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8. A spring-mass system has a spring constant of 3 N/m. A mass of
2 kg is attached to the spring, and the motion takes place in a viscous
fluid that offers a resistance numerically equal to the magnitude of the
instantaneous velocity. If the system is driven by an external force
of (3cos(3t) — 2sin(3¢)) N, determine the steady-state response.
Express your answer in the form R cos(w? — 8).

9. In this problem we ask you to supply some of the details in the
analysis of a forced damped oscillator.

a. Derive equations (10), (11), and (12) for the steady-state
solution of equation (8).
b. Derive the expression in equation (13) for Rk/ Fj.
¢. Show that wfmx and R, are given by equations (14) and
(15), respectively.
d. Verify that Rk/Fy, w/wg, and I' = ~2/(mk) are all
dimensionless quantities.
10. Find the velocity of the steady-state response given by
equation (10). Then show that the velocity is maximum whenw = wj.

11. Find the solution of the initial value problem
W' +u=F(), uw0) =0, u'(0)=0,

where
Fot, 0<t=<m,
F(t) =< FoQ2mw —1t), m <t <2m,
0, 21 < t.

Hint: Treat each time interval separately, and match the solutions in
the different intervals by requiring # and «’ to be continuous functions
of ¢.

@ 12. A series circuit has a capacitor of 0.25 x 107 F, a resistor
of 5x 10° ©, and an inductor of 1 H. The initial charge on the capacitor
is zero. If a 12 V battery is connected to the circuit and the circuit is
closed at r = 0, determine the charge on the capacitor at t = 0.001 s,
att = 0.01 s, and at any time ¢. Also determine the limiting charge as
t— o0.

D 13. Consider the forced but undamped system described by the
initial value problem

W +u=73cos(wt), u(0)=0, u'(0)=0.

a. Find the solution u(¢) for w # 1.

@ b. Plot the solution u(#) versus ¢ forw = 0.7, w = 0.8, and
w = 0.9. Describe how the response u(¢) changes as w varies in
this interval. What happens as w takes on values closer and closer
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to 1?7 Note that the natural frequency of the unforced system is
wop = 1.
14. Consider the vibrating system described by the initial value
problem
' +u=23cos(wt), u(0) =1, u'(0)=1.

a. Find the solution for w # 1.

@ b. Plot the solution u(¢) versus ¢ for w = 0.7, w = 0.8, and
w = 0.9. Compare the results with those of Problem 13; that is,
describe the effect of the nonzero initial conditions.

@ 15. For the initial value problem in Problem 13, plot u’ versus
uforw = 0.7, w = 0.8, and w = 0.9. (Recall that such a plot is
called a phase plot.) Use a ¢ interval that is long enough so that the
phase plot appears as a closed curve. Mark your curve with arrows to
show the direction in which it is traversed as ¢ increases.

Problems 16 through 18 deal with the initial value problem

1
W 4 §u/_*_4u = F(1), u(0) = 2, u’(()) =0.

In each of these problems:

@ a. Plot the given forcing function F(t) versus ¢, and also plot
the solution () versus ¢ on the same set of axes. Use a ¢ interval
that is long enough so the initial transients are substantially
eliminated. Observe the relation between the amplitude and
phase of the forcing term and the amplitude and phase of the
response. Note that wg = /k/m = 2.

© b. Draw the phase plot of the solution; that is, plot u’ versus
u.

16. F(t) =3cos(t/4)

17. F(t) =3cos(2t)

18. F(t) = 3cos(6t)

@ 19. A spring-mass system with a hardening spring (Problem 24
of Section 3.7) is acted on by a periodic external force. In the absence

of damping, suppose that the displacement of the mass satisfies the
initial value problem

1
W +u+ §u3 =coswt, u(0)=0, #'(0)=0.

a. Let w = 1 and plot a computer-generated solution of the
given problem. Does the system exhibit a beat?

b. Plot the solution for several values of w between 1/2 and 2.
Describe how the solution changes as w increases.
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Higher-Order Linear
Differential Equations

The theoretical structure and methods of solution developed in the preceding chapter for
second-order linear equations extend directly to linear equations of third and higher order.
In this chapter we briefly review this generalization, taking particular note of those instances
where new phenomena may appear, because of the greater variety of situations that can occur
for equations of higher order.

41 General Theory of nth Order
Linear Differential Equations

An n'™ order linear differential equation is an equation of the form

dny dn—l y dy
Py(1) F7i PI(I)W Feisen ofs Pn—l(t)a + Pi(0)y = G(1). ¢9)
We assume that the functions Py, ..., P,, and G are continuous real-valued functions on

some interval I: o < ¢ < f(3, and that P, is nowhere zero in this interval. Then, dividing
equation (1) by Py(?), we obtain
an dn—ly

=% =y dy _
Liyl=—5 + () + ot () o7 TPy =8(D). )

The linear differential operator L of order n defined by equation (2) is similar to the second-
order operator introduced in Chapter 3. The mathematical theory associated with equation (2)
is completely analogous to that for the second-order linear equation; for this reason we simply
state the results for the n'™ order problem. The proofs of most of the results are also similar to
those for the second-order equation and are usually left as exercises.

