\ 4 The main purpose of this example is to illustrate that sometimes the solution must be left in terms
of an integral. This is usually at most a slight inconvenience, rather than a serious obstacle. For a given
value of 7, the integral in equation (47) is a definite integral and can be approximated to any desired
degree of accuracy by using readily available numerical integrators. By repeating this process for
many values of # and plotting the results, you can obtain a graph of a solution. Alternatively, you can
use a numerical approximation method, such as those discussed in Chapter 8, that proceed directly
from the differential equation and need no expression for the solution. Software packages such as
Maple, Mathematica, MATLAB and Sage readily execute such procedures and produce graphs of
solutions of differential equations.

Figure 2.1.4 displays graphs of the solution (47) for several values of c. The particular solution
satisfying the initial condition y(0) = 1 is shown in black. From the figure it may be plausible to
conjecture that all solutions approach a limit as  — oc. The limit can also be found analytically (see
Problem 22).
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f'i Integral curves of 2y’ +ty = 2; the green curve is the particular
solution satisfying the initial condition y(0) = 1.

In each of Problems | through &: 9. y—y=2e* y0) =1
© a. Drawa dir?ction field for the .give.n ditiferentia] equation. 10. y+2y=te 2, y(1)=0
b. Based on an inspection of the direction field, describe how 2 o
solutions behave for large . 11. y + ?y £ o yr)=0, t>0

¢. Find the general solution of the given differential equation, 5 ,

and use it to determine how solutions behave as 1 — ©0. 2: oy HE+Dy=6 Y=, 250

Y43y =tte ¥ In each of Problems 13 and 14: .

g ’ € a. Draw a direction field for the given differential equation.
How do solutions appear to behave as r becomes large? Does the
V+y=te " +1 behavior depend on the choice of the initial value a? Let ay be
the value of a for which the transition from one type of behavior
to another occurs. Estimate the value of .

(==Y

y/ S 2)' = 126’2[

W o =

1
4. y’+l—y=3cos(2t), >0

5. y —2y=23¢ b. S(l)lve the initial value problem and find the critical value a,
exactly.
6. p = = 2t . . . .
byt § B0 ¢. Describe the behavior of the solution corresponding to the
! % I
7. ¥y +y=>5sin(2t) initial value ay.

8. 2y +y=372
In each of Problems 9 through 12, find the solution of the given initial
value problem. 4 3 =y=g T 0~y

1
13. y’——2—y=2cost, y(0) =a



In each of Problems !5 and 16:

€2 2. Draw a direction field for the given differential equation.
How do solutions appear to behave as t+ — 0? Does the behavior
depend on the choice of the initial value a? Let a,, be the critical
value of a, that is, the initial value such that the solutions for
a < ay and the solutions for ¢ > a, have different behaviors as
t — oo. Estimate the value of ay.

b. Solve the initial value problem and find the critical value a
exactly.

¢, Describe the behavior of the solution corresponding to the
initial value ay).

ty' +(t+ Dy =2e",
. (sint)y" + (cost)y = ¢,

y(1) =a, t>0
y()=a, 0<t<m

[y
U

=

17. Consider the initial value problem
1
y + 5y = 2cost, y(0) =—1.

Find the coordinates of the first local maximum point of the solution
fort > 0.

O 18.

Consider the initial value problem

. B 1
)’+§Y=1—"f, y(0) = yo.

2
Find the value of y, for which the solution touches, but does not cross,
the r-axis.
19.  Consider the initial value problem

|
v+ = 3+2cos(21), y(0) =0.

a. Find the solution of this initial value problem and describe its
behavior for large 7.

@3 b. Determine the value of ¢ for which the solution first
intersects the line y = 12.

20. Find the value of y, for which the solution of the initial value
problem

y' —y=1+3sint, y(0) =y,

remains finite as 1 — oc.

21. Consider the initial value problem

3
Y —sy=3t+2 y(0) =y

Find the value of y, that separates solutions that grow positively as
t — oo from those that grow negatively. How does the solution that
corresponds to this critical value of y, behave as t — oo?

22. Show that all solutions of 2y" + ry = 2 [equation (41) of the
text] approach a limit as 1 — oc, and find the limiting value.
Hint: Consider the general solution, equation (47). Show that the first

term in the solution (47) is indeterminate with form O - oc. Then, use
I’Hopital’s rule to compute the limit as 1 — oo.

