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Second-Order Linear
Differential Equations

Linear differential equations of second order are of crucial importance in the study of
differential equations for two main reasons. The first is that linear equations have a rich
theoretical structure that underlies a number of systematic methods of solution. Further,
a substantial portion of this structure and of these methods is understandable at a fairly
elementary mathematical level. In order to present the key ideas in the simplest possible
context, we describe them in this chapter for second-order equations. The second reason
to study second-order linear differential equations is that they are vital to any serious
investigation of the classical areas of mathematical physics. One cannot go very far in
the development of fluid mechanics, heat conduction, wave motion, or electromagnetic
phenomena without finding it necessary to solve second-order linear differential equations.
We illustrate this at the end of this chapter with a discussion of the oscillations of some basic
mechanical and electrical systems.

31 Homogeneous Differential Equations
with Constant Coefficients

Many second-order ordinary differential equations have the form

dy dy
— = t, s 1. | 1
I f( y dt) ¢))

where f is some given function. Usually, we will denote the independent variable by 7 since
time is often the independent variable in physical problems, but sometimes we will use x
instead. We will use y, or occasionally some other letter, to designate the dependent variable.
Equation (1) is said to be linear if the function f has the form

G\ _ oin— oy
f(t,y,a>—g(t) p(t)dt q(t)y, )

that is, if f is linear in y and dy/dt. In equation (2) g, p, and g are specified functions of the
independent variable ¢ but do not depend on y. In this case we usually rewrite equation (1) as

Y +p)y +q(t)y =g(t), )

where the primes denote differentiation with respect to z. Instead of equation (3), we sometimes
see the equation

P(t)y"+ Q(t)y' + R(t)y = G(1). )

Of course, if P(¢) = 0, we can divide equation (4) by P(t) and thereby obtain equation 3)
with

R
p(t) = % q(t) = B0

<)

G o

=P’ 8(1)
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3 1 .
whose roots are r = 3 and r = X Therefore, the general solution of the differential equation is

y = 1% 4 cpe'?, (33)

Applying the initial conditions, we obtain the following two equations for ¢; and c5:

+e=2 > + 1c _ !
ClTC =24 201 72=73
. o 1 3 ; o
The solution of these equations is ¢; = 5 Cp = 7 so the solution of the initial value problem (32)
is
1 5
y= —-2-e3’/2 4 5ef/z. (34)

Figure 3.1.2 shows the graph of the solution.

y

__ 1 32 5 2
y=-3e +2e

: | Solution of the initial value problem (32):
y" —8y'+3y=0, y(0) =2, y'(0) =1/2.

EXAMPLE 5

ot . -

The solution (31) of the initial value problem (28) initially increases (because its initial slope
is positive), but eventually approaches zero (because both terms involve negative exponential
functions). Therefore, the solution must have a maximum point, and the graph in Figure 3.1.1
confirms this. Determine the location of this maximum point.

Solution:

The coordinates of the maximum point can be estimated from the graph, but to find them more
precisely, we seek the point where the solution has a horizontal tangent line. By differentiating the
solution (31), y = 9¢™2" — 7e~>, with respect to 7, we obtain

y =—18¢7% 4217, (35)

Setting y" equal to zero and multiplying by e*, we find that the critical value #,, satisfies ¢’ = 7/6;
hence

tm =1n(7/6) = 0.15415. (36)
The corresponding maximum value y,, is given by
108
Ym = 9e~2m — 7¢73m — 7o = 220408, (37)

In this example the initial slope is 3, but the solution of the given differential equation behaves
in a similar way for any other positive initial slope. In Problem 19 you are asked to determine how
the coordinates of the maximum point depend on the initial slope.

3.1 Homogeneous Differential Equations with Constant Coefficients 109

Returning to the equation ay” + by’ + ¢y = 0 with arbitrary coefficients, recall
that when r; # r, its general solution (18) is the sum of two exponential functions.
Therefore, the solution has a relatively simple geometrical behavior: as ¢ increases, the
magnitude of the solution either tends to zero (when both exponents are negative) or else
exhibits unbounded growth (when at least one exponent is positive). These two cases
are illustrated by the solutions of Examples 3 and 4, which are shown in Figures 3.1.1
and 3.1.2, respectively. Note that whether a growing solution approaches 4+oco or —oo as
t — oo is determined by the sign of the coefficient of the exponential for the larger root
of the characteristic equation. (See Problem 21.) There is also a third case that occurs
less often: the solution approaches a constant when one exponent is zero and the other is

negative.

In Sections 3.3 and 3.4, respectively, we return to the problem of solving the equation
ay"+by’+cy = 0 when the roots of the characteristic equation either are complex conjugates
or are real and equal. In the meantime, in Section 3.2, we provide a systematic discussion
of the mathematical structure of the solutions of all second-order linear homogeneous

equations,

In each of Problems 1 through 6, find the general solution of the given
differential equation.

1. y'"+2y-3y=0
2. y"+3y'+2y=0
3.6y =y —y=0
4. y'+5y =0
5. 4y"-=9y=0
6. y'—=2y—2y=0

In each of Problems 7 through 12, find the solution of the given
initial value problem. Sketch the graph of the solution and describe
its behavior as ¢ increases.

O 7 y+y-2y=0, y0) =1, y(0) =1
O 8 Yy +4y+3y=0 y0) =2, y(0)=-1
G 9 y+3y=0 y0) =-2 y(0) =3
O 10. 2y"+y —4y=0, y0) =0, y(0)=1
O 11. y+8y-9y=0, y1)=1, y(1)=0
0O 12. 4"—y=0, y-2)=1, y(-2)=-1

13. Find a differential equation whose general solution is
y=c1e* 4 cpe” .

© 14. Find the solution of the initial value problem
5 3
"—y=0, y(0)=23, y(0)=-=.
y o=y y(0) 77 (0 7
Plot the solution for 0 < ¢ < 2 and determine its minimum value.
15, Find the solution of the initial value problem

1
2y" =3y’ +y=0, y(0) =2, y(0)= 3

Then determine the maximum value of the solution and also find the
point where the solution is zero.

16. Solve the initial value problem y” — y' — 2y = 0, y(0) = «,
y'(0) = 2. Then find @ so that the solution approaches zero as
t — 00.

In each of Problems 17 and 18, determine the values of «, if any, for
which all solutions tend to zero as t — o0o; also determine the values
of o, if any, for which all (nonzero) solutions become unbounded as
t — o0.

17. y"—Q2a -1y +a(a—1)y=0

18. »"+@B—-a)y —=2(a—1)y=0

19.  Consider the initial value problem (see Example 5)
Y +5Y +6y=0, y(0)=2, y(0) =4,

where 8 > 0.
a. Solve the initial value problem.
b. Determine the coordinates t, and y,, of the maximum point
of the solution as functions of 3.
¢. Determine the smallest value of 3 for which y,, > 4.
d. Determine the behavior of #,, and y,, as 3 — oo.
20. Consider the equation ay” + by’ + ¢y = d, where a, b, ¢, and d
are constants.
a. Find all equilibrium, or constant, solutions of this differential
equation.
b. Let y, denote an equilibrium solution, and let ¥ = y — y,.
Thus Y is the deviation of a solution y from an equilibrium
solution. Find the differential equation satisfied by Y.

21. Consider the equation ay” + by’ + cy = 0, where a, b, and ¢
are constants with ¢ > 0. Find conditions on a, b, and ¢ such that the
roots of the characteristic equation are:

a. real, different, and negative.

b. real with opposite signs.

¢. real, different, and positive.
In each case, determine the behavior of the solution as t — o0o.
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Next, we let W(t) = W[y, y.](¢) and observe that
W' = y1y) — y{». (26)

Then we can write equation (25) in the form
W'+ p(HW = 0. 27)

Equation (27) can be solved immediately since it is both a first-order linear differential
equation (Section 2.1) and a separable differential equation (Section 2.2). Thus

W(t) :cexp(—/p(t) dt), (28)

where c is a constant.

The value of ¢ depends on which pair of solutions of equation (22) is involved. However,
since the exponential function is never zero, W(#) is not zero unless ¢ = 0, in which case
W (t) is zero for all ¢. This completes the proof of Theorem 3.2.7.

Note that the Wronskians of any two fundamental sets of solutions of the same differential
equation can differ only by a multiplicative constant, and that the Wronskian of any
fundamental set of solutions can be determined, up to a multiplicative constant, without solving
the differential equation. Further, since under the conditions of Theorem 3.2.7 the Wronskian
W is either always zero or never zero, you can determine which case actually occurs by
evaluating W at any single convenient value of ¢.

M

| EXAMPLE 7

R R S S

In Example 5 we verified that y;(7) = ¢!/2 and y2(t) = t~! are solutions of the equation
2t2y" 43ty —y=0, t>0. (29)
Verify that the Wronskian of y; and y, is given by Abel’s formula (23).

Solution:

3 ;
From the example just cited we know that W[y, y,](¢) = — EI_S/Z. To use equation (23), we must

write the differential equation (29) in the standard form with the coefficient of y” equal to 1. Thus
we obtain

3 1
I R N =0’
¥ +2zy 2t2y

3
so p(t) = Hence

T2
W = : dt | = = Int
[y1, »21(2) = c exp| — % t) =cexp =5

=gt W2, (30)
Equation (30) gives the Wronskian of any pair of solutions of equation (29). For the particular

solutions given in this example, we must choose ¢ = — 7

I v. We can summarize the discussion in this section as follows: to find the general
solution of the differential equation

Y +p()y +q()y=0, a<t<p,

we must first find two functions y; and y, that satisfy the differential equationin o < t < 3.
Then we must make sure that there is a point in the interval where the Wronskian W of y; and
¥2 is nonzero. Under these circumstances y; and y, form a fundamental set of solutions, and
the general solution is

Yy =c1y1(#) + cay(1),

where ¢; and ¢, are arbitrary constants. If initial conditions are prescribed at a given point in
a < t < (3, then ¢; and ¢, can be chosen so as to satisfy these conditions.

In each of Problems 1 through 5, find the Wronskian of the given pair
of functions.
1. 2t e—3t /2

e
2. cost, sint
3. %, te2
4. e'sint, e’ cost

5. cos’0, 1+ cos(20)
In each of Problems 6 through 9, determine the longest interval in

which the given initial value problem is certain to have a unique twice-
differentiable solution. Do not attempt to find the solution.

6. ty"+3y=1t, y(1)=1, y(1)=2
1(t—4)y"+3ty' +4y =2, y(3) =0, y(3) = —1

8. Y+ (cost)y +3(Injth)y =0, y(2)=3, y(2)=1

9. (x=2)y"+y +(x—2)(tanx)y =0, y(3) =1, y'(3) =2

10.  Verify that y;(¢#) = % and y,(+) = ¢! are two solutions
of the differential equation t2y” — 2y = 0 for ¢t > 0. Then show
that y = ¢;1% 4 ¢! is also a solution of this equation for any ¢,
and Ca.