Since equation (2) involves the n™ derivative of y with respect to ¢, it will, so to speak,
require n integrations to solve equation (2). Each of these integrations introduces an arbitrary
constant. Hence we expect that to obtain a unique solution it is necessary to specify 7 initial
conditions

Y(t0) = Yo, ¥ (t) = Yo+, ¥V (tg) =y 7Y, 3)

where 7y may be any point in the interval I and y,, y;, ..., y(()”*]) are any prescribed real

constants. The following theorem, which is similar to Theorem 3.2.1, guarantees that the initial
value problem (2), (3) has a solution and that it is unique.

Theorem 4.1.1

If the functions py, ps, ... , pa,and g are continuous on the open interval 7, then there exists exactly
one solution y = ¢ (¢) of the differential equation (2) that also satisfies the initial conditions (3),
where 7, is any point in /. This solution exists throughout the interval I.

ot




172 CHAPTER 4 Higher-Order Linear Differential Equations l 4.1 General Theory of n™™ Order Linear Differential Equations 173

” ¥ For this expression to be zero throughout an interval, it is certainly sufficient to require that the Wronskian is zero is untenable. Therefore, the Wronskian is never zero on 7, as was to be
d
’ ki + 2k +3ks =0, ky+4ky =0, —ks+ks=0. proved. , ,
E - 2 % * 3T Note that for a set of functions fi, ..., f, that are not solutions of the homogeneous
These three equations, with four unknowns, have many solutions. For instance, if k4 = 1, then linear differential equation (4), the converse part of Theorem 4.1.3 is not necessarily true.
ks = 1,k = —4, and k; = 5. If we use these values for the coefficients in equation (11), then these They may be linearly independent on I even though the Wronskian is zero at some points,
functions satisfy the linear relation or even every point, but with different sets of constants ki, ... , k, at different points. See
5£(1) —4f(0) + f3(t) + fa(H) =0 Problem 18 for an example.
for each value of ¢. Thus the given functions are linearly dependent on every interval, rhe Nonhomogeneous Equation.  Now consider the nonhomogeneous equation (2)
LIyl =y" 4+ pi()y" ™D + -+ pa(n)y = 8(0).
The concept of linear independence provides an alternative characterization of If Y, and Y5 are any two solutions of equation (2), then it follows immediately from the linearity
fundamental sets of solutions of the homogeneous equation (4). Suppose that the functions of the operator L that
Vi, ... , Y are solutions of equation (4) on an interval /, and consider the equation
LY, — Y5](t) = L[Y11(1) — L[Y2](2) = g(1) — g(#) =0.
kiyi(t) + -+ kyyu() = 0. (12) , ,
. N ) Hence the difference of any two solutions of the nonhomogeneous equation (2) is a solution of
By differentiating equation (12) repeatedly, we obtain the additional n — 1 equations the homogeneous differential equation (4). Since any solution of the homogeneous equation
Ky y|(2) + -+ + kYo (1) = 0, can be expressed as a linear combination of a fundamental set of solutions yi, ..., yn, it

follows that any solution of the nonhomogeneous differential equation (2) can be written as

: 13)

. ' y = cyi(t) + caya(t) + -+ cnyu(t) + Y (1), (16)
k]yin U(t) et k,,y,(l”_”(t) —0. )1 2)2 nYn

where Y is some particular solution of the nonhomogeneous differential equation (2).

The system consisting of equations (12) and (13) is a system of n linear algebraic equations for The Tinear combinafign (16) 4t oalled fiis general solution of the nonkomogensous

the n unknowns ki, .. . , k,. The determinant of coefficients for this system is the Wronskian ,
Wiyis ... »yal(2) of y1, ..., y,. This leads to the following theorem. equation (2). . X . . ;
Thus the primary problem is to determine a fundamental set of solutions { Vis 555 3 yn}
of the homogeneous n™ order linear differential equation (4). If the coefficients are constants,
Theorem 4.1.3 ; this is a fairly simple problem; it is discussed in the next section. If the coefficients are not

constants, it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as the order
of the equation increases.

To find a particular solution Y () in equation (16), the methods of undetermined
LIyl =y + pi()y" D o 4+ puai ()Y + pa(1)y =0 coefficients and variation of parameters are again available. They are discussed and illustrated
in Sections 4.3 and 4.4, respectively.