23. Show that if @ and A are positive constants, and b is any real
number, then every solution of the equation
y +ay =be
has the property that y — O ast — oo.
Hint: Consider the cases a = A and a # A separately.

In each of Problems 24 through 27, construct a first-order linear
differential equation whose solutions have the required behavior as
t — oo. Then solve your equation and confirm that the solutions do
indeed have the specified property.

24.  All solutions have the limit 3 as r — oc.

25. All solutions are asymptotic to the line y = 3 —f ast — oo.
26. All solutions are asymptotic to the line y = 2t — 5 as 1 — oo.
27. All solutions approach the curve y = 4 — 1> as t — oc.

28. Variation of Parameters. Consider the following method of
solving the general linear equation of first order:

Y+ p()y=g(). (48)

a. If g(r) = 0 forall ¢, show that the solution is

e Aexp(_ / ol dz>, (49)

where A is a constant.
b. If g(1) is not everywhere zero, assume that the solution of
equation (48) is of the form

y = A(t) exp (——/p(z) dt), (50)

where A is now a function of 7. By substituting for y in the given
differential equation, show that A(z) must satisfy the condition

A'(n) =g(r)e>m(/ p(1) dr>. (51

¢. Find A(r) from equation (51). Then substitute for A(z) in
equation (50) and determine y. Verify that the solution obtained
in this manner agrees with that of equation (33) in the text. This
technique is known as the method of variation of parameters;
it is discussed in detail in Section 3.6 in connection with second-
order linear equations.

In each of Problems 29 and 20, use the method of Problem ¥ to solve
the given differential equation.

29. ¥y —2y =t2e*

1
30,0y + e cos(21), t>0




1 )’, — }—:
¥

2. y' 4+ 3y?sinx=0
3. y= cos(x) cos*(2y)
4. xy’ = (l — )72)1/2
_ dy x—e’*
5 — =

dx y+e¥

dvy E 2
A S

dx 1+ y-
7. & _2

dx x

dx y

In each of Problems ¢ through 16:
a. Find the solution of the given initial value problem in explicit
form.
@ b. Plot the graph of the solution.
¢. Determine (at least approximately) the interval in which the
solution is defined.

9. y' =(1-2x)y%
10. y=(1-2x)/y,

¥(0) =-1/6
y(1) =-2

11. xdx+ye*dy=0, y0) =1

12. dr/df =r2/0, r(l)=2

13. vy =xy3(1 +xH)712 y(0) =1

14, y'=2x/(1+2y), y2)=0

15. y'=(3x2—€)/(2y—5), y0) =1

16. sin(2x) dx +cos(3y)dy =0, y(n/2) =7/3

Some of the results requested in Problems 17 through 22 can be
obtained either by solving the given equations analytically or by
plotting numerically generated approximations to the solutions. Try
to form an opinion about the advantages and disadvantages of each
approach.

@ 17. Solve the initial value problem
1+ 3x?
y’ = —__;_{:—x_’ y(O) =
3y? — 6y

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

@3 18. Solve the initial value problem
3x?
o= (1) =0
Y= y(1)

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

@ 19. Solve the initial value problem

y =2y +xyvi y(0) =1

and determine where the solution attains its minimum value.

@ 20. Solve the initial value problem
, 2-¢€

) v’

y(0) =0

and determine where the solution attains its maximum value.

G 21

Consider the initial value problem

V/ o Ty(4 - }‘)
) —3
a. Determine how the behavior of the solution as f increases
depends on the initial value yj.
b. Suppose that y, = 0.5. Find the time 7" at which the solution
first reaches the value 3.98.

y(0) = yo.

@ 22. Consider the initial value problem
y_ ty(4—y)
= e (0) = yg > 0.
) 157 y(0) = yo

a. Determine how the solution behaves as 1 — 0.

b. If yo = 2, find the time 7" at which the solution first reaches
the value 3.99.

¢. Find the range of initial values for which the solution lies in
the interval 3.99 < y < 4.01 by the time ¢ = 2.