11. Verify that y;(¢) = 1 and y,(¢#) = ¢!/2 are solutions of the
differential equation yy” + (y’)2 = 0 for ¢+ > 0. Then show that
y = ¢1 + cat"/? is not, in general, a solution of this equation. Explain
why this result does not contradict Theorem 3.2.2.

12.  Show thatif y = ¢ () is a solution of the differential equation
V' 4+ p()y + q(t)y = g(t), where g(¢) is not always zero, then
Yy = c¢(t), where c is any constant other than 1, is not a solution.
Explain why this result does not contradict the remark following
Theorem 3.2.2.

13. Cany = sin(z2) be a solution on an interval containing ¢ = 0 of
an equation y” + p(1)y’ + q(1)y = 0 with continuous coefficients?
Explain your answer.

14, If the Wronskian W of f and g is 3¢*, and if £(¢) = ¥, find
8(0).

15. If the Wronskian of f and g is fcost — sinz, and if
u=f+3g,v=f—g,find the Wronskian of u and v.

16.  Assume that y; and y, are a fundamental set of solutions
of y" + p(1)y' + q(t)y = 0 and let y; = a;y; + ary, and
Y4 = b1y + byy,, where ay, ay, by, and b, are any constants. Show
that

Wlys, yal = (a1by — azby) Wlyy, 1.
Are y; and yy also a fundamental set of solutions? Why or why not?

In each of Problems 17 and 18, find the fundamental set of solutions
specified by Theorem 3.2.5 for the given differential equation and
initial point.

17. y"+y -2y=0, =0

18, y' 44y +3y=0, =1

In each of Problems 19 through 21, verify that the functions y; and y,

are solutions of the given differential equation. Do they constitute a
fundamental set of solutions?

19y +4y =0, yi(r) = cos(2), yy(1) = sin(21)
200y =2y +y=0; y() =é, yy(1) =te'

21 X%y —x(x +2)y' + (x +2)y=0, x> 0;
Y(x) =x, y(x) = xe*

2 2 Solitione of f inear L~ o £ £l A :
3.2 >olutions of Linear Homogeneous Equations; the Wronskian 11 9

22.  Consider the equation y” — y’ — 2y =0.

a. Show that y(#) = ™" and y,(#) = ¢* form a fundamental
set of solutions.

b. Let y3(t) = =2, y(t) = »() + 2yy(t), and
ys(£) = 2y1(t) — 2y3(1). Are y3(1), y4(t), and ys() also
solutions of the given differential equation?

¢. Determine whether each of the following pairs forms a
fundamental set of solutions: {y; (1), ys() }; {30, y(0) };

(M@, %0} {30,350}
In each of Problems 23 through 25, find the Wronskian of two
solutions of the given differential equation without solving the
equation.

23, 2y —tt+2)y +(t+2)y=0
24. (cost)y” + (sint)y —ty =0
25. (1-x%)y"—2xy'+a(a+1)y =0, Legendre’s equation

26. Show that if p is differentiable and p(t) > 0, then the
Wronskian W(r) of two solutions of [p(#)y'] + g(£)y = 0 is
W(t) = ¢/ p(t), where c is a constant.

27.  If the differential equation ty” 42y’ 4te'y = 0 has y; and ¥, as
a fundamental set of solutions and if W[y;, y,]1(1) = 2, find the value
of W[y1, y21(5).

28.  Ifthe Wronskian of any two solutions of y+ p(t) Y4+q(t)y =0
is constant, what does this imply about the coefficients pandg?

In Problems 29 and 30, assume that p and ¢ are continuous and
that the functions y; and y, are solutions of the differential equation
¥+ p(1)y" 4+ q(t)y = 0 on an open interval 1.

29.  Prove that if y; and y, are zero at the same point in 7, then they
cannot be a fundamental set of solutions on that interval.

30.  Prove that if y; and y, have a common point of inflection ¢, in
I, then they cannot be a fundamental set of solutions on 7 unless both
p and ¢ are zero at f,.

31. Exact Equations. The equation
P(x)y"+ Q(x)y + R(x)y =0
is said to be exact if it can be written in the form
(P()Y) +(f(0)y)' =0,

where f(x) is to be determined in terms of P(x), Q(x), and R(x).
The latter equation can be integrated once immediately, resulting
in a first-order linear equation for y that can be solved as in
Section 2.1. By equating the coefficients of the preceding equations
and then eliminating f(x), show that a necessary condition for
exactness is

P"(x) = Q'(x) + R(x) =0.

It can be shown that this is also a sufficient condition.

In each of Problems 32 through 34, use the result of Problem 31 to
determine whether the given equation is exact. If it is, then solve the
equation.

32 y'+xy+y=0
33, xy” —(cosx)y + (sinx)y =0, x>0
3. X2y 4 xy—y=0, x>0
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35. The Adjoint Equation. If a second-order linear homogeneous
equation is not exact, it can be made exact by multiplying by an
appropriate integrating factor p(x). Thus we require that p(x) be
such that
p(x) P(x)y" + p(x) Q(x)y + p(x)R(x)y =0
can be written in the form
(LX) P(D)Y) +(f()y) =0.
By equating coefficients in these two equations and eliminating f(x),
show that the function y must satisfy
Pu"+ 2P — Q' +(P"= Q' + R =0.
This equation is known as the adjoint of the original equation and is
important in the advanced theory of differential equations. In general,

the problem of solving the adjoint differential equation is as difficult as
that of solving the original equation, so only occasionally is it possible
to find an integrating factor for a second-order equation.

In each of Problems 36 and 37, use the result of Problem 35 to find the
adjoint of the given differential equation.

36. x2y" 4+xy +(x2—v?)y =0, Bessel’sequation |

37. ¥y —xy =0, Airy’sequation

38. A second-order linear equation P(x)y"+ Q(x)y'+R(x)y =0
is said to be self-adjoint if its adjoint is the same as the original
equation. Show that a necessary condition for this equation to be
self-adjoint is that P'(x) = Q(x) Determine whether each of the
equations in Problems 36 and 37 is self-adjoint.

33 Complex Roots of the Characteristic

Equation

We continue our discussion of the second-order linear differential equation

ay” + by +cy =0, €h)

where a, b, and c are given real numbers. In Section 3.1 we found that if we seek solutions of
the form y = ¢'’, then » must be a root of the characteristic equation

ar*+br+c=0. )

We showed in Section 3.1 that if the roots r; and r, are real and different, which occurs
whenever the discriminant 5> — 4ac is positive, then the general solution of equation (1) is

y = cie"'' + e (3)

Suppose now that b> — 4ac is negative. Then the roots of equation (2) are conjugate
complex numbers; we denote them by

71:)\+i,l,b, 7'22/\_1.[1, (4)

where A and p are real. The corresponding expressions for y are

y1(1) = exp((A +ip)t), ya(t) =exp((A —ip)t). 6))

Our first task is to explore what is meant by these expressions, which involve evaluating the
exponential function for a complex exponent. For example, if A = —1, p = 2, and t = 3,

then from equation (5),

y1(3) = et (6)

What does it mean to raise the number e to a complex power? The answer is provided by an
important relation known as Euler’s formula.

To assign a meaning to the expressions in equations (5), we need to give

' 3.3 Complex Roots of the Characteristic Equation

If we now assume that we can substitute it for t in equation (7), then we have
( i t) n
Z ®

To simplify this series, we write (if)" = i"t" and make use of the facts that i> = —1,
i3 = —i,i* = 1, and so forth, When n is even, there is an integer k with n = 2k; in this
case i" = 12" = (—=1)*. And when n is odd, n = 2k + 1, so i* = {%*! = j(—1)*. This
suggests separating the terms in the right-hand side of (8) into its real and imaginary parts.
The result is®

0 1)k[2k ® —1)kp2k+1
Z (=D ©

+i —_—
!

— (2k)! — 2k + 1)!

The first series in equation (9) is precisely the Taylor series for cos# about + = 0, and the

second is the Taylor series for sin ¢ about ¢+ = 0. Thus we have

e =cost +isint. 10)

Equation (10) is known as Euler’s formula and is an extremely important mathematical
relationship.

Although our derivation of equation (10) is based on the unverified assumption that the
series (7) can be used for complex as well as real values of the independent variable, our
intention is to use this derivation only to make equation (10) seem plausible. We now put
matters on a firm foundation by adopting equation (10) as the definition of e'’. In other words,
whenever we write e//, we mean the expression on the right-hand side of equation (10).

There are some variations of Euler’s formula that are also worth noting. If we replace ¢
by —t in equation (10) and recall that cos(—#) = cost and sin(—t) = —sin¢, then we have

e " =cost —isint. (11)

Further, if ¢ is replaced by ¢ in equation (10), then we obtain a generalized version of Euler’s
formula, namely,

e'M = cos(ut) + i sin(pt). (12)

Next, we want to extend the definition of the exponential function to arbitrary complex

exponents of the form (A+i ). Since we want the usual properties of the exponential function
to hold for complex exponents, we certainly want exp(( A + ip)?) to satisfy

e()d—i/l,)t _ e)\tel/zr (13)

Then, substituting for e'™ from equation (12), we obtain
eAHIT = A (cos(pt) + i sin(pt))
= e cos(put) +ie sin(ut). (14)

We now take equation (14) as the definition of exp[( A + i )t]. The value of the exponential
function with a complex exponent is a complex number whose real and imaginary parts are
given by the terms on the right-hand side of equation (14). Observe that the real and imaginary
parts of exp((A + i )t) are expressed entirely in terms of elementary real-valued functions.
For example, the quantity in equation (6) has the value

e 310 — ¢ 3 cos6+ie > sin6 = 0.0478041 — 0.0139113i.

With the definitions (10) and (14), it is straightforward to show that the usual laws of
exponents are valid for the complex exponential function. You can also use equation (14) to
verify that the differentiation formula

-
)
P

a deﬁmtlon of the complex exponential function. Of course, we want the definition to reduce
to the familiar real exponential function when the exponent is real. There are several ways
to discover how this extension of the exponential function should be defined. Here we use a
method based on infinite series; an alternative is outlined in Problem 20.

Recall from calculus that the Taylor series for ' about t = 0 is

d Y i 2 rt
dt(e ) =re (15)

holds for complex values of 7.

£ o t
n_!+..‘:25, —00 < t < 00. ™

5
Recall from calculus that the reordering of terms in the right-hand side of equation (9) is allowed because the series

t2
e =1+t+o 4+

n=0 i converges absolutely for all —co < ¢ < o0.
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Solution:

1
The characteristic equation is 16r> — 87 + 145 = 0 and its roots are r = 1 =+ 3i. Thus the general

solution of the differential equation is

y(2) = cre'* cos(3t) + cpe'* sin(3r). 27

To apply the first initial condition, we set # = 0 in equation (27); this gives
y(0) =c; = -2.

For the second initial condition, we must differentiate equation (27) before substituting ¢ = 0. In this
way we find that

y'(0) = —cl+3m— 1,

1
from which we determine that ¢, = —. Using these values of ¢; and ¢, in the general solution (27),

we obtain

= —2¢'/* cos(3t) + %e‘/‘* sin(3t) (28)
as the solution of the initial value problem (26). The graph of this solution is shown in Figure 3.3.2.