If yi(1), ..., ya(t) form a fundamental set of solutions of the homogeneous n'™ order linear
differential equation (4)

on an interval I, then 1), ..., ya(2) are linearly independent on I. Conversely, if y,(7), ..., . . . . . .
yu(t) are linearly inde;laglc;ent solu);icgn)s of equatioz “) 01;1 I, then they form a fuﬁdarnyelrgtezl set of 'I.‘he method.of 1'educt109 of order (S.CCHOII 3.4) also apphe§ to' n'™ order linear differential
- equations. If y; is one solution of equation (4), then the substitution y = v(#)y(?) leads to
a linear differential equation of order n — 1 for v’ (see Problem 19 for the case when n = 3).
However, if n > 3, the reduced equation is itself at least of second order, and only rarely will
To prove this theorem, first suppose that y;(2), ..., y,(¢) form a fundamental set it be significantly simpler than the original equation. Thus, in practice, reduction of order is
of solutions of the homogeneous differential equation (4) on I. Then the Wronskian seldom useful for equations of higher than second order.
Wiy, - .., y)(t) # O for every ¢ in 1. Hence the system (12), (13) has only the solution
ki = -+ =k, = Oforevery ¢ in I. Thus y;(#), ... , y»(#) cannot be linearly dependent on /
and must therefore be linearly independent there.
To demonstrate the converse, let y;(t), ... , y,() be linearly independent on /. To show

that they form a fundamental set of solutions, we need to show that their Wronskian is never
zero in I. Suppose that this is not true; then there is at least one point #, where the Wronskian is

zero. At this point the system (12), (13) has a nonzero solution; let us denote it by &7, . .. , k3. In each of Problems | through 4, determine intervals in which 7. filt) =2t =3, o) =12+ 1, f3(1) =2> -1,
Now form the linear combination solutions are sure to exist. () =2 +1+1
1. y® 4 4y" 43y =1 . . .
G(t) = Ky (1) + - + kX ya(2) (14) In each of Problems § through 11, verify that the given functions are
11 o 2. t(t=1)y® +e'y" +42y =0 solutions of the differential equation, and determine their Wronskian.
* Then y = ¢ () satisfies the initial value problem 3 (x=1Dy® +(x+1)y"+ (tanx)y =0 8. y® 4y"=0; 1, 1, cost, sint
- 2 _ (6) 2.,/ _
Lyl =0, y(t) =0, Y'(t) =0, ..., y" V(t) =0. (15) 4 P -4yO +2%y"+9y =0 9. Y42y —y —2y=0; ¢, e, e

In each of Problems 5 through 7, determine whether the given  10. xy” —y”"=0; 1, x, x°
functions are linearly dependent or linearly independent. If they are
linearly dependent, find a linear relation among them.

The function ¢ satisfies the differential equation because it is a linear combination of solutions;

it satisfies the initial conditions because these are just the equations in the system (12), 11 3y +x2y" —2xy' +2y=0; x, x2, 1/x

(13) evaluated at 7. However, the function y(#) = O for all ¢ in I is also a solution of 4 . " 12. a. Show that W[5, sin® 7, cos(2t)] = 0 for all ¢ by directly
this initial value problem, and by Theorem 4.1.1, the solution to the initial value problem - h) =2 =3, f(1) =17+ 1, f3(1) =27 —1t evaluating the Wrosnkian.
(15) is unique. Thus ¢ (¢) = O for all 7 in I. Consequently, yi(?), ..., y,(1) are linearly 6. fi(t) =2t =3, fo(1) =22+ 1, fa(t) =32 +1 b. Establish the same result without direct evaluation of the

dependent on I, which is a contradiction. Hence the assumption that there is a point where Wronskian.
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13.  Verify that the differential operator defined by
LIyl = y™ + pi()y" ™V + -+ pa(n)y
is a linear differential operator. That is, show that
Llciyr + cay2] = e1L[y1] + o LIy2l,

where y; and y, are n-times-differentiable functions and ¢; and ¢, are
arbitrary constants. Hence, show that if y;, y,, ... , y, are solutions
of L[y] = 0, then the linear combination c;y; + - -+ + ¢, y, is also a
solution of L[y] = 0.

14. Let the linear differential operator L be defined by
LIyl = aoy"™ +a1y" ™V + -+ any,

where ag, ai, ... ,a, are real constants.
a. Find L[f"].
b. Find L[e"].
c. Determine four solutions of the equation y(*) —5y” 44y = 0.
Do you think the four solutions form a fundamental set of
solutions? Why?

15. In this problem we show how to generalize Theorem 3.2.7

(Abel’s theorem) to higher-order equations. We first outline the
procedure for the third-order equation

"'+ i)Y+ pa(1)y + p3(1)y = 0.

Let yy, 5, and y; be solutions of this equation on an interval .

a. If W = Wlyy, y», y31, show that

Sy Y2 )3

W=y ¥y Yl

y{// yél/ y:l;/l
Hint: The derivative of a 3-by-3 determinant is the sum of three
3-by-3 determinants obtained by differentiating the first, second,
and third rows, respectively.
b. Substitute for y;”, y7’, and y;” from the differential equation;
multiply the first row by p;, multiply the second row by p,, and
add these to the last row to obtain

W =—pi()W.