23.  Solve the equation
dy ay+b
dx  cy+d

where a, b, ¢, and d are constants.

s

24. Use separation of variables to solve the differential equation

G—ng =r(a+bQ),

0(0) = Qo,
where a, b, r, and Q, are constants. Determine how the solution
behaves as r — o0

Homogeneous Equations. If the right-hand side of the equation
dy/dx = f(x,y) can be expressed as a function of the ratio y/x
only. then the equation is said to be homogeneous.! Such equations
can always be transformed into separable equations by a change of
the dependent variable. Problem 25 illustrates how to solve first-order
homogeneous equations.

'The word “homogeneous” has different meanings in different mathematical
contexts. The homogeneous equations considered here have nothing to do with
the homogeneous equations that will occur in Chapter 3 and elsewhere.




@ 25. Consider the equation through the origin, although the slope changes from one line to
another. Therefore, the direction field and the integral curves are

) ) — 4x .
g’% — g. (29) symmetric with respect to the origin. Is this symmetry property
N evident from your plot?
a. Show that equation (29) can be rewritten as The method outlined in Problem 25 can be used for any
dy (y/x)—4 homogeneous equation. That is, the substitution y = xv(x) transforms
o m (30)  ahomogeneous equation into a separable equation. The latter equation

can be solved by direct integration, and then replacing v by y/x
thus equation (29) is homogeneous. gives the solution to the original equation. In each of Problems 26
b. Introduce a new dependent variable v so that v = y/x, or through 3 1:

y = xv(x). Express dy/dx in terms of x, v, and dv /dx.

a. Show that the given equation is homogeneous.
¢. Replace y and dy/dx in equation (30) by the expressions

b. Solve the differential equation.

from part b that involve v and dv/dx. Show that the resulting @ c. Draw a direction field and some integral curves. Are they
differential equation is symmetric with respect to the origin?
v+ \?—,‘— = 4, 26. @ = '————~xz +xy+
dx 1—v dx x?
or e I i
5 dx 2xy
x%:‘l = @ g Bl A=
i e s e Dt
Observe that equation (31) is separable. 58 dy 4x + 3y
d. Solve equation (31), obtaining v implicitly in terms of x. el T ey
¢. Find the solution of equation (29) by replacing v by y/x in g0 11 i 3\35
the solution in part d. 30, — =
f. Draw a direction field and some integral curves for dx 2xy
equation (29). Recall that the right-hand side of equation (29) 44 dy _ 3y? —x?
actually depends only on the ratio y/x. This means that integral =~ dx 2xy

curves have the same slope at all points on any given straight line

23 Modeling with First-Order Differential
Equations

Differential equations are of interest to nonmathematicians primarily because of the possibility
of using them to investigate a wide variety of problems in the physical, biological, and social
sciences. One reason for this is that mathematical models and their solutions lead to equations
relating the variables and parameters in the problem. These equations often enable you to make
predictions about how the natural process will behave in various circumstances. It is often easy
to vary parameters in the mathematical model over wide ranges, whereas this may be very
time-consuming or expensive, if not impossible, in an experimental setting. Nevertheless,
mathematical modeling and experiment or observation are both critically important and
have somewhat complementary roles in scientific investigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other hand,
mathematical analyses may suggest the most promising directions to explore experimentally,
and they may indicate fairly precisely what experimental data will be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathematical models.
We begin by recapitulating and expanding on some of the conclusions reached in those
sections. Regardless of the specific field of application, there are three identifiable steps that
are always present in the process of mathematical modeling.

In this step the physical situation is translated into
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most critical
at this stage is to state clearly the physical principle(s) that are believed to govern the process.
For example, it has been observed that in some circumstances heat passes from a warmer to
a cooler body at a rate proportional to the temperature difference, that objects move about
in accordance with Newton’s laws of motion, and that isolated insect populations grow at
a rate proportional to the current population. Each of these statements involves a rate of



¥ To determine the maximum altitude A,y that the body reaches, we set v = 0 and x = Ay in
equation (30) and then solve for A, obtaining

Amax s e (31)

Solving equation (31) for vy, we find the initial velocity required to lift the body to the altitude Ay,
namely,

(32)

The escape velocity v, is then found by letting A, — oo. Consequently,

ve = \/2gR. (33)

The numerical value of v, is approximately 6.9 mi/s, or 11.1 km/s.