In this case we observe that the solution is a growing oscillation. Again the trigonometric factors
in equation (28) determine the oscillatory part of the solution (again with period 27 /3), while the
exponential factor (with a positive exponent this time) causes the magnitude of the oscillation to
increase with time.

10— y =-2e"4 cos (3¢t) + et sin (3t)

/\A/\

5+

S/VVU

-10+—

. Solution of the initial value problem (26):

16y” — 8y’ + 145y =0, y(0) = —2, y'(0) = 1.
EXAMPLE 3
Find the general solution of
y"+9y =0. (29)

Solution:

The characteristic equation is 72 4+9 = 0 with the roots » = £3i; thus A = 0 and = 3. The general
solution is

y = c¢; cos(31) + ¢y sin(31). (30)

3.3 Complex Roots of the Characteristic Equation 125

Solutions of equation (29): y” + 9y =
1n1t1a1 conditions: y(0) = 1, y'(0) =2 (dashed, green) and y(0)
(solid, blue). Both solutions have the same period, but different
phase shifts.

0, with two sets of

=2,y'(0) =8
amplitudes and

Note that if the real part of the roots is zero, as in this example, then there is no exponential factor
in the solution. Figure 3.3.3 shows the graph of two solutions of equation (28) with different initial
conditions. In each case the solution is a pure oscillation with period 27 /3 but whose amplitude
and phase shift are determined by the initial conditions. Since there is no exponential factor in the

solution (30), the amplitude of each oscillation remains constant in time.

In each of Problems | through 4, use Euler’s formula to write the given
expression in the form a + ib.

e

0006

1. exp(2—3i)
2. &7
3. p2—(n/D)i
4, 2
Ineach of Problems 5 through 1 1, find the general solution of the given
differential equation. (N
5. y'=2y4+2y=0
6. y' =2y +6y=0
7. y'+2y +2y=0
8. ¥y +6y+13y=0 (N
9. Y42y +125y=0
10. 9y”" +9y' —4y =0
11,y +4y +6.25y=0

In each of Problems 12 through 15, find the solution of the given
initial value problem. Sketch the graph of the solution and describe
its behavior for increasing 7.

0 12
0O 13.

y// +4y =0,
y// —2}/+5}1 =0,

y(0) =0, y'(0) =1

7 /2) =0, y(n/2) =2

14. y"+y=0, y(n/3)=2, y(n/3)=-

15. y"4+2y'+2y=0, y(n/4 =2, y(rn/4) =—
16. Consider the initial value problem

u(0) =2, u/(0) =0.

€

3u" —u +2u=0,

a. Find the solution u(¢) of this problem.
b. Fort > 0, find the first time at which |u(z)| = 10.

17. Consider the initial value problem

S5u" +2u' +Tu =0, u(0) =2, u'(0)=1.

a. Find the solution u(¢) of this problem.
b. Find the smallest T such that |u(¢)| < 0.1 forallz > T.

18. Consider the initial value problem
y'+2y' +6y=0, y(0)=2, y'(0)=a=0.

a. Find the solution y(#) of this problem.

b. Find o such that y = 0 when ¢t = 1.

c¢. Find, as a function of «, the smallest positive value of 7 for
which y = 0.

d. Determine the limit of the expression found in part ¢ as
a — 00,
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19.  Show that W [e cos(put), €M sin(ut) | = pe?.

20. In this problem we outline a different derivation of Euler’s
formula.
a. Show that y;(¢#) = cost and y,(¢) = sin¢ are a fundamental
set of solutions of y”+y = 0; that is, show that they are solutions
and that their Wronskian is not zero.

b. Show (formally) that y = e’ is also a solution of y” +y = 0.
Therefore,

e =cjcost 4+ cysint 31)

for some constants ¢; and ¢,. Why is this so?

¢. Sett = 0in equation (31) to show thatc; = 1.

d. Assuming that equation (15) is true, differentiate
equation (31) and then set # = 0 to conclude that ¢, = i. Use the
values of ¢; and ¢, in equation (31) to arrive at Euler’s formula.

21. Using Euler’s formula, show that

eit e e—ir , eiz _ e—ir o
—X—— = C0Sf{, ———— =ssInt.
2 2i

22. If ¢ is given by equation (14), show that e/1727 = 17"

for any complex numbers r; and 5.

23. Consider the differential equation
ay” +by' +cy =0,

where b? —4ac < 0 and the characteristic equation has complex roots
A £ ip. Substitute the functions

u(t) = eMcos(ut) and v(r) = e sin(ut)

for y in the differential equation and thereby confirm that they are
solutions.

24. If the functions y; and y, are a fundamental set of solutions of
'+ p(t)y +q(t)y = 0, show that between consecutive zeros of y;
there is one and only one zero of y,. Note that this result is illustrated
by the solutions y;(#) = cost and y,(#) = sint of the equation
y// +y=0.

Hint: Suppose that #; and #, are two zeros of y; between which
there are no zeros of y,. Apply Rolle’s theorem to y;/y, to reach a
contradiction.

Change of Variables. Sometimes a differential equation with variable
coefficients,

Y+ p@)y +q()y=0, (32)

can be put in a more suitable form for finding a solution by making
a change of the independent variable. We explore these ideas in
Problems 25 through 36. In particular, in Problem 25 we show that
a class of equations known as Euler equations can be transformed
into equations with constant coefficients by a simple change of the
independent variable. Problems 26 through 31 are examples of this
type of equation. Problem 32 determines conditions under which the
more general equation (32) can be transformed into a differential
equation with constant coefficients. Problems 33 through 36 give
specific applications of this procedure.

25. Euler Equations. An equation of the form

d?y dy
207)
— t— =0, >0, 33
-2 Tt thy (33)
where o and 3 are real constants, is called an Euler equation.

a. Let x = Int and calculate dy/dt and d*y/dt? in terms of

dy/dx and d?y/dx2.

b. Use the results of part a to transform equation (33) into

d*y dy

T2 Tl@—D==+By (34
Observe that differential equation (34) has constant coefficients.
If yi(x) and y,(x) form a fundamental set of solutions of
equation (34), then y;(In¢) and y,(In¢) form a fundamental set

of solutions of equation (33).

In each of Problems 26 through 31, use the method of Problem 25 to
solve the given equation for ¢ > 0.

26. t2y"+ty'+y=0

27. t2y" +4ty' +2y=0

28. 12y —4ty' —6y=0

29, 2y’ —4ty' +6y=0

30. 2y"+3ty'=3y=0

31. 2y +7ty' +10y =0

32. In this problem we determine conditions on p and g that

enable equation (32) to be transformed into an equation with constant
coefficients by a change of the independent variable. Let x = u(t) be
the new independent variable, with the relation between x and ¢ to be
specified later.

a. Show that

dy dxdy d* <dx>2d2y d’x dy

di — dt dx’ dz  \dr

dx?  dr? dx’

b. Show that the differential equation (32) becomes

2
dx \"d?y d*x dx \ dy
SAVEY (22 SNV Ly =o0.
(dt)dx2+(d12+p(z)dt ax Ty )

¢. In order for equation (35) to have constant coefficients, the
coefficients of d%y/dx?, dy/dx, and y must all be proportional.
If g(¢) > 0, then we can choose the constant of proportionality
to be 1; hence, after integrating with respect to ¢,

x=u(t) = /(q(t))l/zdt. (36)

d. With x chosen as in part ¢, show that the coefficient of dy/dx
in equation (35) is also a constant, provided that the expression

2(q(1))3/?

is a constant. Thus equation (32) can be transformed into
an equation with constant coefficients by a change of the
independent variable, provided that the function (g’ +2pgq) / ¢>/?
is a constant.
¢. How must the analysis and results in d be modified if
q(t) < 0?
In each of Problems 33 through 36, try to transform the given equation
into one with constant coefficients by the method of Problem 32. If this
is possible, find the general solution of the given equation.

@37

33. y’/+ty/+e_’2y=0, —00< t < 00
Y 43ty +12y =0, —oco<t< 00
'+ (2 =1y +3y=0, 0<i< o0

(3
=

Y]
wn

W
=)

y// 4 ty/ _ e"Zy =0

3.4 Repeated Roots; Reduction of Order

34 Repeated Roots; Reduction of Order

In Sections 3.1 and 3.3 we showed how to solve the equation
ay”" +by +cy=0 1)
when the roots of the characteristic equation
ar*+br+c=0 )

either are real and different or are complex conjugates. Now we consider the third possibility,
namely, that the two roots r; and r, are equal. This case is transitional between the other two
and occurs when the discriminant b — 4ac is zero. Then it follows from the quadratic formula
that
b (3)
=1, =——.
1 2 a

The difficulty is immediately apparent; both roots yield the same solution

yi(n) = e /e “)

of the differential equation (1), and it is not obvious how to find a second solution.

EXAMPLE 1

T S R B ORI Seee = ens SR

Solve the differential equation

Y +4y +4y =0. )

Solution:

The characteristic equation is
P +dr+4=(r+2)>2=0,

so r; = rp = —2. Therefore, one solution of equation (5) is y;(#) = e~%. To find the general
solution of equation (5), we need a second solution that is not a constant multiple of y;. This second
solution can be found in several ways (see Problems 15 through 17); here we use a method originated
by d’Alembert’ in the eighteenth century. Recall that since y1(2) is a solution of equation (1), so
is cy;(¢) for any constant c. The basic idea is to generalize this observation by replacing ¢ by a
function v(¢) and then trying to determine v(z) so that the product v(£) y;(#) is also a solution of
equation (1).

To carry out this program, we substitute y = v() y;(¢) in equation (5) and use the resulting
equation to find v(z). Starting with

y =v(Oy(1) =v(r)e ™, (6)
we differentiate once to find
y =vi(t)e™ —2v(t)e™ @)
1 and a second differentiation yields
| Y =v(0)e™ — 4/ (1)e ™ + dv(n)e . ®)

By substituting the expressions in equations (6), (7), and (8) in equation (5) and collecting terms, we
obtain

V() =4 (@) +Av(t) + 4 (1) —8v(2) +dv())e ¥ =0,

I 7Jean d’Alembert (1717-1783), a French mathematician, was a contemporary of Euler and Daniel Bernoulli and
is known primarily for his work in mechanics and differential equations. D’Alembert’s principle in mechanics
| and d’Alembert’s paradox in hydrodynamics are named for him, and the wave equation first appeared in his paper
I on vibrating strings in 1747. In his later years he devoted himself primarily to philosophy and to his duties as
science editor of Diderot’s Encyclopédie.

1

27
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calculations.

It follows that

V¥ Note that the coefficient of v is zero, as it should be; this provides a useful check on our algebraic

If we let w = v/, then the second-order linear differential equation (34) reduces to the separable
first-order differential equation

2tw’ —w = 0.

Separating the variables and solving for w(t), we find that

w(t) =v'(t) = ct'/?;

then, one final integration yields

2
v(t) = gct3/2 + k.