¢. Show that

Wly1, y2, y31(¢) = cexp <—/p1(t)dt>-

It follows that W is either always zero or nowhere zero on I.
d. Generalize this argument to the n'" order equation

Y 4 P )y 44 pa(y =0

with solutions yq, ..., y,. That is, establish Abel’s formula

Wiyt, -, yal(2) = cexp (—/Pl(l)dl) 17

for this case.

In each of Problems 16 and 17, use Abel’s formula (17) to find the
Wronskian of a fundamental set of solutions of the given differential
equation.
1(). y///+2y//_yl__3y=0
17 6" 4+2y" =y +ty=0
18. Let f(¢) = 2|t and g(1) = 7°.
a. Show that the functions f(¢) and g(¢) are linearly dependent
on0< <1,

b. Show that f(r) and g(r) are linearly dependent on
-1<r<0.

c. Show that f(7) and g(#) are linearly independent on
-1<r< L
d. Show that W[ f, g](#) is zero forall rin —1 < t < 1.

e. Bxplain why the results in ¢ and d do not contradict
Theorem 4.1.3.

19. Show that if y; is a solution of

"

V' + o)y + pa()y + p3(1)y =0,

then the substitution y = y;(#)v () leads to the following second-
order equation for v’;

yiv" + Byy + piy)v” + By +2p1y; + payi)v’ = 0.
In each of Problems 20 and 21, use the method of reduction of order
(Problem 19) to solve the given differential equation.
20 2=0)y"+Qt=3)y"—ty+y=0, t<2; (i) =eé

21, 22t +3)y" =3t(t+2)y" +6(1+1)y —6y =0, t > 0;
yi(t) =12, y(t) =13

42 Homogeneous Differential Equations
with Constant Coefficients

Consider the n'" order linear homogeneous differential equation

Lyl = apy™ +a;y" ™V + ...+ a, 1y +a,y =0, (1

where ay, ay, ..

., ay are real constants and g, # 0. From our knowledge of second-order

linear equations with constant coefficients, it is natural to anticipate that y = ¢’ is a solution
of equation (1) for suitable values of r. Indeed,

Lle"] = e"(apr" +arr" ™ + -+ +ay_ir +a,) = " Z(r) @

4.2 Homogeneous Differential Equations with Constant Coefficients

for all r, where
Z(r) = apr* + air" 4+ -t ay_ir +a,. 3)

For those values of 7 for which Z(r) = 0, it follows that L[¢"'] = Oand y = ¢""isa solutior} of
equation (1). The polynomial Z(r) is called the characteristic polynomial, .and the equation
Z(r) = 0is the characteristic equation of the differential equation (1). Since ay # 0, we
know that Z(r) is a polynomial of degree n and therefore has n zeros,' say, ri,ra, - .. T,
some of which may be equal and some of which may be complex-valued. Hence we can write
the characteristic polynomial in the form

Z(r) = ao(r —r))(r —ra) -+ (r =1n). Q)

If the roots of the characteristic equation are real and no two
, e of equation (1). If these

Real and Unequal
are equal, then we have n distinct solutions ent e, ..

functions are linearly independent, then the general solution of the homogeneous n™ order
linear differential equation (1) is
y=cie" +cre? + -+ cpe™. (5)

One way to establish the linear independence of e"’,e™, ... , e is to evaluate their

Wronskian determinant; another way is outlined in Problem 30.

EXAMPLE 1

Find the general solution of
Y +y" =7y =y +6y=0. ©6)
Also find the solution that satisfies the initial conditions
y(0) =1, »(0)=0, »'(0)=-2, y"(0)=-1 @)
Plot its graph and determine the behavior of the solution as # — oo.

Solution:

Assuming that y = e”*, we must determine r by solving the polynomial equation

rr 4 =T —r+6=0. (8)
The roots of this equation are r; = 1,7, = —1,r3 = 2, and r4, = —3. Therefore, the general solution
of differential equation (6) is
y =cie +cre”" +cze? + e 9
The initial conditions (7) require that c1, .. . , c4 satisfy the four equations

cite+ ca+ = 1,
c; — ¢y +2c3 — 3¢y
ci+cy+4cs+ 94 = =2,
c1 — ¢y +8c3 —27cy = —1.

Il
L=

10

LAn important question in mathematics for more than 200 years was whether every polynomial equation has %lt le'ast
one root. The affirmative answer to this question, the fundamental theorem of algebra, was given by Carl Friedrich
Gauss (1777-1855) in his doctoral dissertation in 1799, although his proof does not meet modern standards of rigor.
Several other proofs have been discovered since, including three by Gauss himself. Today, students often meet the
fundamental theorem of algebra in a first course on complex variables, where it can be established as a consequence
of some of the basic properties of complex analytic functions.