The preceding calculation of the escape velocity neglects the effect of air resistance, so the
actual escape velocity (including the effect of air resistance) is somewhat higher. On the other hand,
the effective escape velocity can be significantly reduced if the body is transported a considerable
distance above sea level before being launched. Both gravitational and frictional forces are thereby
reduced; air resistance, in particular, diminishes quite rapidly with increasing altitude. You should
keep in mind also that it may well be impractical to impart too large an initial velocity instantaneously;

space vehicles, for instance, receive their initial acceleration during a period of a few minutes.

1. Consider a tank used in certain hydrodynamic experiments.
After one experiment the tank contains 200 L of a dye solution with
a concentration of 1 g/L. To prepare for the next experiment, the tank
is to be rinsed with fresh water flowing in at a rate of 2 L/min, the
well-stirred solution flowing out at the same rate. Find the time that
will elapse before the concentration of dye in the tank reaches 1% of
its original value.

2. A tank initially contains 120 L of pure water. A mixture

containing a concentration of v g/L of salt enters the tank at a rate
of 2 L/min, and the well-stirred mixture leaves the tank at the same
rate. Find an expression in terms of + for the amount of salt in the
tank at any time 7. Also find the limiting amount of salt in the tank as
t —> 0.

3. A tank contains 100 gal of water and 50 oz of salt. Water

s . 1 i3 .
containing a salt concentration of T 1+ 3 sint | oz/gal flows into

the tank at a rate of 2 gal/min, and the mixture in the tank flows out at
the same rate.
a. Find the amount of salt in the tank at any time.
@ b. Plot the solution for a time period long enough so that you
see the ultimate behavior of the graph.
¢. The long-time behavior of the solution is an oscillation about
a certain constant level. What is this level? What is the amplitude
of the oscillation?

4. Suppose that a tank containing a certain liquid has an outlet near
the bottom. Let /(1) be the height of the liquid surface above the outlet
at time 7. Torricelli’s® principle states that the outflow velocity v at the
outlet is equal to the velocity of a particle falling freely (with no drag)
from the height A.

2Evangelista Torricelli (1608-1647), successor to Galileo as court
mathematician in Florence, published this result in 1644. In addition to this
work in fluid dynamics, he is also known for constructing the first mercury
barometer and for making important contributions to geometry.

a. Show that v = +/2gh, where g is the acceleration due to
gravity.

b. By equating the rate of outflow to the rate of change of liquid
in the tank, show that /(1) satisfies the equation

di
A(lz)ztl = —aa\/2gh, (34)

where A(h) is the area of the cross section of the tank at height 4
and « is the area of the outlet. The constant o is a contraction
coefficient that accounts for the observed fact that the cross
section of the (smooth) outflow stream is smaller than a. The
value of o for water is about 0.6.

¢. Consider a water tank in the form of a right circular cylinder
that is 3m high above the outlet. The radius of the tank is 1m,
and the radius of the circular outlet is 0.1 m. If the tank is initially
full of water, determine how long it takes to drain the tank down
to the level of the outlet.

5. Suppose that a sum S is invested at an annual rate of return r
compounded continuously.
a. Find the time T required for the original sum to double in
value as a function of r.
b. Determine 7T if r = 7%.
¢. Find the return rate that must be achieved if the initial
investment is to double in 8 years.

6. A young person with no initial capital invests k dollars per
year at an annual rate of return . Assume that investments are made
continuously and that the return is compounded continuously.

a. Determine the sum S(¢) accumulated at any time 7.

b. If r = 7.5%, determine k so that $1 million will be available
for retirement in 40 years.

c. If k = $2000/year, determine the return rate » that must be
obtained to have $1 million available in 40 years.
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7. A certain college graduate borrows $8000 to buy a car. The
lender charges interest at an annual rate of 10%. Assuming that interest
is compounded continuously and that the borrower makes payments
continuously at a constant annual rate k, determine the payment rate
k that is required to pay off the loan in 3 years. Also determine how
much interest is paid during the 3-year period.

@ 8. Arecent college graduate borrows $150,000 at an interest
rate of 6% to purchase a condominium. Anticipating steady salary
increases, the buyer expects to make payments at a monthly rate of
800 + 10z, where 7 is the number of months since the loan was made.
a. Assuming that this payment schedule can be maintained,
when will the loan be fully paid?
b. Assuming the same payment schedule, how large a loan could
be paid off in exactly 20 years?

