 0 with convergent

power series expansions
[eo} [ee]
p(x) =Y pax"s x%q(x) = gux"
n=0 n=0
for |x| < p, where p > 0 is the minimum of the radii of convergence of the power series for xp(x)
and x?q(x). Let r; and r, be the roots of the indicial equation
F(r) =r(r—=1) 4+ por +qo =0,

with r; > r, if y and r, are real. Then in either the interval —p < x < 0 or the interval 0 < x < p,
there exists a solution of the form

MwIW1+Zme, 1)

where the a,,(r1) are given by the recurrence relation (8) with ap = 1 and r = 7.

CASE 1 If ry — r, is not zero or a positive integer, then in either the interval —p < x < 0 or the
interval 0 < x < p, there exists a second solution of the form

o0
ya(®) =12l [ 14> an(r)x" | 22)
n=1
The a,(r,) are also determined by the recurrence relation (8) with ay = 1 and » = r,. The
power series in equations (21) and (22) converge at least for |x| < p.
CASE 2 If r{ = ry, then the second solution is

y2(x) = y1(0) In x| + [x] ) " by(r)x", (23)
n=1

CASE 3 Ifr; —ry = N, a positive integer, then

»(x) =an () alx|+ 2 [ 14 ea(ra" |. (24)

n=1

The coefficients a,(ry), b,(r1), and ¢,(r,) and the constant a can be determined by
substituting the form of the series solutions for y in equation (1). The constant ¢ may turn
out to be zero, in which case there is no logarithmic term in the solution (24). Each of the
series in equations (23) and (24) converges at least for |x| < p and defines a function that is
analytic in some neighborhood of x = 0.

In all three cases, the two solutions y;(x) and y,(x) form a fundamental set of solutions
of the given differential equation.
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Problems
In each of Problems | through 8: 6. x2(1—x)y"—(14+x)y +2xy=0
a. Find all the regular singular points of the given differential 7. (x=2%(x+2)y"+2xy +3(x—2)y=0
equation. 8. (4—x%)y"+2xy'+3y=0

b. Determine the indicial equation and the exponents at the
singularity for each regular singular point.

In each of Problems 9 through 12:

a. Show that x = 0 is a regular singular point of the given

¢. Find the first three nonzero terms in each of two solutions

L xy" +2xy +6e*y =0 differential equation.
2. 22y —x(2+x)yY +2+x2)y=0 b. Find the exponents at the singular point x = 0.
3. y”+4xy +6y=0 .
4. 2x(x + 2) y'4+y —xy=0 (not multiples of each other) about x = 0.
" / .
S. 2//+ (x+smx)y+y——0 9, Xy +y—y_0

10.

xy” +2xy’' +6e*y =0 (seeProblem !)




" 1. xy"+y=0 15.  Consider the differential equation where v is a constant. It is easy to show that x = 0 is a regular singular point of equation (1).
l 12. x2y" 4 (sinx)y — (cosx)y =0 3y +axy + By =0, We have
13. a. Show that . (x) 1
where o and 3 are real constants and o # 0. po = lim x =limx— =1,
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1
(Inx)y" + iy’ +y=0

a. Show that x = 0 is an irregular singular point.

[o2]
) ) b. By attempting to determine a solution of the form 3 anxlth, ., R(x) 5 x2—v .
has a regular singular point at x = 1. =0 qo = lim x P lim x — =—v
b. Determine the roots of the indicial equation at x = 1. show that the indicial equation for r is linear and that, x>0 X) 50 *

¢. Determine the first three nonzero terms in the series

o

Z an(x — )" corresponding to the larger root.

n=0

You can assume x — 1 > 0.

d. What would you expect the radius of convergence of the
series to be?

consequently, there is only one formal solution of the assumed
form.

c¢. Show thatif 8/a = —1,0,1,2, ..., then the formal series
solution terminates and therefore is an actual solution. For other
values of 3/ c, show that the formal series solution has a zero
radius of convergence and so does not represent an actual solution
in any interval.