2
y=v(H)t ' = gctl/z—i—kt_l, (35)

where ¢ and k are arbitrary constants. The second term on the right-hand side of equation (35) is a
multiple of y;(¢) and can be dropped, but the first term provides a new solution y,(¢) = ¢'/2. You
can verify that the Wronskian of y; and y, is

3
Wlyp, y21(2) = Ez“W #£0 for > 0. (36)

Consequently, y; and y, form a fundamental set of solutions of equation (33) for ¢ > 0.

In each of Problems | through 8, find the general solution of the given
differential equation.

I. y"=2y'+y=0

2. 9y"+6y +y=0

3. 4y"—4y =3y =0
4. y"—2y' +10y =0
5. ¥y -6y +9y=0

6. 4y"+17y +4y =0
7. 16y +24y' +9y =0

8. 2y”+2y’+y -0
In each of Problems 9 through 11, solve the given initial value
problem. Sketch the graph of the solution and describe its behavior
for increasing ¢.

9. 9y" —12y' +4y =0,
10. y"—6y' +9y=0, y(0)=0, y'(0)=2
1. y"+4y +4y=0, y(-1) =2, y(-1)=1

12.  Consider the following modification of the initial value problem
in Example 2:

y(0) =2, y'(0) =—1

Y =y +2=0, y0)=2, y(0)=b.

4
Find the solution as a function of b, and then determine the critical
value of b that separates solutions that remain positive for all # > 0
from those that eventually become negative.

0 1.

Consider the initial value problem

4y" +4y' +y =0, y(0) =1, y(0) =2

a. Solve the initial value problem and plot the solution.

b. Determine the coordinates (57, yar) of the maximum point.

c. Change the second initial condition to y'(0) = b > 0 and

find the solution as a function of b.

d. Find the coordinates (s, ya) of the maximum point in terms

of b. Describe the dependence of ty; and yy on b as b increases.
14. Consider the equation ay” + by’ + cy = 0. If the roots of the
corresponding characteristic equation are real, show that a solution to
the differential equation either is everywhere zero or else can take on
the value zero at most once.

Problems 15 through 17 indicate other ways of finding the second
solution when the characteristic equation has repeated roots.

15. a. Consider the equation y” 4 2ay’ + a®>y = 0. Show that the
roots of the characteristic equation are 7| = r, = —a so that one
solution of the equation is e™.

b. Use Abel’s formula [equation (23) of Section 3.2] to show
that the Wronskian of any two solutions of the given equation is

W(t) = yi(D)y5(1) =y (D) ya(t) = e,

where ¢y is a constant.

c. Let yi(t) = e and use the result of part b to obtain
a differential equation satisfied by a second solution y,(z). By
solving this equation, show that y,(¢) = te

—at

[

|

16. Suppose that 7; and r, are roots of ar? + br + ¢ = 0 and that
r # ro; then exp(ryt) and exp(7,t) are solutions of the differential
equation ay” + by" 4 cy = 0. Show that

I'2f _ erl t

¢(t IRATRS 2) =

p—n
is also a solution of the equation for r, # ;. Then think of 7 as fixed,
and use I'Hopital’s rule to evaluate the limit of ¢ (¢; 7y, rp) asrp — 7y,
thereby obtaining the second solution in the case of equal roots.

17. a. If ar? 4+ br + ¢ = 0 has equal roots 7, show that
L [g”] = a(erf)// + by + gt s alr — rl)ze”‘ 37

Since the right-hand side of equation (37) is zero when r = ry, it
follows that exp(rt) is a solution of L[y] = ay” + by’ +cy = 0.
b. Differentiate equation (37) with respect to », and interchange
differentiation with respect to » and with respect to ¢, thus
showing that

o ., 9, .
211 =L[Ee'} — L[]

=ate"(r —r)%+2ae"(r —r).  (38)

Since the right-hand side of equation (36) is zero when r = ry,
conclude that # exp(rt) is also a solution of L[y] = 0.

In each of Problems 18 through 22, use the method of reduction of
order to find a second solution of the given differential equation.

18. 2y —4ty' +6y=0, t>0; y (1) =t*
19. 29" 42ty =2y =0, t>0; y(t) =t
20. 2y 43ty +y=0, t >0, y(t) =t"!
21. xy’ —y +4x3y =0, x> 0; y(x) = sin(x?)

x2y" +xy' +(x2=0.25)y =0, x > 0; 1/2

The differential equation

yi(x) =x""/*sinx

N
S ©

y'+6(xy' +y)=0

arises in the study of the turbulent flow of a uniform stream past a
circular cylinder. Verify that y; (x) = exp(—6x> /2) is one solution,
and then find the general solution in the form of an integral.

24. The method of Problem 15 can be extended to second-order
equations with variable coefficients. If y, is a known nonvanishing
solution of y” + p(#)y’ + q(t)y = 0, show that a second solution y,

3.5 Nonhomog

ous Equations; Method of Undetermined Coefficients 133

satisfies (y2/y1)" = Wiy, yz]/yf, where W[y, y,]is the Wronskian
of y; and y,. Then use Abel’s formula (equation (23) of Section 3.2)
to determine y,.

In each of Problems 25 through 27, use the method of Problem 24 to
find a second independent solution of the given equation.

25. t2y"+3ty'+y=0, t>0; y(t) =¢""
26, ty' —y +42y =0, t>0; y(t) =sin(s?)
27. x%*y"4xy +(x2=0.25)y =0, x> 0; y(x)=x"12ginx

Behavior of Solutions as ¢ — oo. Problems 28 through 30 are
concerned with the behavior of solutions as t — o0.

28. TIf a, b, and c are positive constants, show that all solutions of
ay” + by’ + ¢y = 0 approach zero as t — oo.

29. a. Ifa > Oandc > 0, but b = 0, show that the result of
Problem 28 is no longer true, but that all solutions are bounded
ast — oo.
b. Ifa > Oand b > 0, but ¢ = 0, show that the result of
Problem 28 is no longer true, but that all solutions
approach a constant that depends on the initial conditions as
t — 00. Determine this constant for the initial conditions
y(0) = 0, ¥'(0) = y;.

30. Show that y = sint is a solution of

y"+(ksinzt)y’+(1 —kcostsint)y =0

for any value of the constant k. If 0 < k < 2, show that
1 —kcostsint > 0and ksin’ ¢ > 0. Thus observe that even though
the coefficients of this variable-coefficient differential equation are
nonnegative (and the coefficient of y’ is zero only at the points
t = 0,m,2m, ...), it has a solution that does not approach zero
as 1 — oo. Compare this situation with the result of Problem 28.
Thus we observe a not unusual situation in the study of differential
equations: equations that are apparently very similar can have quite
different properties.

Euler Equations. In each of Problems 31 through 34, use the
substitution introduced in Problem 25 in Section 3.3 to solve the given
differential equation.

31. 2y" —3ty'+4y=0, t>0

32. 2y" 42ty +025y=0, t>0
33. 2y"+3ty+y=0, t>0
34. 4r%y" —8ty'+9y =0, t>0

35 Nonhomogeneous Equations; Method of

Undetermined Coefficients

We now turn our attention to the nonhomogeneous second-order linear differential equation

Lyl =YY"+ p@®)y +q(t)y = g(1),

(€]

where p, g, and g are given (continuous) functions on the open interval 1. The equation

Llyl=y"+p@®)y +4q()y =0,

@
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To obtain a particular solution, we assume that
Y(1) = Apt" + At" V4 Aot At + A, (29)
Substituting in equation (28), we obtain
a (n(n — DA 4 2A,,_2> Fb(nAgt" 4+ Ay)
+c(Apt" + A" 4+ AY) =apt" + -+ an. (30)

Equating the coefficients of like powers of #, beginning with ", leads to the following sequence
of equations:

CAO = do,
cAy +nbAy = ay,

cA, + bA, 1 + 2aA,5 = ay.

Provided that ¢ # 0, the solution of the first equation is Ag = ao/c, and the remaining
equations determine Ay, ..., A, successively.

If c = 0 but b # 0, then the polynomial on the left-hand side of equation (30) is of degree
n — 1, and we cannot satisfy equation (30). To be sure that aY”(¢) + bY'(¢) is a polynomial
of degree n, we must choose Y () to be a polynomial of degree n + 1. Hence we assume that

Y(1) = t(AOtn +- A
Substituting this guess into equation (28), with ¢ = 0, and simplifying yields
aY” +bY' = bAy(n+ Dt" + (aAo(n + Dn+bAn) " 1 4.
= Cl()l” + alt”‘l + oot ay.

There is no constant term in this expression for Y (#), but there is no need to include such a
term since a constant is a solution of the homogeneous equation when ¢ = 0. Since b # 0, we
find Ag = ao/(b(n+1)), and the other coefficients Ay, ... , A, can be determined similarly.

If both ¢ and b are zero, then the characteristic equation is ar? = 0andr = Ois a

repeated root. Thus y; = ¢” = 1 and y, = te” = ¢ form a fundamental set of solutions of the
corresponding homogeneous equation. This leads us to assume that

Y(t) = t2(Apt" + -+ Ap).

The term aY”(t) gives rise to a term of degree n, and we can proceed as before. Again the
constant and linear terms in Y (¢) are omitted since, in this case, they are both solutions of the
homogeneous equation.

The problem of determining a particular solution of

ay” + by' 4 cy = e Py(1) 31)

can be reduced to the preceding case by a substitution. Let
Y(t) = e“u(t);

then

Y'(t) = e*(u'(t) + au(r))
and

Y'(1) = e (u'(t) + 2au/(t) + o*u(1)).
Substituting for y, y’, and y” in equation (31), canceling the factor e®’, and collecting terms,
we obtain
au’(t) + Qaa + b)u'(t) + (aa? + ba + c)u(t) = Py(t). (32)

The determination of a particular solution of equation (32) is precisely the same problem,
except for the names of the constants, as solving equation (28). Therefore, if ac® + ba + ¢ is
not zero, we assume that u(t) = Agt" + - - - + A,; hence a particular solution of equation (31)
is of the form

Y(t) = e (Apt" + At -+ A)). (33)

A B

On the other hand, if aa.® + ba + ¢ is zero but 2ac + b is not, we must take u(t) to be
of the form t(Agt" + - - - + A;) . The corresponding form for Y'(¢) is ¢ times the expression on
the right-hand side of equation (33). Note that if aa? + ba + c is zero, then e®! is a solution
of the homogeneous equation.

If both aa® 4+ bor + ¢ and 2aa + b are zero (and this implies that both e and te®" are
solutions of the homogeneous equation), then the correct form for u(#) is 12( Agt" +- - -+ A,).
Hence Y (7) is ¢ times the expression on the right-hand side of equation (33).

o(f) = (?) cos ( 3¢t) or e™P in (3 These two cases are similar, so we

consider only the latter, We can reduce this problem to the preceding one by noting that, as a

consequence of Buler’s formula, sin( 8¢) = (¢’#" — e=") /(2i). Hence g(t) is of the form
elati®y _ pla—if)t

2i ’

8(1) = Py(1)
and we should choose
V(1) = et AgtT £ oo 4 Ay) + DByt 4+ By),
or, equivalently,
Y(t) = e (Aot" + -+ -+ A,) cos(St) + e (Bot" + - -+ + By) sin(f1).