9. An important tool in archeological research is radiocarbon
dating, developed by the American chemist Willard F. Libby.? This
is a means of determining the age of certain wood and plant remains,
and hence of animal or human bones or artifacts found buried at the
same levels. Radiocarbon dating is based on the fact that some wood
or plant remains contain residual amounts of carbon-14, a radioactive
isotope of carbon. This isotope is accumulated during the lifetime
of the plant and begins to decay at its death. Since the half-life of
carbon-14 is long (approximately 5730 years),* measurable amounts
of carbon-14 remain after many thousands of years. If even a tiny
fraction of the original amount of carbon-14 is still present, then by
appropriate laboratory measurements the proportion of the original
amount of carbon-14 that remains can be accurately determined. In
other words, if Q(¢) is the amount of carbon-14 at time ¢ and Qy is
the original amount, then the ratio Q(#)/ Q, can be determined, as
long as this quantity is not too small. Present measurement techniques
permit the use of this method for time periods of 50,000 years or more.

a. Assuming that @ satisfies the differential equation
Q' = —r(Q, determine the decay constant r for carbon-14.

br. Find an expression for Q(¢) at any time ¢, if Q(0) = Q.

¢. Suppose that certain remains are discovered in which the
current residual amount of carbon-14 is 20% of the original
amount. Determine the age of these remains.

€2 10. Suppose that a certain population has a growth rate that
varies with time and that this population satisfies the differential
equation

dy y
— = (0.5 inr)=.
) { + sint) 3
a. If y(0) = 1, find (or estimate) the time 7 at which the

population has doubled. Choose other initial conditions and
determine whether the doubling time 7 depends on the initial
population.

b. Suppose that the growth rate is replaced by its average value
1/10. Determine the doubling time 7 in this case.

¢. Suppose that the term sins in the differential equation is
replaced by sin 27 ¢; that is, the variation in the growth rate has a
substantially higher frequency. What effect does this have on the
doubling time 7?

d. Plot the solutions obtained in parts a, b, and ¢ on a single set
of axes.

3Willard F. Libby (1908-1980) was born in rural Colorado and received his
education at the University of California at Berkeley. He developed the method
of radiocarbon dating beginning in 1947 while he was at the University of
Chicago. For this work he was awarded the Nobel Prize in Chemistry in 1960.

*McGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York:
McGraw-Hill, 1997), Vol. 5, p. 48.
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problem

Suppose that a certain population satisfies the initial value

dy/dt =r()y —k, y(0) =y,

where the growth rate »(#) is given by r(7) = (1 + sint)/5, and k
represents the rate of predation.
€ a. Suppose that k = 1 /5. Plot y versus ¢ for several values
of y, between 1/2 and 1.
b. Estimate the critical initial population y, below which the
population will become extinct.
¢. Choose other values of & and find the corresponding y, for
each one.
@ d. Use the data you have found in parts b and ¢ to plot y,
versus k.

12, Newton’s law of cooling states that the temperature of an object
changes at a rate proportional to the difference between its temperature
and that of its surroundings. Suppose that the temperature of a cup of
coffee obeys Newton’s law of cooling. If the coffee has a temperature
of 200°F when freshly poured, and 1 min later has cooled to 190°F in
aroom at 70°F, determine when the coffee reaches a temperature of
150°F.

13. Heat transfer from a body to its surroundings by radiation,
based on the Stefan-Boltzmann® law, is described by the differential
equation

du

dt
where u(t) is the absolute temperature of the body at time ¢, T is
the absolute temperature of the surroundings, and « is a constant
depending on the physical parameters of the body. However, if u
is much larger than 7', then solutions of equation (35) are well
approximated by solutions of the simpler equation

d
;I—L: = —au*. (36)

Suppose that a body with initial temperature 2000 K is surrounded by
a medium with temperature 300 K and that v = 2.0 x 10712 K=3/s.
a. Determine the temperature of the body at any time by solving
equation (36).
@ b. Plot the graph of u versus 7.
{3 c. Find the time 7 at which u(7) = 600—that is, twice
the ambient temperature. Up to this time the error in using
equation (36) to approximate the solutions of equation (35) is
no more than 1%.