Thus the indicial equation is

Firy=r(r—=10D)+por+q=r(r—1)+r—v:=r*—v*=0,

with the roots ¥ = +r. We will consider the three cases v = 0, v = l, and v = 1 for the

interval x > 0. Bessel functions will reappear in Sections 11.4 and 11.5.

14. In several problems in mathematical physics, it is necessary to
study the differential equation 16. Consider the differential equation In this case v = 0, so differential equation (1) reduces to
_ " _ o _ 2 / X
x(1=x)y" +(y=U+a+px)y —afy=0, (25 Y"+%Y’+§7y=0a 26) Lyl=x%"+xy +x"y =0, @)
where «, 3, and ~y are constants. This equation is known as the and the roots of the indicial equation are equal: 7; = r, = 0. Substituting
hypergeometric equation. where o # 0 and 3 # O are real numbers, and s and ¢ are positive ~
a. =0i i i i h t i 2
| Sh'ow.tt'lat X le a regular singular point and that the roots ~ integers that for the fnoment are arbitrary ' ' y = d(r,x) = apx" + Z QT 3)
of the indicial equation are 0 and 1 — . a. Show thatif s > 1 or¢ > 2, then the point x = 0 is an !
n=

b. Show that x = 1 is a regular singular point and that the roots
of the indicial equation are 0 and v — o — .
c. Assuming that 1 — « is not a positive integer, show that, in

irregular singular point.
b. Try to find a solution of equation (26) of the form

in equation (2), we obtain

) 00 00
the neighborhood of x = 0, one solution of equation (25) is y= Zanxrw, x> 0. 27 Lid1(r,x) = Z a((r+n)(r+n—-=1+ G +n)x" + Z a2
af ala+1)p(L+1) 5 n=0 n=0 n=0

yi(x) =1+ 2k SN

X
-1 y(y +1D2!
What would you expect the radius of convergence of this series
to be?
d. Assuming that 1 — « is not an integer or zero, show that a
second solution for 0 < x < 1is

Show that if s = 2 and ¢ = 2, then there is only one possible
value of r for which there is a formal solution of equation (26) of
the form (27).

¢. Show that if s = 1 and ¢ = 3, then there are no solutions of
equation (26) of the form (27).

d. Show that the maximum values of s and ¢ for which the

=ay(r(r =1 +r)x" +a((r+Dr+((r+ 1)x"*!

+ Y (a((r+m)(r+n =1+ +m) +a,0)x"=0. @
n=2

_ _ As we have already noted, the roots of the indici i = — p =
yo(x) = x177 (1 + (=7 +DB-7+D X+ indicial equation is quadratic in  [and hence we can hope to find i =0and7r =0 }’,The recurrerfge relc;t' e.lndlclal sqpaiion Fix) rr—1+r=0are
2-mni two solutions of the form (27)] are s = 1 and ¢ = 2. These are L A L 55
(a—v+D@a—-7+2)B-7+D(B-7+2) e ) precisely tl}e conditions that distin.guish a “»Yeak singul.arity,” or an(r) = — a_o(r) o) 0y S
2-7)03=-7)2! a regular singular point, from an irregular singular point, as we " (r+n)(r+n—-D++n  (r+n? nz= e )

e. Show that the point at infinity is a regular singular point and
that the roots of the indicial equation are o and 3. See Problem
32 of Section 5.4.

defined them in Section 5.4.

As a note of caution, we point out that although it is sometimes
possible to obtain a formal series solution of the form (27) at an
irregular singular point, the series may not have a positive radius of
convergence. See Problem 15 for an example.