1

-~
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In conclusion, we note that the problem of finding all the roots of a polynomial equation
may not be entirely straightforward, even with computer assistance. In particular, it may be
difficult to determine whether two roots are equal or merely very close together. Recall that
the form of the general solution is different in these two cases.

If the constants ay, ay, . .

., d, in equation (1) are complex numbers, the solution of

equation (1) s still of the form (4). In this case, however, the roots of the characteristic equation
are, in general, complex numbers, and it is no longer true that the complex conjugate of a root
is also a root. The corresponding solutions are complex-valued.

In each of Problems | through 4, express the given complex number
in polar form R(cos @ +isinf) = Re'.

1. 1+i

2. —144/3
3. -3

4. \f3-i

In each of Problems 5 through 7, follow the procedure in Example 4
to determine the indicated roots of the given complex number.

5, 1
6. (1—i)l/?
7. (2(cos(7r/3)-l—is,in(7r/3)))l/2

In each of Problems ¢ through 19, find the general solution of the given
differential equation.

B. y'—=y'=y$y=0
9. y"=3y"+3y —y=0
10. y¥ —4y" +4y" =0
11. y© +y=0
12. YO _3y® 13y —y=0
13. y® —y"=0
14. y® —3y@® +3y" —3y" +2y' =0
15. y® +8y® +16y =0
16. y® +2y"+y=0
17. y" +5y"+6y' +2y=0
© 18. y® —7y" +6y" +30y — 36y =0
© 19. 129y 4+31y"+75y"+37y'+5y =0

In each of Problems 20 through 25, find the solution of the given initial
value problem, and plot its graph. How does the solution behave as
t — o0?

O 2. y'+y =0 y0) =0, y(0)=1, y"(0)=2

O 21. Y9 4+y=0; y0) =0, y(0)=0,
y"(0) = -1, y"(0) =0

O 22. y» —4y" +4y' =
Y1) =0, y"(1) =0

O 23. 2y —y"—9y"+4y' +4y=0; y(0) =-2,
¥'(0) =0, y"(0) =-2, y"(0) =0

0 24. 4y"+y'+5y=0; y(0) =2, y(0) =1, y"(0) =-1
G 25. 6y"+5y"+y' =0; y(0) =-2, y(0) =2, y"(0)=0

(1) =-1, y(1) =2,

26. @ a. Verify that y(t) = 3e™" + %cost — sint is the solution to
7 >
¥ =y =0,y(0) = 7,5'(0) = =4, y"(0) = 7,y"(0) = =2,

7
€ b. Find the solutionto y¥ —y =0, y(0) = 7 y'(0) = —4,

5 15

" m
s 0) = ——=,
y'(0) = z,y (0) 3

Note: These are the initial value problems considered in Example 2.
27. Show that the general solution of y* —y = 0 can be written as
y =cjcost + ¢y sint + c3cosht 4 c4 sinhz.

Determine the solution satisfying the initial conditions y(0) = 0,

y'(0) = 0, y"(0) = 1, y"(0) = 1. Why is it convenient to use the
solutions cosh ¢ and sinh ¢ rather than e’ and e™*?
28. Consider the equation y*¥ —y = 0.
a. Use Abel’s formula (Problem 15d of Section 4.1) to find
the Wronskian of a fundamental set of solutions of the given

equation.

b. Determine the Wronskian of the solutions e, e™*, cos ¢, and
sint.

¢. Determine the Wronskian of the solutions cosh ¢, sinh ¢, cos z,
and sint.

29. Consider the spring-mass system, shown in Figure 4.2.4,
consisting of two unit masses suspended from springs with spring
constants 3 and 2, respectively. Assume that there is no damping in
the system.
a. Show that the displacements u; and u, of the masses from
their respective equilibrium positions satisfy the equations

w +5uy =2up, uy+2up =2u. (22)

b. Solve the first of equations (22) for u, and substitute into the
second equation, thereby obtaining the following fourth-order
equation for u;:

ul® 7 + 61y = 0. (23)
Find the general solution of equation (23).
c. Suppose that the initial conditions are

u(0) =1, uj(0) =0, uy(0) =2, uy(0) =0. (24)

Use the first of equations (22) and the initial conditions (24) to
obtain values for u{(0) and u"(0). Then show that the solution
of equation (23) that satisfies the four initial conditions on u;
is uy(#) = cost. Show that the corresponding solution u; is
u,(t) = 2cost.

d. Now suppose that the initial conditions are
u(0) = =2, uj(0) =0, uy(0)=1, uy(0)=0. (25)

Proceed as in part ¢ to show that the corres(ponding solutions are

u(t) = —2cos<\/gt) and u,(t) = cos \/gt)

e. Observe that the solutions obtained in parts ¢ and d describe
two distinct modes of vibration. In the first, the frequency of the
motion is 1, and the two masses move in phase, both moving
up or down together; the second mass moves twice as far as
the first. The second motion has frequency \/E and the masses
move out of phase with each other, one moving down while the
other is moving up, and vice versa. In this mode the first mass
moves twice as far as the second. For other initial conditions, not
proportional to either of equations (24) or (25), the motion of the
masses is a combination of these two modes.