Usually, the latter form is preferred because it does not involve the use of complex-valued
coefficients. If o & i3 satisfy the characteristic equation corresponding to the homogeneous
equation, we must, of course, multiply each of the polynomials by ¢ to increase their degrees

3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

b
o

heny

by 1.

If the nonhomogeneous function involves both cos(ft) and sin(fFt), it is usually
convenient to treat these terms together, since each one individually may give rise to the same
form for a particular solution. For example, if g(#) = ¢ sin¢+2 cos ¢, the form for ¥ (#) would

be

Y(t) = (Aot + Ay) sint + ( Byt + By) cost,

provided that sin# and cos ¢ are not solutions of the homogeneous equation.

Ineach of Problems | through 10, find the general solution of the given
differential equation.

1.y’ —2y' —3y=3e¥

2. y'—y —2y=-2t+4?

3. y'+y —6y=12¢% +12¢7%
4. y" =2y —3y=-3te”’

5. ' 42y =3+4sin(2¢)

6. y'+2y+y=2e"

7. y" 4y =3sin(2f) 4t cos(2t)

8. u'+ w?)u =cos(wt), w?# wé
9. u +w§u = cos(wot)

10. y”" 4y’ +4y =2sinht Hint: sinht = (e’ —e™")/2

In each of Problems 11 through 15, find the solution of the given initial
value problem.

1. y"+y' =2y=2t, y(0)=0, y'(0) =1
12. y'+4y=1>+3¢, y(0) =0, y(0) =2
13, y' =2y +y=te+4, y0) =1, y(0)=1
14. y” +4y =3sin(2t), y(0) =2, y'(0)=-1

15. y"+2y' +5y =4e"cos(2t), y(0)=1, y(0) =0

In each of Problems 16 through 21:
a. Determine a suitable form for Y(f) if the method of
undetermined coefficients is to be used.
D b. Use a computer algebra system to find a particular solution
of the given equation.

16. y" +3y = 2t* + 273 +sin(31)

17. y" —35y' + 6y = ¢’ cos(2t) + e* (3t + 4) sint

18. y" 42y +2y =3¢~ +2e " cost +4e~"t?sint

19. y" 4+ 4y = t?sin(2t) + (6t + 7) cos(2t)

20. y" 43y +2y =e'(t> + 1) sin(2t) + 3¢~ cost + 4e’

21. y" +2y +5y =3te™ cos(2t) — 2te™* cost

22. Consider the equation

y// o 3}1/ _ 4}’ = 2e¢~* (34)

from Example 5. Recall that y;(f) = e~ and yy(1) = e* are

solutions of the corresponding homogeneous equation. Adapting the
method of reduction of order (Section 3.4), seek a solution of the
nonhomogeneous equation of the form Y (¢) = v(¢)y1(1) = v(t)e™,

where v(#) is to be determined.
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a. Substitute Y (1), Y'(1), and Y”(¢) into equation (34) and
show that v(#) must satisfy v/ — 5v' = 2.

b. Letw(t) = v/(¢) and show that w(z) satisfies w' — 5w = 2.
Solve this equation for w (7).

c. Integrate w(z) to find v(1) and then show that

2 1
Y(1) = —gl‘e—t o+ 501€4r + Czeﬁt.
The first term on the right-hand side is the desired particular

solution of the nonhomogeneous equation. Note that it is a

product of 7 and e™".

23. Determine the general solution of

N
Yy + A2y = Zam sin(mmt),
m=1
where A > Oand A # mmw form =1, ..., N.

() 24. Inmany physical problems the nonhomogeneous term may
be specified by different formulas in different time periods. As an
example, determine the solution y = ¢ (1) of

"y = t, O0<t=<m,
Y Y=g, t>m,

satisfying the initial conditions y(0) = 0 and y'(0) = 1. Assume that
y and y’ are also continuous at ¢ = 7. Plot the nonhomogeneous term
and the solution as functions of time. Hint: First solve the initial value
problem for ¢ < 7; then solve forz > m, determining the constants in
the latter solution from the continuity conditions at t = 7.

Behavior of Solutions as 7 — oo. In Problems 25 and 26, we
continue the discussion started with Problems 28 through 30 of Section
3.4. Consider the differential equation

ay” + by’ +cy = g(1), (35)

where a, b, and ¢ are positive.

25. If Y;(¢) and Y,(t) are solutions of equation (35), show that
Y,(t) — Yo(t) — Oast — oo. Is this result true if b = 07

26. Ifg(r) = d,aconstant, show that every solution of equation (35)
approaches d/c as t — co. What happens if ¢ = 0? What if b = 0
also?
27. Inthis problem we indicate an alternative procedure® for solving
the differential equation
Y +by' +ecy =(D*+bD +c)y = g(0), (36)

where b and ¢ are constants, and D denotes differentiation with respect
to ¢. Let r; and 7, be the zeros of the characteristic polynomial of the
corresponding homogeneous equation. These roots may be real and
different, real and equal, or conjugate complex numbers.

a. Verify that equation (36) can be written in the factored form

(D —r)(D—ry)y=g(1),

where r; + 1, = —band rjrp = c.

b. Let u = (D — rp)y. Then show that the solution of
equation (36) can be found by solving the following two first-
order equations:

(D—r)u=g(), (D—r)y=u).

In each of Problems 28 through 30, use the method of Problem 27 to
solve the given differential equation.

28. y"—3y —4y =3e¥ (see Example 1)
29. y" 42y +y=2e" (seeProblem 6)
30. y"+2y" =3+ 4sin(2t) (see Problem 5)

8R. S. Luthar, “Another Approach to a Standard Differential Equation,”
Two Year College Mathematics Journal 10 (1979), pp. 200-201. Also see
D. C. Sandell and F. M. Stein, “Factorization of Operators of Second-Order
Linear Homogeneous Ordinary Differential Equations,” Two Year College
Mathematics Journal 8 (1977), pp. 132-141, for a more general discussion
of factoring operators.

3.6 Variation of Parameters

In this section we describe a second method of finding a particular solution of a
nonhomogeneous equation. This method, variation of parameters, is due to Lagrange and
complements the method of undetermined coefficients rather well. The main advantage of
variation of parameters is that it is a general method; in principle at least, it can be applied
to any equation, and it requires no detailed assumptions about the form of the solution. In
fact, later in this section we use this method to derive a formula for a particular solution of
an arbitrary second-order linear nonhomogeneous differential equation. On the other hand, the
method of variation of parameters eventually requires us to evaluate certain integrals involving
the nonhomogeneous term in the differential equation, and this may present difficulties. Before
looking at this method in the general case, we illustrate its use in an example.

EXAMPLE 1

i —

Find the general solution of

y'+4y =8tant -—w/2<t<7/2 (D)

e

[

Solution:

Obserlve that this problem is not a good candidate for the method of undetermined coefficients, as
described in Section 3.5, because the nonhomogeneous term g(¢) = 8 tan ¢ involves a quotient (rather

than a S}lm or a product) of sin # and cos ¢. Therefore, the method of undetermined coefficients cannot
be applied; we need a different approach.

Observe also that the homogeneous equation corresponding to equation (1) is
Y +4y =0, @
and that the general solution of equation (2) is
Ye(t) = c1cos(2t) + ¢ sin(2t). 3)

The basic idea in the method of variation of parameters is similar to the method of reduction of
order introduced at the end of Section 3.4. In the general solution (3), replace the constants ¢; and ¢,
by funcFions uy (1) and u,(t), respectively, and then determine these functions so that the resulting
expression

y = uy(t) cos(2t) + uy(t) sin(2t) (D)
is a solution of the nonhomogeneous equation (1).

To determine u; and u,, we need to substitute for y from equation (4) in differential equation (1).
Howejver, even without carrying out this substitution, we can anticipate that the result will be a single
equation involving some combination of u;, u,, and their first two derivatives. Since there is only
one equation and two unknown functions, we can expect that there are many possible choices of
uy and u; that will meet our needs. Alternatively, we may be able to impose a second condition of
our own choosing, thereby obtaining two equations for the two unknown functions u; and u,. We

will soon show (following Lagrange) that it is possible to choose this second condition in a way that
makes the computation markedly more efficient.’

Returning now to equation (4), we differentiate it and rearrange the terms, thereby obtaining
¥ = —2u,(t) sin(2t) + 2u,(1) cos(2t) + uy (1) cos(2t) + ub(t) sin(2¢). 5)

Keeping in mind the possibility of choosing a second condition on u; and u,, let us require the sum
of the last two terms on the right-hand side of equation (5) to be zero; that is, we require that

uy (1) cos(2t) + ub(1) sin(2t) = 0. (6)
It then follows from equation (5) that
¥ = —2uy(t) sin(21) + 2uy(t) cos(2t). @)

Allthougl} the ul'timate effect of the condition (6) is not yet clear, the removal of the terms involving
uy and u;, has simplified the expression for y’. Further, by differentiating equation (7), we obtain

¥ = —4uy(t) cos(2t) — du,(1) sin(2t) — 2uf (1) sin(2¢) + 2u(1) cos(2t). (8)
Then, substituting for y and y” in equation (1) from equations (4) and (8), respectively, we find that

Y+ 4y = — duy(t) cos(2t) — 4uy(t) sin(2z) — 2u/ (1) sin(2¢) + 2u (1) cos(2r)
+ 4uy (1) cos(2t) + 4uy(t) sin(2t) = 8tant.

Hence u; and u, must satisfy
—2u (1) sin(21) + 2u)(t) cos(2¢) = 8tant. 9)

Summarizing our results to this point, we want to choose u; and u, so as to satisfy equations (6)
and (9). These equations can be viewed as a pair of linear algebraic equations for the two unknown
O .
quantities u/ (¢) and u’z(t) - Equations (6) and (9) can be solved in various ways. For example, solving
equation (6) for “/2( 1), we have
5 cos(2t)
u,(t) = —u' (1) —== .
2(1) 1 ( )sin(2t) (10
Then, substituting for Lt/z( t) in equation (9) and simplifying, we obtain

8tant sin(2¢) 5

’ _ .2
u (1) = 3 = —8sin” . (11)

17 to 19 in Section 7.9.

3.6 Variation of Parameters
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By examining the expression (30) and reviewing the process by which we derived it,
we can see that there may be two major difficulties in carrying out the method of variation
of parameters. As we have mentioned earlier, one is the determination of functions y1(t)
and y,(t) that form a fundamental set of solutions of the homogeneous equation (29) when
the coefficients in that equation are not constants. The other possible difficulty lies in the
evaluation of the integrals appearing in equation (30). This depends entirely on the nature of the
functions y;, y», and g. In using equation (30), be sure that the differential equation is exactly
in the form (28); otherwise, the nonhomogeneous term g(t) will not be correctly identified.