To determine y;(x), we set r equal to 0. Then, from equation (4), it follows that for the
coefficient of x" ! to be zero we must choose a; = 0. Hence, from equation (5), a3 = as =
a; = -+ = 0. Further,

5.7 Bessel’s Equation

N

W

ap—(0)
a,(0) = ——2—, n=2,4,68, ...,
n
or, letting n = 2m, we obtain
a2m—2( 0)
aZm(O) =T75 2 m=1,2,3, kGl
(2m)
. . Thus
57 Bessel’s Equation
a(0) = — 20, ay(0) = . ag(0) = — e
o o o . ) 22’ 24227 T T 08(3.2)%
In this section we illustrate the discussion in Section 5.6 by considering three special cases of -y !
Bessel’s'* equation, fd, m genera,
2.1 / 2 2 (—=D™a
x5y +xy +(x"=v)y =0, (1) —a_ 0 —
aom(0) mnz M 1,23, ou:» (6)
......................................................................................................................................................................... Hence
14Rriedrich Wilhelm Bessel (1784-1846) left school at the age of 14 to embark on a career in the import-export
business but soon became interested in astronomy and mathematics. He was appointed director of the observatory 80 (-1 x2m
at Konigsberg in 1810 and held this position until his death. His study of planetary perturbations led him in 1824 to yi(x) =ap| 1+ Z =], & > 0. (7
make the first systematic analysis of the solutions, known as Bessel functions, of equation (1). He is also famous for =1 27m(m!)*

making, in 1838, the first accurate determination of the distance from the earth to a star.
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choose ¢, = 1/22. Then we obtain

AP D S
“=2w3\2 = 29 2

_ (=D
24

(H7+H1)

It is possible to show that the solution of the recurrence relation (31) is

(_l)m_H(Hm + Hm—l)
Com = , m:1,2,‘..
22mml(m — 1)!

with the understanding that Hy = 0. Thus

1 o (=D (Hy + Hyp1)
ya(x) = —Ji(x) Inx—l—; 1""; 22 (m — 1)!

2, x>0. (32

The calculation of y,(x) using the alternative procedure (see equations (19) and (20)
of Section 5.6) in which we determine the ¢,(r,) is slightly easier. In particular, the latter
procedure yields the general formula for ¢, without the necessity of solving a recurrence
relation of the form (31) (see Problem 10). In this regard, you may also wish to compare
the calculations of the second solution of Bessel’s equation of order zero in the text and in
Problem 9.

The second solution of equation (23), the Bessel function of the second kind of order one,
Y;,is usually taken to be a certain linear combination of J; and y,. Following Copson (Chapter
12), Y; is defined as

2
N(x) = —(=22(%) + (7 =2 /i(x)), (33)
where «y is defined in equation (12). The general solution of equation (23) for x > 0is
y = c1Ji(x) + e Yi(x).

Notice that although J; is analytic at x = 0, the second solution ¥; becomes unbounded in the
same manner as 1/x as x — 0. The graphs of J; and ¥, are shown in Figure 5.7.5.

Yy
1__
y :Jl(x)
0.5 -

The Bessel functions of order one:
= J1(x) (blue) and y = ¥;(x) (red).

<
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Problems

In each of Problems | through 3, show that the given differential
equation has a regular singular point at x = 0, and determine two
solutions for x > 0.

1. x%y"4+2xy' +xy=0

2. x2y"+3xy +(1+x)y=0

3. 22y +xy +2xy=0

Find two solutions (not multiples of each other) of the Bessel

ol

3
equation of order 3

9
x%y" + xy’ +<x —Z>y:0, x> 0.

5. Show that the Bessel equation of order one-half
2.0 1
x*y +xy + x—Z y=0, x>0

can be reduced to the equation

Vitv =0
by the change of dependent variable y = x ~1/2y(x). From this,
conclude that y;(x) =x~"2cosx and y,(x) =x /2sinx are
solutions of the Bessel equation of order one-half.