A two-spring, two-mass system.

30. 1In this problem we outline one way to show that if r;, ... , 7,
are all real and different, then €'\’ ... , /" are linearly independent
on —oo < t < oo. To do this, we consider the linear relation

cie' e =0, —co<t< 00 (26)

and show that all the constants are zero.
a. Multiply equation (26) by ¢ "!" and differentiate with respect
to ¢, thereby obtaining

&ty r])e(rzorl)t doodcnlr — rl)e(rn—n)r = ().

4.3 The Method of Undetermined Coefficients 1

[r]
b

b. Multiply the result of part a by e 27" and differentiate
with respect to ¢ to obtain

(1 — 13) (r3 — rp) 372"

+ oo den(rn = 1) (1 — 1)) ™D =,

c. Continue the procedure from parts 2 and b, eventually
obtaining

cn(rn—1y-1) - (rn — rl)e(fn—',,_l)! =0.

Hence ¢, = 0, and therefore,
rt
cre 4+ +opgent = 0.

d. Repeat the preceding argument to show that ¢,_; = 0. In
a similar way it follows that ¢,_, = -+ = ¢; = 0. Thus the
functions e"!’, ... , e’ are linearly independent.

31. In this problem we indicate one way to show that if » = ry is
a root of multiplicity s of the characteristic polynomial Z(r), then
e, e, ..., *=1¢"" are solutions of equation (1). This problem
extends to n'" order equations the method for second-order equations
given in Problem 17 of Section 3.4. We start from equation (2) in the
text

Lle" =e"Z(r) 27

and differentiate repeatedly with respect to r, setting » = r; after each
differentiation.
a. Recall that if 7 is a root of multiplicity s, then
Z(r) = (r —r1)°q(r), where g(r) is a polynomial of degree
n—sandq(r;) # 0. Show that Z(ry), Z'(r1), ..., Z67V(r)
are all zero, but Z()(r;) # 0.
b. By differentiating equation (27) repeatedly with respect to r,

show that
0 0
b—r-L[e”] =L I:Ee”] = L[te'"],
s—1
6rs—1 L[ert] == L[tS*—lerl‘]'
c. Show that &,z ..., 1" are solutions of
equation (27).

a3  The Method of Undetermined Coefficients

A particular solution Y of the nonhomogeneous n™ order linear differential equation with

constant coefficients

Lyl = apy™ +a;y" ™V 4+t a,1y +any = g(1) 0

can be obtained by the method of undetermined coefficients, provided the nonhomogeneous
term g(¢) is of an appropriate form. Although the method of undetermined coefficients is not
as general as the method of variation of parameters described in the next section, it is usually
much easier to use when it is applicable.
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You should keep in mind that the amount of algebra required to calculate the coefficients
may be quite substantial for higher-order equations, especially if the nonhomogeneous term
is even moderately complicated. A computer algebra system can be extremely helpful in
executing these algebraic calculations.

The method of undetermined coefficients can be used whenever it is possible to guess the
correct form for Y (¢). However, this is usually impossible for differential equations not having
constant coefficients, or for nonhomogeneous terms other than the type described previously.
For more complicated problems we can use the method of variation of parameters, which is

discussed in the next section.

In each of Problems | through 6, determine the general solution of the
given differential equation.

l. y,,,_y/,_y/+y:26_t+3

2. y® —y=13¢+cost

3. y/// + y// + y/ + y — e—t + 4‘t
4. ¥y —4y" =124 ¢

5. y® 4£2y" 4y =3+cos2s
6. y(6) + y/// —t

In each of Problems 7 through 9, find the solution of the given initial-
value problem. Then plot a graph of the solution.

O 7. y+4y =1 y0) =y(0) =0, y'(0)=1

O 8 Y942y +y=3t+4; y(0)=y(0) =0,

y'(0) = y"(0) =1

O 9. y¥ 42y"4+y"+8y —12y=12sint —e™";

y(0) =3, ¥'(0) =0, y"(0) =1, y"(0) =2

In each of Problems 10 through 13, determine a suitable form for

Y (¢) if the method of undetermined coefficients is to be used. Do not
evaluate the constants.