A major advantage of the method of variation of parameters is that equation (30) provides
an expression for the particular solution Y(¢) in terms of an arbitrary forcing function g(1).
This expression is a good starting point if you wish to investigate the effect of variations in the
forcing function, or if you wish to analyze the response of a system to a number of different
forcing functions. (See Problems 18 to 22.)

pDlems

In each of Problems | through 3, use the method of variation of
parameters to find a particular solution of the given differential
equation. Then check your answer by using the method of
undetermined coefficients.

1. y'—=5y +6y=2¢
y// _ y/ _ 2y —2e¢!
4y" —4y' +y = 16e'/2
In each of Problems 4 through 9, find the general solution of the
given differential equation. In Problems 9, g is an arbitrary continuous
function.

4. y'+y=tant, 0<t<7/2
'+ 9y =9sec’(3t), 0<t<m/6
y'+4y +4y=1t"2e*, t>0
4y" +y=2sec(t/2), —m<t<m
y//_2y/+y :e’/(l +t2)
y" — 5y + 6y =g(t)
In each of Problems 10 through 15, verify that the given functions
y; and y, satisfy the corresponding homogeneous equation; then
find a particular solution of the given nonhomogeneous equation. In
Problems 14 and 15, g is an arbitrary continuous function.
10. 2y —2y=32—-1, t>0; wn()= 2, yy(t) =t}
11, 2y —t(t+2)y +(t+2)y= 23, t>0;
() =t, y(t) =te

12. ty'—(1+0)y'+y = 2%, t>0; yi(0) =1+, () =¢
13. x2y" —3xy +4y =x*Inx, x> 0; yi(x) = #2,
yo(x) = x%Inx

W

© % N w;

14, x2y" 4+ xy +(x% — }I)y =3x3%sinx, x> 0;

yi(x) =x"2sinx, ya(x) = x /2 cosx

15. x%y" +xy 4+ (x2 —0.25)y = g(x), x> 0;
yi(x) = x"2sinx, y(x) = x~ /2 cosx
16. By choosing the lower limit of integration in equation (30) in the

17. Show that the solution of the initial value problem
Liyl = y" + p(£)y +q(D)y = g(t),  y(o) = yo. ¥'(t0) =Yp
(32)
can be written as y = u(t) + v(t), where u and v are solutions of the
two initial value problems
u(to) = yo, (%) = Yo (33)
v(tp) =0, V(1) =0, (34

Liu] =0,
Lv] = g(1),

respectively. In other words, the nonhomogeneities in the differential
equation and in the initial conditions can be dealt with separately.
Observe that u is easy to find if a fundamental set of solutions of
L[u] = 0 is known. And, as shown in Problem 16, the function v

is given by equation (30).
18. a. Use the result of Problem 16 to show that the solution of the
initial value problem

Y +y=g(®), ¥t) =0, ¥(t) =0 (35)
is
t
y= / sin(t — s) g(s) ds. (36)
L)

b. Use the result of Problem 17 to find the solution of the initial
value problem

Y +y=g(®, ¥0) =y, ¥(0) =y
19. Use the result of Problem 16 to find the solution of the initial
value problem

Liyl=g(t), (o) =0, ¥ () =0,

where L[y] = (D —a)(D—b)y for real numbers a and b with a # b.
Note that L[y] = ¥ — (a + b)y" + aby.
20. Use the result of Problem 16 to find the solution of the initial

21. Use the result of Problem 16 to find the solution of the initial
value problem

Liyl=g(1), y(t) =0, y'(t) =0,

where L[y] = (D — a)?y, thatis, L[y] = y” — 2ay’ + a2y, and a is
any real number.

22. By combining the results of Problems 19 through 21, show that
the solution of the initial value problem

Lyl =(D*+bD+c)y =g(1), ¥(t) =0, ¥'(t) =0,

where b and ¢ are constants, can be written in the form
t
y=6(1) =/ K(1 —5)g(s)ds, 37)
Ty

where the function K depends only on the solutions y; and y, of
the corresponding homogeneous equation and is independent of the
nonhomogeneous term. Once K is determined, all nonhomogeneous
problems involving the same differential operator L are reduced to
the evaluation of an integral. Note also that although K depends on
both 7 and s, only the combination ¢ — s appears, so K is actually a
function of a single variable. When we think of g(#) as the input to
the problem and of ¢ (#) as the output, it follows from equation (37)
that the output depends on the input over the entire interval from the
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initial point ¢, to the current value ¢. The integral in equation (37) is
called the convolution of K and g, and K is referred to as the kernel.

23. The method of reduction of order (Section 3.4) can also be used
for the nonhomogeneous equation

Y+ p(0)y +q()y = g(t), (38)

provided one solution y; of the corresponding homogeneous equation

is kr}own. Let y = v(#) y1(¢) and show that y satisfies equation (38)
if v is a solution of

(V" + (2910 + p(Dy1())v' = g(1). (39)

Equation (39) is a first-order linear differential equation for v’. By
solving equation (39) for v/, integrating the result to find v, and
then multiplying by y;(¢), you can find the general solution of
equation (38). This method simultaneously finds both the second
homogeneous solution and a particular solution.

In each of Problems 24 through 26, use the method outlined in Problem
23 to solve the given differential equation.

24, 2y —2uy 42y =41, t>0; y (1) =t
25, 2y"+ 7ty +5y=t, t>0; y(t) ="
260 ty" —(14+0)y +y=12%, t >0, y(t) =141 (see

Problem 12)

3.7 Mechanical and Electrical Vibrations

One of the reasons why second-order linear differential equations with constant coefficients
are worth studying is that they serve as mathematical models of many important physical
processes. Two important areas of application are the fields of mechanical and electrical
oscillations. For example, the motion of a mass on a vibrating spring, the torsional oscillations
ofa s‘haft with a flywheel, the flow of electric current in a simple series circuit, and many other
physical problems are all described by the solution of an initial value problem of the form

ay’ +by +cy =g(1), ¥(0) =yo, ¥'(0) =y M

This illustrates a fundamental relationship between mathematics and physics: many
physical problems may have mathematically equivalent models. Thus, once we know ‘how to
solve the initial value problem (1), it is only necessary to make appropriate interpretations of
the constants a, b, and ¢, and of the functions y and g, to obtain solutions of different physical

problems.

We will study the motion of a mass on a spring in detail because understanding the
behavior of this simple system is the first step in the investigation of more complex vibratin
systems. Further, the principles involved are common to many problems. )

Consider a mass /n hanging at rest on the end of a vertical spring of original length [
as sk}(?wn in Figure 3.7.1. The mass causes an elongation L of the spring in the downwarci
(p031t.1ve) direction. In this static situation there are two forces acting at the point where the
mass is attached to the spring; see Figure 3.7.2. The gravitational force, or weight of the mass
'acts downward and has magnitude w = mg, where g is the acceleration due to gravity. There:
18 also a force Fy, due to the spring, that acts upward. If we assume that the elongation L

of the spring is small, the spring force is very nearly proportional to L; this is known as

value problem
10 :
Hooke’s! law. Thus we write F; = —kL, where the constant of proportionality & is called the

text as the initial point 7y, show that Y (t) becomes

Yy = /’ 1(8)y2(1) = 31D y2(s)
- y1(9) y5(s) — ¥1(8) y2(s)

o(s)ds. Lyl =g(t), () =0, ¥'(t)) =0,

e
Mi()‘bert H(.)oke (1635—'1703) was an English scientist with wide-ranging interests. His most important book
s 1,a igmfplita, was published in 1665 and described a variety of microscopical observations. Hooke first pub]jsheci
of elastic behavior in 1676 as ceiiinosssttuv; in 1678 he gave the interpretati i0 Sic Vi. i
' ; H ation ut tensio s
roughly, “as the force so is the displacement.” } ! 10 s v which means,

0 where L[y] = (D — (A + iu))(D — (A — ip))y; that is,
LIyl = y'—2\y'+(A2+?) y. Note that the roots of the characteristic

Show that Y () is a solution of the initial value problem
equation are A &= ip.

Liyl=g(t), ¥(t) =0, ¥'(to) =0.
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CHAPTER 2

3 Second-Order Linear Differential Equations

Resistance R Capacitance C
AW L

(1 Inductance L

Impressed voltage E(z)

| A simple electric circuit.

cti A second example of the occurrence of second-order linear differential
equatlons with constant coefficients is their use as a model of the flow of electric current
in the simple series circuit shown in Figure 3.7.9. The current /, measured in amperes (A),
is a function of time . The resistance R in ohms (£)), the capacitance C in farads (F), and
the inductance L in henrys (H) are all positive and are assumed to be known constants. The
impressed voltage E in volts (V) is a given function of time. Another physical quantity that
enters the discussion is the total charge Q in coulombs (C) on the capacitor at time ¢. The
relation between charge Q and current / is

_ 49
S odt’
The flow of current in the circuit is governed by Kirchhoff’s'! second law: In a closed

circuit the impressed voltage is equal to the sum of the voltage drops in the rest of the circuit.
According to the elementary laws of electricity, we know that

(€29)

The voltage drop across the resistor is R1.

The voltage drop across the capacitor is -Q—

I
The voltage drop across the inductor is L d—

Hence, by Kirchhoff’s law,
dl
L— +RI+ 7 Q E(1). (32)
The units for voltage, resistance, current, charge, capacitance, inductance, and time are all
related:
1 volt = 1 ohm - 1 ampere = 1 coulomb/1 farad = 1 henry - 1 ampere/1 second.

Substituting for I from equation (31), we obtain the differential equation

1
LO"+RQ'+ =0 =E®) (33)
for the charge Q. The initial conditions are
(1) = Qo,  Q'(ty) = I(to) = I. (34)

Thus to know the charge at any time it is sufficient to know the charge on the capacitor and
the current in the circuit at some initial time #,.
Alternatively, we can obtain a differential equation for the current 7 by differentiating

equation (33) with respect to ¢, and then substituting for dQ/dr from equation (31). The
result is

1
LI" +RI' + —C—I = E'(1), (35)
with the initial conditions

I(to) = 1o, I'(t) =1 (36)

" Gustav Kirchhoff (1824-1887) was a German physicist and professor at Breslau, Heidelberg, and Berlin. He
formulated the basic laws of electric circuits about 1845 while still a student at Albertus University in his native
Konigsberg. In 1857 he discovered that an electric current in a resistanceless wire travels at the speed of light. He

is also famous for fundamental work in electromagnetic absorption and emission and was one of the founders of
spectroscopy.

3.7 Mechanical and Electrical Vibrations

From equation (32) it follows that

E(ty) — RIy — %0—
L= ‘ 37
0 7 @37
Hence 1 is also determined by the initial charge and current, which are physically measurable

quant1t1es

The most important conclusion from this discussion is that the flow of current in the circuit
is described by an initial value problem of precisely the same form as the one that describes the
motion of a spring-mass system. This is a good example of the unifying role of mathematics:
once you know how to solve second-order linear equations with constant coefficients, you can
interpret the results in terms of mechanical vibrations, electric circuits, or any other physical
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situation that leads to the same problem.