6. Show directly that the series for Jy(x), equation (7), converges
absolutely for all x.

7. Show directly that the series for J(x), equation (27), converges
absolutely for all x and that Jj(x) = —J;(x).

8. Consider the Bessel equation of order v

2y +xy + (2 =vHy=0, x>0,

where v is real and positive.
a. Show that x = 0 is a regular singular point and that the roots
of the indicial equation are v and —v.
b. Corresponding to the larger root v, show that one solution is

2 4
(x) = x¥ 1_____1___ * +—1__ X
N 1+ \2 20+ )2+ \2

0 (——l)m % 2m
" ;m!(1+l/)-'-(m+1/) (§>

c. If2v is not an integer, show that a second solution is

D P N | ? 1 «\*
DAxI =X ni-n\z) Taa-ne-niz

+i (—l)m i 2m
w3m!(1—1/)~~(m—1/) 2

Note that y;(x) — 0 asx — 0, and that y,(x) is unbounded as
x — 0.
d. Verify by direct methods that the power series in the
expressions for y;(x) and y,(x) converge absolutely for all x.
Also verify that y, is a solution, provided only that v is not an
integer.

5.7 Bessel’s Equation 239

9. Inthis section we showed that one solution of Bessel’s equation
of order zero

Liyl=x*y"+xy +x*y =0

is Jy, where Jy(x) is given by equation (7) with ay = 1. According to
Theorem 5.6.1, a second solution has the form (x > 0)

yo(x) = Jo(x) Inx + Z Bax™.

n=1
a. Show that o -
L)) = > n(n—Dbyx"+ Y nbyx"
n=2 n=1
o0
+ Z byx"t? + 2x Ji(x). (34)

b. Substituting the series representation for Jy(x) in equation
(34), show that

o0
bix + 22b2x2 + Z (nzbn +by2)x"

n=>3

_ (— 1)”2nx
— Z Prian? 35)
c. Note that only even powers of x appear on the right-hand
side of equation (35). Show that by = b3 = bs = .-+ = 0,
1
b, = ———, and that
27 2012

(=D"*(2n)

2 R il A
(2n)"byy + bopp = —2 2n(n1)2 s

n=2;3,%4 :5: s

Deduce that

1 1 1 11
by =~ 1 dbg=o—(1+2+7).
! 2242< +2> A g 224262< +2+3)

The general solution of the recurrence relation is
( 1)n+1

by, = —Tn(-—'—)z— Substituting for b, in the expression for

y2(x), we obtain the solution given in equation (10).
10. Find a second solution of Bessel’s equation of order one by
computing the ¢,(r;) and a of equation (24) of Section 5.6 according
to the formulas (19) and (20) of that section. Some guidelines along
the way of this calculation are the following. First, use equation (24)
of this section to show that a;(—1) and a’l(—l) are 0. Then show that

c1(—1) = 0 and, from the recurrence relation, that ¢,(—1) = 0 for

n=3,5, ... .Finally, use equation (25) to show that
() i
a(r) = ———————,
2 (r+1)(r+3)
ap
ag(r) = s
(r+D)(r+3)r+3)(r+5)
and that
—_1m

Ay (1) = (=11 "o ,m > 3.

(r+1---(r+2m—-1(r+3)---

Then show that

(r+2m+1)

(=1)"™ ' (Hyp + Hyp1)

P2mmi(m — 1) mzl.

com(—=1) =

’
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11. By a suitable change of variables it is sometimes possible to
transform another differential equation into a Bessel equation. For
example, show that a solution of

1
xfly//+(a2ﬂ2x2ﬂ+1_y2ﬁ2>y:0’ x>0

is given by y = x!/2 f (ax?), where f(£) is a solution of the Bessel
equation of order v.

12.  Using the result of Problem |1, show that the general solution
of the Airy equation

y' —xy=0, x>0

2
isy = x! <c1f1 <—1x ) +c2f2<—1x /2 )), where f1(£) and
f>(&) are afundamental set of solutions of the Bessel equation of order
one-third.

13. Tt can be shown that Jy has infinitely many zeros for x > 0.
In particular, the first three zeros are approximately 2.405, 5.520, and

Coddington, E. A., An Introduction to Ordinary Differential
Equations (Englewood Cliffs, NJ: Prentice-Hall, 1961; New
York: Dover, 1989).

Coddington, E. A., and Carlson, R., Linear Ordinary Differential
Equations (Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1997).

Copson, E. T., An Introduction to the Theory of Functions of a
Complex Variable (Oxford: Oxford University Press, 1935).