1". yu/ _ 2y// + y/ s t3 + Zet
11. y" —y' =te™" +2cost
12 y® —y" —y" 4y =2 + 4 +tsint
13, y™® 29" 42y" =3¢’ +2te™ + e~ ' sint
14. Consider the nonhomogeneous n" order linear differential
equation
apy™ +ary"V + - 4 any = g(1), (10)
where ag, . .. ,a, are constants. Verify that if g(#) is of the form
e (bot™ + -+ + bm),

then the substitution y = e®*'u(t) reduces equation (10) to the form

kou'™ + kyu™ ™D 4o kg = bot" + -+ + by, (11)
where kg, . .., k, are constants. Determine k and &, in terms of the
a's and o. Thus the problem of determining a particular solution of
the original equation is reduced to the simpler problem of determining
a particular solution of an equation with constant coefficients and a
polynomial for the nonhomogeneous term.
Method of Annihilators. In Problems 15 through 17, we consider

another way of arriving at the proper form of Y (#) for use in the
method of undetermined coefficients. The procedure is based on the

observation that exponential, polynomial, or sinusoidal terms (or sums
and products of such terms) can be viewed as solutions of certain linear
homogeneous differential equations with constant coefficients. It is

convenient to use the symbol D for e Then, for example, e is a
solution of (D + 1)y = 0; the differential operator D + 1 is said to
annihilate, or to be an annihilator of, e™*. In the same way, D? + 4
is an annihilator of sin2¢ or cos2¢, (D — 3)2 = D?> — 6D +9isan
annihilator of > or re*, and so forth.

15. Show that linear differential operators with constant coefficients
obey the commutative law. That is, show that

(D—a)(D=b)f=(D—=b)(D—a)f

for any twice-differentiable function f and any constants a and b. The
result extends at once to any finite number of factors.

16. Consider the problem of finding the form of a particular solution
Y (1) of
(D—-2)D+1)Y =3e¥ —te”, (12)
where the left-hand side of the equation is written in a form
corresponding to the factorization of the characteristic polynomial.
a. Show that D —2 and (D + 1)2, respectively, are annihilators
of the terms on the right-hand side of equation (12), and that the
combined operator (D — 2)(D + 1)2 annihilates both terms on
the right-hand side of equation (12) simultaneously.
b. Apply the operator (D — 2)(D + 1)? to equation (12) and
use the result of Problem 15 to obtain
(D-2%D+1)Y =0. (13)

Thus Y is a solution of the homogeneous equation (13). By
solving equation (13), show that

Y(t) = c1e¥ + cpte® + cst?e + cyt’e® +cse™
+ cgte™ + cpt’e™, 14
where ¢y, ... , c; are constants, as yet undetermined.

c. Observe that e, re*, t*¢*, and e™" are solutions of the
homogeneous equation corresponding to equation (12); hence
these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose ¢y, ¢z, c3, and cs to be zero in
equation (14), so that

Y(t) = cyt’e® +cgte™ + cit’e”. (15)
This is the form of the particular solution Y of equation (12).

The values of the coefficients c4, cg, and ¢; can be found by
substituting from equation (15) in the differential equation (12).

Summary of the Method of Annihilators. Suppose that

L(D)y = g(1), (16)
where L( D) is a linear differential operator with constant coefficients,
and g(t) is a sum or product of exponential, polynomial, or sinusoidal
terms. To find the form of a particular solution of equation (16), you
can proceed as follows:

a. Find a differential operator H(D) with constant coeffi-
cients that annihilates g(z)—that is, an operator such that
H(D)g(t) =0.

b. Apply H(D) to equation (16), obtaining

H(D)L(D)y =0, an
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which is a homogeneous equation of higher-order.
¢. Solve equation (17).
d. Eliminate from the solution found in step ¢ the terms that
also appear in the solution of L(D)y = 0. The remaining
terms constitute the correct form of a particular solution of
equation (16).
17. Use the method of annihilators to find the form of a particular
solution Y (¢) for each of the equations in Problems 10 through 13. Do
not evaluate the coefficients.

a4 The Method of Variation of Parameters

The method of variation of parameters for determining a particular solution of the

nonhomogeneous n™ order linear differential equation

LIyl =y 4+ pi(0)y" ™V 4o+ pusi()Y + pa(t)y = g(1) o))

is a direct extension of the method for the second-order differential equation (see Section
3.6). As before, to use the method of variation of parameters, it is first necessary to solve the
corresponding homogeneous differential equation. In general, this may be difficult unless the
coefficients are constants. However, the method of variation of parameters is still more general
than the method of undetermined coefficients in that it leads to an expression for the particular
solution for any continuous function g, whereas the method of undetermined coefficients is

restricted in practice to a limited class of functions g.

Suppose then that we know a fundamental set of solutions y;, y, ..

., Yn of the

homogeneous equation. Then the general solution of the homogeneous equation is
Ye(t) = c1y1(8) + c2y2(8) + -+ + cpyn(2). )]

The method of variation of parameters for determining a particular solution of equation (1)

rests on the possibility of determining » functions u;, us, . .

., U, such that Y (¢) is of the form

Y (1) = ur (D) y1(1) +ua() y2(2) + -+ un() yu(1). ©)

Since we have n functions to determine, we will have to specify n conditions. One of
these is clearly that Y satisfy equation (1). The other n — 1 conditions are chosen so as to
make the calculations as simple as possible. Since we can hardly expect a simplification in

determining Y if we must solve high order differential equations for uy, . ..