In each of Problems | and 2, determine w, R, and § so as to write the
given expression in the form u = R cos(wof — 6).

1. u = 3cos(2t) + 4sin(2t)

2. u=—2cos(mwt) —3sin(mt)

3. A mass of 100 g stretches a spring 5 cm. If the mass is set in
motion from its equilibrium position with a downward velocity of
10 cm/s, and if there is no damping, determine the position u of the
mass at any time ¢. When does the mass first return to its equilibrium
position?

4. A mass weighing 3 Ib stretches a spring 3 in. If the mass is
pushed upward, contracting the spring a distance of 1 in and then set in
motion with a downward velocity of 2 ft/s, and if there is no damping,
find the position u of the mass at any time ¢. Determine the frequency,
period, amplitude, and phase of the motion.

@ 5. A massof 20 g stretches a spring 5 cm. Suppose that the
mass is also attached to a viscous damper with a damping constant of
400 dyn-s/cm. If the mass is pulled down an additional 2 cm and then
released, find its position u at any time ¢. Plot u versus ¢. Determine the
quasi-frequency and the quasi-period. Determine the ratio of the quasi-
period to the period of the corresponding undamped motion. Also find
the time 7 such that |u(7)| < 0.05 cm forall t > 7.

6. A spring is stretched 10 cm by a force of 3 N. A mass of 2 kg
is hung from the spring and is also attached to a viscous damper that
exerts a force of 3 N when the velocity of the mass is 5 m/s. If the mass
is pulled down 5 cm below its equilibrium position and given an initial
downward velocity of 10 cm/s, determine its position u at any time ¢.
Find the quasi-frequency x and the ratio of u to the natural frequency
of the corresponding undamped motion.

7. A series circuit has a capacitor of 10~ F, a resistor of 3 x 10% 2,
and an inductor of 0.2 H. The initial charge on the capacitor is 107 C
and there is no initial current. Find the charge Q on the capacitor at
any time 7.

8. A vibrating system satisfies the equation " +~u'+u = 0. Find
the value of the damping coefficient ~ for which the quasi-period of
the damped motion is 50% greater than the period of the corresponding
undamped motion.

9, Show that the period of motion of an undamped vibration of
a mass hanging from a vertical spring is 2w/ L/g, where L is the
elongation of the spring due to the mass, and g is the acceleration due
to gravity.

10. Show that the solution of the initial value problem

mu" +yu Fku=0, ulty) =up, u'(ty) = U

can be expressed as the sum u = v + w, where v satisfies the initial
conditions v(y) = ug,v'(fy) = 0, w satisfies the initial conditions
w(ty) = 0,w'(1y) = uy,and both v and w satisfy the same differential
equation as . This is another instance of superposing solutions of
simpler problems to obtain the solution of a more general problem.

11. a. Show that Acos (wot) + B sin(wot) can be written in the
form 7 sin(wqt — @). Determine  and 6 in terms of A and B.
b. If Rcos(wot — §) = rsin(wet — 0), determine the
relationship among R, r, §, and 0.

12. If a series circuit has a capacitor of C = 0.8 x 107 F and an
inductor of L = 0.2 H, find the resistance R so that the circuit is
critically damped.

13. Assume that the system described by the differential equation
mu” +~u' +ku = 0 is either critically damped or overdamped. Show
that the mass can pass through the equilibrium position at most once,
regardless of the initial conditions.

Hint: Determine all possible values of ¢ for which u = 0.

14. Assume that the system described by the differential equation
mu" 4+~yu'+ku = 0 is critically damped and that the initial conditions
are u(0) = ug, u'(0) = vo. lf vy = 0, show that u — O ast — o0
but that u is never zero. If ug is positive, determine a condition on vq
that will ensure that the mass passes through its equilibrium position
after it is released.

15. Logarithmic Decrement. a. For the damped oscillation

described by equation (26), show that the time between successive

maxima is Ty = 27/ p.
b. Show that the ratio of the displacements at two successive
maxima is given by exp(y7;/(2m)). Observe that this ratio
does not depend on which pair of maxima is chosen. The natural
logarithm of this ratio is called the logarithmic decrement and
is denoted by A.
c. Showthat A = 7+/(mpu).Sincem, u,and A are quantities
that can be measured easily for a mechanical system, this result
provides a convenient and practical method for determining
the damping constant of the system, which is more difficult to
measure directly. In particular, for the motion of a vibrating
mass in a viscous fluid, the damping constant depends on the
viscosity of the fluid; for simple geometric shapes the form of
this dependence is known, and the preceding relation allows the
experimental determination of the viscosity. This is one of the
most accurate ways of determining the viscosity of a gas at high
pressure.
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16. Referring to Problem 15, find the logarithmic decrement of the
system in Problem 5.

17. The position of a certain spring-mass system satisfies the initial
value problem

—;—u” +ku=0, u(0) =2, 0 =v.

If the period and amplitude of the resulting motion are observed to be
7 and 3, respectively, determine the values of k and v.

18. Consider the initial value problem
mu” +yu' +ku=0, u(0)=uy u'(0) =y

Assume that y2 < 4km.
a. Solve the initial value problem.
b. Write the solution in the form u() = Re™""/(™ cos(put—6).
Determine R in terms of m, 7y, k, ug, and vq.
c. Investigate the dependence of R on the damping coefficient
~ for fixed values of the other parameters.

19. A cubic block of side / and mass density p per unit volume is
floating in a fluid of mass density p( per unit volume, where py > p.
If the block is slightly depressed and then released, it oscillates in the
vertical direction. Assuming that the viscous damping of the fluid and
air can be neglected, derive the differential equation of motion and
determine the period of the motion.

Hint: Use Archimedes’!? principle: an object that is completely or
partially submerged in a fluid is acted on by an upward (buoyant) force
equal to the weight of the displaced fluid.

20).  The position of a certain undamped spring-mass system satisfies
the initial value problem

W +2u=0, u(0)=0, «'(0)=2.

a. Find the solution of this initial value problem.

@ b. Plot u versus ¢ and u’ versus ¢ on the same axes.

@ c. Plotu’ versus u; that is, plot u(¢) and »/(¢) parametrically
with ¢ as the parameter. This plot is known as a phase plot, and
the uu’-plane is called the phase plane. Observe that a closed
curve in the phase plane corresponds to a periodic solution u(t).
What is the direction of motion on the phase plot as ¢ increases?

21. The position of a certain spring-mass system satisfies the initial
value problem

1
u' + Zu’ +2u=0, u(0)=0, #(0) =2.

a. Find the solution of this initial value problem.

@ b. Plot u versus t and «’ versus ¢ on the same axes.

@ c. Plot u’ versus u in the phase plane (see Problem 20).
Identify several corresponding points on the curves in parts b and
c. What is the direction of motion on the phase plot as ¢ increases?

22. In the absence of damping, the motion of a spring-mass system
satisfies the initial value problem

mu” +ku=0, u(0)=a, u'(0)=>.

a. Show that the kinetic energy initially imparted to the mass
is mb®/2 and that the potential energy initially stored in the
spring is ka?/2, so initially the total energy in the system is
(ka® +mb?) /2.

b. Solve the given initial value problem.

¢. Using the solution in part b, determine the total energy in the
system at any time 7. Your result should confirm the principle of
conservation of energy for this system.

23. Suppose that a mass m slides without friction on a horizontal
surface. The mass is attached to a spring with spring constant k, as
shown in Figure 3.7.10, and is also subject to viscous air resistance
with coefficient y. Show that the displacement u(¢) of the mass
from its equilibrium position satisfies equation (21). How does the
derivation of the equation of motion in this case differ from the
derivation given in the text?

u(t)
k

m

1o/l A spring-mass system.

24. Inthe spring-mass system of Problem 23, suppose that the spring
force is not given by Hooke’s law but instead satisfies the relation

Fy = —(ku + EMB),

where k > 0 and e is small but may be of either sign. The spring is
called a hardening spring if ¢ > 0 and a softening spring if ¢ < 0.
Why are these terms appropriate?
a. Show that the displacement u(z) of the mass from its
equilibrium position satisfies the differential equation

mu" +yu' +ku+ eu® = 0.
Suppose that the initial conditions are
u(0) =0, #(0)=1.

In the remainder of this problem, assume thatm = 1,k = 1, and
v =0.

b. Find u(#) when e = 0 and also determine the amplitude and
period of the motion.

@ c. Let ¢ = 0.1. Plot a numerical approximation to the
solution. Does the motion appear to be periodic? Estimate the
amplitude and period.

@ d. Repeat part ¢ for e = 0.2 and ¢ = 0.3.

@ e. Plot your estimated values of the amplitude A and the
period T versus €. Describe the way in which A and T,
respectively, depend on €.

@ f. Repeat parts c, d, and e for negative values of €.

12 Archimedes (287-212 BCE) was the foremost of the ancient Greek
mathematicians. He lived in Syracuse on the island of Sicily. His most notable
discoveries were in geometry, but he also made important contributions to
hydrostatics and other branches of mechanics. His method of exhaustion is a
precursor of the integral calculus developed by Newton and Leibniz almost
two millennia later. He died at the hands of a Roman soldier during the Second
Punic War.

3.8  Forced Periodic Vibrations

We will now investigate the situation in which a periodic external force is applied to a spring-
mass system. The behavior of this simple system models that of many oscillatory systems with
an external force due, for example, to a motor attached to the system. We will first consider
the case in which damping is present and will look later at the idealized special case in which
there is assumed to be no damping.

yreed Vibrations with Damping.  The algebraic calculations can be fairly complicated in
this kind of problem, so we will begin with a relatively simple example.

EXAMPLE 1

Suppose that the motion of a certain spring-mass system satisfies the differential equation
5
u"+u/+zu=3cost €))

and the initial conditions
uw(0) =2, u'(0) =3. (2

Find the solution of this initial value problem and describe the behavior of the solution for
large t.

Solution:

The homogeneous equation corresponding to equation (1) has the characteristic equation
5 ., . .

r24r+ g = 0 with roots r = -3 =+ i. Thus a general solution u.(¢) of this homogeneous

equation is

—t/2

ue(t) = cye*cost + ce"/*sint. ?3)

A particular solution of equation (1) has the form U(f) = Acost + Bsint, where A and B
are found by substituting U(#) for u in equation (1). We have U'(¢) = —Asint + Bcost and
U"(t) = —Acost — Bsint. Thus, from equation (1) we obtain

1
(%A—i— B> cost + (—A + ZB> sint = 3cost.