K. Knopp, Theory and Applications of Infinite Series (NewY ork:
Hafner, 1951).

Proofs of Theorems 5.3.1 and 5.6.1 can be found in intermediate
or advanced books; for example, see Chapters 3 and 4 of
Coddington, Chapters 5 and 6 of Coddington and Carlson, or
Chapters 3 and 4 of

Rainville, E. D., Intermediate Differential Equations (2nd ed.)
(New York: Macmillan, 1964).

Also see these texts for a discussion of the point at infinity, which
was mentioned in Problem 32 of Section 5.4. The behavior of
solutions near an irregular singular point is an even more advanced
topic; a brief discussion can be found in Chapter 5 of

Coddington, E. A., and Levinson, N., Theory of Ordinary
Differential Equations (New York: McGraw-Hill, 1955;
Malabar, FL: Krieger, 1984).

8.653 (see Figure 5.7.1). Let A ;, j = 1,2, 3, ... , denote the zeros of
Jo; it follows that

1, x=0,
(%) = {0 Sy

Verify that y = Jo(A jx) satisfies the differential equation
" 1 / 2
y+;y+Xﬂ=Q x> 0.

Hence show that
1
/ xJo(/\ix)Jo(/\jx)dx =0 if /\,‘ '-;é /\j.
0

This important property of Jy(A;x), which is known as the
orthogonality property, is useful in solving boundary value
problems.

Hint: Write the differential equation for Jy(A;x). Multiply it by
xJo(X jx) and subtract that result from x Jo(\;x) times the differential
equation for Jy(A jx). Then integrate from O to 1.

Fuller discussions of the Bessel equation, the Legendre equation,

and many of the other named equations can be found in

advanced books on differential equations, methods of applied

mathematics, and special functions. One text dealing with special

functions such as the Legendre polynomials and the Bessel

functions is

Hochstadt, H., Special Functions of Mathematical Physics (New
York: Holt, 1961).

An excellent compilation of formulas, graphs, and tables of Bessel

functions, Legendre functions, and other special functions of

mathematical physics may be found in

Abramowitz, M., and Stegun, I. A. (eds.), Handbook of
Mathematical Functions with Formulas, Graphs, and
Mathematical Tables New York: Dover, 1965); originally
published by the National Bureau of Standards, Washington,
DC, 1964.

The digital successor to Abramowitz and Stegun is

Digital Library of Mathematical Functions. Released August 29,
2011. National Institute of Standards and Technology from
http://dlmf.nist.gov/.

The Laplace Transform

Many practical engineering problems involve mechanical or electrical systems acted on
by discontinuous or impulsive forcing terms. For such problems the methods described in
Chapter 3 are often rather awkward to use. Another method that is especially well suited
to these problems, although useful much more generally, is based on the Laplace transform.
In this chapter we describe how this important method works, emphasizing problems typical
of those that arise in engineering applications.

61 Definition of the Laplace Transform

I I Since the Laplace transform involves an integral from zero to infinity,
a knowledge of improper integrals of this type is necessary to appreciate the subsequent
development of the properties of the transform. We provide a brief review of such improper
integrals here. If you are already familiar with improper integrals, you may wish to skip over
this review. On the other hand, if improper integrals are new to you, then you should probably
consult a calculus book, where you will find many more details and examples.

An improper integral over an unbounded interval is defined as a limit of integrals over
finite intervals; thus

%) A
f(t)dt = lim f(t)dt, ey
a A—oo Ja
where A is a positive real number. If the definite integral from a to A exists for each A > a,
and if the limit of these values as A — oo exists, then the improper integral is said to converge
to that limiting value. Otherwise the integral is said to diverge, or to fail to exist. The following
examples illustrate both possibilities.

EXAMPLE 1

o0
. . dt ..
Does the improper integral / . diverge or converge?
1

Solution:

From equation (1) we have

© dt . Adr
— = lim — = lim InA.
1 t A—o0 J1 3 A—00

Since lim In A = oo, the improper integral diverges.

A—o0
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