, Uy, it is natural

to impose conditions to suppress the terms that lead to higher derivatives of u;, ... , u,. From

equation (3) we obtain

Y = (uyyy 4 uayy + o unyy) + Wiy +ubys 4o+ upyn), @

where we have omitted the independent variable ¢ on which each function in equation (4)

depends. Thus the first condition that we impose is that

wiyr +upya+ -+ uly, =0. ©)
It follows that the expression (4) for ¥’ reduces to
Y =uy; +usys+ -+ uny,. (©6)
We continue this process by calculating the successive derivatives Y”, ..., Y"~D_ After
each differentiation we set equal to zero the sum of terms involving derivatives of uy, ... , .
In this way we obtain n — 2 further conditions similar to equation (5); that is,
W y™ L upyi™ 4y = m=1,2...,n—2. ©)
As aresult of these conditions, it follows that the expressions for Y”, ..., Y"~D reduce to
Yo =y, y™ 4 wy™ 4t uy™, m=2,3,...,n—L ®)




188 CHAPTER4 Higher-Order Linear Differential Equations

In each of Problems | through 4, use the method of variation of
parameters to determine the general solution of the given differential
equation.

” , T T
1. y"+y =tant, —5<t<§
2. y"—y =t

3.y —2y' —y +2y=e"

4, y"—y"+y —y=e""sint
In each of Problems 5 and 6, find the general solution of the given

differential equation. Leave your answer in terms of one or more
integrals.

- Y T
5. y"—y"+y —y=sect, —5<r< 7

6. y"—y =csct, 0<tr<m
In each of Problems 7 and 8, find the solution of the given initial-value
problem. Then plot a graph of the solution.

O 7. Y-y +y-y=sect; y0)=2, y(0)=-1,
y'(0) =1

s s
8. y" —y =tant: ) =2 y|=]=1,
(G y" —y =tan y<4> y<4>

Coddington, E. A., An Introduction to Ordinary Differential
Equations (Englewood Cliffs, NJ: Prentice-Hall, 1961; New
York: Dover, 1989).

Coddington, E. A. and Carlson, R., Linear Ordinary Differential
Equations (Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1997).

9. Given that x, x2, and 1 /x are solutions of the homogeneous
equation corresponding to

By + 12y =2y +2y =2x*, x>0,

determine a particular solution.

10. Find a formula involving integrals for a particular solution of the
differential equation

Y=y"+y —y=g.

11. Find a formula involving integrals for a particular solution of the
differential equation

y® —y=g(1).

Hint: The functions sin ¢, cost, sinh#, and cosh ¢ form a fundamental
set of solutions of the homogeneous equation.

12. Find a formula involving integrals for a particular solution of the
differential equation

y///_3yl/+3y/_y Zg(t).

If g(1) = t~2¢', determine Y (¢).

Ince, E. L., Ordinary Differential Equations (London: Longmans,
Green, 1927; New York: Dover, 1956).

Series Solutions of
Second-Order Linear
Equations

Finding the general solution of a linear differential equation depends on determining a
fundamental set of solutions of the homogeneous equation. So far, we have given a systematic
procedure for constructing fundamental solutions only when the equation has constant
coefficients. To deal with the much larger class of equations that have variable coefficients,
it is necessary to extend our search for solutions beyond the familiar elementary functions of
calculus. The principal tool that we need is the representation of a given function by a power
series. The basic idea is similar to that in the method of undetermined coefficients: we assume
that the solutions of a given differential equation have power series expansions, and then we
attempt to determine the coefficients so as to satisfy the differential equation.

5.1 Review of Power Series

In this chapter we discuss the use of power series to construct fundamental sets of solutions of
second-order linear differential equations whose coefficients are functions of the independent
variable. We begin by summarizing very briefly the pertinent results about power series that
we need. Readers who are familiar with power series may go on to Section 5.2. Those who
need more details than are presented here should consult a book on calculus.

o0
1. A power series Y a,(x — xo)" is said to converge at a point x if
n=0
m

lim E an(x — xp)"
m— 00
n=0
exists for that x. The series certainly converges for x = xo; it may converge for all x, or
it may converge for some values of x and not for others.

o

o0

The power series > a,(x — xo)" is said to converge absolutely at a point x if the
n=0

associated power series

> lan(x = x0)"1 =D lanllx — xol"
=0

n=0
converges. It can be shown that if the power series converges absolutely, then the power
series also converges; however, the converse is not necessarily true.

3. One of the most useful tests for the absolute convergence of a power series is the ratio
test: If a, # 0, and if, for a fixed value of x,

An1(x — x0)" !
an(x — Xo)"

‘ Ap+1
lim

n—>o0

= |x — xp| lim
n—oo

= |x — xo|L,

n