Consequently, A and B must satisfy the equations

1 1
—A B :3, "‘A _B :05
4 + * 4

12 48 2
with the result that A = 7 and B = T Therefore, the particular solution is
12 48
U(t) :1—7cost+ﬁsint, “4)
and the general solution of equation (1) is
12 48 .
u=u(t) +U(t) = cre”/*cost + coe™"/?sint + = cost + 7 sint. %)

The remaining constants ¢; and ¢, are determined by the initial conditions (2). From
equation (5), and its first derivative, we have
48

12 , 1
M(O)—-Cl+-ﬁ——2, M(O)——501+02+ﬁ——3,

14
S0 ¢ = % and ¢, = T Thus we finally arrive at the solution of the given initial value problem

(1), (2), namely,

22 14 12 48
U= 1—78_'/2cost+ﬁe't/zsint+1—7005t+ﬁsint. (6)

The graph of the solution (6) is shown by the green curve in Figure 3.8.1.
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Y

A graph of this solution is shown in Figure 3.8.7. The amplitude variation has a slow frequency of
0.1 and a corresponding slow period of 27t /0.1 = 207 . Note that a half-period of 107 corresponds
to a single cycle of increasing and then decreasing amplitude. The displacement of the spring-mass
system oscillates with a relatively fast frequency of 0.9, which is only slightly less than the natural

frequency wy.

Now imagine that the forcing frequency w is increased, say, to w = 0.9. Then the slow
frequency is halved to 0.05, and the corresponding slow half-period is doubled to 207 . The multiplier
2.7778 also increases substantially, to 5.263. However, the fast frequency is only marginally
increased, to 0.95. Can you visualize what happens as w takes on values closer and closer to the

natural frequency wo = 1?

u
u =2.778sin (0.1¢)
3 / u =2.778sin (0.1¢) sin (0.9¢)
//“/ \'\ lff/ \\x
2= ’ X
/I \ /i
1 //' " <
- \
/ A
j 1 M | L1
A 10 20 30 | |40 50
\\ 7\
1 II \
\\\ / \\
;] = 4
2 N ¥ \ %,
Saner u=-2.77778sin (0.1t) S~ .-°
-3+

1
force F(t) = 3 c0s(0.8¢).

© A beat; the solution (solid blue) of equation (22): u” + u = % c0s(0.87),
u(0) =0, u'(0) = 0isu = 2.778sin (0.1¢) sin(0.9¢). The dashed red curve is the external

problem is

b
U= —S81nft.
4

The graph of the solution is shown in Figure 3.8.8.

u

10—
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7 and the initial conditions require that ¢; = ¢, = 0. Thus the solution of the given initial value

(26)

~10+

1 t
u +u= Ecost, u(0) =0,u4'(0) =0isu = Zsint‘

Now let us return to equation (17) and consider the case of resonance, where w = wy;
that is, the frequency of the forcing function is the same as the natural frequency of the system.
Then the nonhomogeneous term Fy cos(w?) is a solution of the homogeneous equation. In this
case the solution of equation (17) is

F
U = c1Ccoswot + ¢ sinwot + 0 tsin(wot). 24
2 Wo
Consider the following example.
EXAMPLE 4
Solve the initial value problem
1
w4+ u= Ecost, u(0) =0, u'(0) =0, (25)

and plot the graph of the solution.

Solution:

The general solution of the differential equation is

. r .
U =1 COSt + ¢y 8Int + Zsmt,

40 t

: Resonance; the solution (solid blue) of equation (25):

Because of the term ¢ sin(wgt), the solution (24) predicts that the motion will become
unbounded as ¢ — oo regardless of the values of ¢; and ¢,, and Figure 3.8.8 bears this
out. Of course, in reality, unbounded oscillations do not occur, because the spring cannot
stretch infinitely far. Moreover, as soon as u becomes large, the mathematical model on
which equation (17) is based is no longer valid, since the assumption that the spring force
depends linearly on the displacement requires that u be small. As we have seen, if damping
is included in the model, the predicted motion remains bounded; however, the response to the
input function F, cos(wt) may be quite large if the damping is small and w is close to wo.

Problems

In each of Problems | through 3, write the given expression as a
product of two trigonometric functions of different frequencies.

1. sin(7¢) — sin(6¢)

2. cos(7t) + cos(2mt)

3. sin(3¢t) + sin(41)

4. A mass of 5 kg stretches a spring 10 cm. The mass
is acted on by an external force of 10sin(z/2) N (newtons)
and moves in a medium that imparts a viscous force of 2 N
when the speed of the mass is 4 cm/s. If the mass is set in motion from
its equilibrium position with an initial velocity of 3 cm/s, formulate
the initial value problem describing the motion of the mass.

5. a. Find the solution of the initial value problem in

Problem 4.
b. Identify the transient and steady-state parts of the solution.
@ c. Plot the graph of the steady-state solution.

@ d. If the given external force is replaced by a force of
2cos(wt) of frequency w, find the value of w for which the
amplitude of the forced response is maximum.

(D 6. A mass that weighs 8 Ib stretches a spring 6 in. The system
is acted on by an external force of 8 sin(8¢) 1b. If the mass is pulled
down 3 in and then released, determine the position of the mass at any
time. Determine the first four times at which the velocity of the mass
is zero.

7. A spring is stretched 6 in by a mass that weighs 8 Ib. The mass
is attached to a dashpot mechanism that has a damping constant of

1
7 1b-s/ft and is acted on by an external force of 4 cos(2¢) 1b.

a. Determine the steady-state response of this system.

b. If the given mass is replaced by a mass m, determine the
value of m for which the amplitude of the steady-state response
is maximum.
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8. A spring-mass system has a spring constant of 3 N/m. A mass of
2 kg is attached to the spring, and the motion takes place in a viscous
fluid that offers a resistance numerically equal to the magnitude of the
instantaneous velocity. If the system is driven by an external force
of (3cos(3t) — 2sin(3r)) N, determine the steady-state response.
Express your answer in the form R cos(wt — §).

9. In this problem we ask you to supply some of the details in the
analysis of a forced damped oscillator.
a. Derive equations (10), (11), and (12) for the steady-state
solution of equation (8).
b. Derive the expression in equation (13) for Rk/ Fy.
¢. Show that w?nax and R, are given by equations (14) and
(15), respectively.
d. Verify that Rk/Fy, w/wg, and I' = ~%/(mk) are all
dimensionless quantities.
10. Find the velocity of the steady-state response given by
equation (10). Then show that the velocity is maximum when w = w,.

11. Find the solution of the initial value problem
u +u=F(), u0) =0, u'(0) =0,

where
Fyt, 0<t<m,
F(t) =< FpQmr —t), @ <t<2m,
0, 21 < t.

Hint: Treat each time interval separately, and match the solutions in
the different intervals by requiring » and «’ to be continuous functions
of .

@ 12. A series circuit has a capacitor of 0.25 x 107 F, a resistor
of 5x 10% 2, and an inductor of 1 H. The initial charge on the capacitor
is zero. If a 12 V battery is connected to the circuit and the circuit is
closed at t = 0, determine the charge on the capacitor at r = 0.001 s,
at ¢ = 0.01 s, and at any time ¢. Also determine the limiting charge as
t — o0.

D 13. Consider the forced but undamped system described by the
initial value problem

u" 4+u=23cos(wt), u(0) =0, u'(0)=0.

a. Find the solution u(t) forw # 1.

@ b. Plot the solution u(t) versus ¢ forw = 0.7, w = 0.8, and
w = 0.9. Describe how the response u(#) changes as w varies in
this interval. What happens as w takes on values closer and closer
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to 1?7 Note that the natural frequency of the unforced system is
wop = 1.
14.  Consider the vibrating system described by the initial value
problem
u” +u=23cos(wt), u(0) =1, u'(0)=1.

a. Find the solution for w # 1.

@ b. Plot the solution u(7) versus ¢ for w = 0.7, w = 0.8, and
w = 0.9. Compare the results with those of Problem 13 that is,
describe the effect of the nonzero initial conditions.

© 15. For the initial value problem in Problem 13, plot u’ versus
uforw = 0.7, w = 0.8, and w = 0.9. (Recall that such a plot is
called a phase plot.) Use a ¢ interval that is long enough so that the
phase plot appears as a closed curve. Mark your curve with arrows to
show the direction in which it is traversed as ¢ increases.

Problems 16 through 18 deal with the initial value problem

1
w'+ cu' +4u=F(), u(0)=2, «(0)=0.

In each of these problems:

@ a. Plot the given forcing function F'(¢) versus ¢, and also plot
the solution u(¢) versus ¢ on the same set of axes. Use a ¢ interval
that is long enough so the initial transients are substantially
eliminated. Observe the relation between the amplitude and
phase of the forcing term and the amplitude and phase of the
response. Note that wg = \/k/m = 2.

© b. Draw the phase plot of the solution; that is, plot u” versus
u.

16. F(t) =3cos(t/4)

17. F(t) = 3cos(2t)

18. F(t) = 3cos(6t)

@ 19. A spring-mass system with a hardening spring (Problem 24
of Section 3.7) is acted on by a periodic external force. In the absence

of damping, suppose that the displacement of the mass satisfies the
initial value problem

1
W+ u+ §u3 =coswt, u(0)=0, u'(0) =0.

a. Let w = 1 and plot a computer-generated solution of the
given problem. Does the system exhibit a beat?

b. Plot the solution for several values of w between 1/2 and 2.
Describe how the solution changes as w increases.
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Higher-Order Linear
Differential Equations

The theoretical structure and methods of solution developed in the preceding chapter for
second-order linear equations extend directly to linear equations of third and higher order.
In this chapter we briefly review this generalization, taking particular note of those instances
where new phenomena may appear, because of the greater variety of situations that can occur
for equations of higher order.

s1  General Theory of nth Order
Linear Differential Equations

An n'™ order linear differential equation is an equation of the form

dny dn—]y dy _
Py(1) o + PI(I)W o v = Pn-—l(t)a + Py(1)y = G(1). M
We assume that the functions Py, ..., Py, and G are continuous real-valued functions on

some interval I: o < t < [3, and that P, is nowhere zero in this interval. Then, dividing
equation (1) by Py(t), we obtain
ar dn—l y

y dy
S + = g(1). 2
Ll=—2+Pp(O) o + Pu-1(1) == + Pa()y = 8(2) )

The linear differential operator L of order n defined by equation (2) is similar to the second-
order operator introduced in Chapter 3. The mathematical theory associated with equation (2)
is completely analogous to that for the second-order linear equation; for this reason we simply
state the results for the n™ order problem. The proofs of most of the results are also similar to
those for the second-order equation and are usually left as exercises.

Since equation (2) involves the n'™ derivative of y with respect to ¢, it will, so to speak,
require 7 integrations to solve equation (2). Each of these integrations introduces an arbitrary
constant. Hence we expect that to obtain a unique solution it is necessary to specify » initial
conditions

- 1
y(t0) = Yo, Y'(t0) =¥ -+, YD (to) = y(()” y, 3

s . . -1 .
where #, may be any point in the interval I and yo, y;, . . , y(()" ) are any prescribed real

constants. The following theorem, which is similar to Theorem 3.2.1, guarantees that the initial
value problem (2), (3) has a solution and that it is unique.

Theorem 4.1.1

If the functions py, pa, - .. » pu,and g are continuous on the open interval I, then there exists exactly
one solution y = ¢(¢) of the differential equation (2) that also satisfies the initial conditions (3),
where f, is any point in /. This solution exists throughout the interval 7.