=—a(ut - T%, (335

@3 14. Consider an insulated box (a building, perhaps) with
internal temperature (). According to Newton’s law of cooling, u
satisfies the differential equation

du

o =—k(u—T(1)), 37

where T(r) is the ambient (external) temperature. Suppose that
T(t) varies sinusoidally; for example, assume that
T(t) =Ty + Ty cos(wt).

SJozef Stefan (1835-1893), professor of physics at Vienna, stated the radiation
law on empirical grounds in 1879. His student Ludwig Boltzmann (1844-1906)
derived it theoretically from the principles of thermodynamics in 1884.
Boltzmann is best known for his pioneering work in statistical mechanics.




a. Solve equation (37) and express u(t) in terms of ¢, k, Ty, T7,
and w. Observe that part of your solution approaches zero as ¢
becomes large; this is called the transient part. The remainder of
the solution is called the steady state; denote it by S(¢).

€ b. Suppose that ¢ is measured in hours and that w = w12,
corresponding to a period of 24 h for 7(t). Further, let
Ty = 60°F, T} = 15°F, and k = 0.2/h. Draw graphs of S(¢)
and T'(¢) versus ¢ on the same axes. From your graph estimate
the amplitude R of the oscillatory part of S(r). Also estimate
the time lag 7 between corresponding maxima of 7'(¢) and S(¢).
¢. Letk, Ty, 77, and w now be unspecified. Write the oscillatory
part of S(¢) in the form R cos(w (¢t — 7)). Use trigonometric
identities to find expressions for R and 7. Let 7} and w have
the values given in part b, and plot graphs of R and 7 versus k.

15. Consider a lake of constant volume V containing at time ¢
an amount Q(t) of pollutant, evenly distributed throughout the lake
with a concentration c¢(¢), where c¢(t) = Q(t)/V. Assume that
water containing a concentration k of pollutant enters the lake at a
rate r, and that water leaves the lake at the same rate. Suppose that
pollutants are also added directly to the lake at a constant rate P.
Note that the given assumptions neglect a number of factors that may,
in some cases, be important— for example, the water added or lost
by precipitation, absorption, and evaporation; the stratifying effect of
temperature differences in a deep lake; the tendency of irregularities
in the coastline to produce sheltered bays; and the fact that pollutants
are deposited unevenly throughout the lake but (usually) at isolated
points around its periphery. The results below must be interpreted in
light of the neglect of such factors as these.
a. If at time ¢ = O the concentration of pollutant is ¢, find an
expression for the concentration ¢(#) at any time. What is the
limiting concentration as 1 — 00?
b. If the addition of pollutants to the lake is terminated (k = 0
and P = 0 for ¢t > 0), determine the time interval 7" that must
elapse before the concentration of pollutants is reduced to 50%
of its original value; to 10% of its original value.
¢. Table 2.3.2 contains data® for several of the Great Lakes.
Using these data, determine from part b the time 7 that is needed
to reduce the contamination of each of these lakes to 10% of the
original value.

il : Volume and Flow Data for the Great
TABLE 2.3.2

Lakes

Superior 122 65.2
Michigan 4.9 158

Erie 0.46 175
Ontario 1.6 209

© 16. A ball with mass 0.15 kg is thrown upward with initial

velocity 20 m/s from the roof of a building 30 m high. Neglect air
resistance.
a. Find the maximum height above the ground that the ball
reaches.
b. Assuming that the ball misses the building on the way down,
find the time that it hits the ground.
& c. Plot the graphs of velocity and position versus time.

problem is based on R. H. Rainey, “Natural Displacement of Pollution
he Great Lakes,” Science 155 (1967), pp. 1242-1243; the information in
table was taken from that source.

€3 17. Assume that the conditions are as in Problem 16 except
that there is a force due to air resistance of magnitude |v|/30 directed
opposite to the velocity, where the velocity v is measured in m/s.

a. Find the maximum height above the ground that the ball

reaches.

b. Find the time that the ball hits the ground.

@ c. Plot the graphs of velocity and position versus time.

Compare these graphs with the corresponding ones in Problem
¥ 18. Assume that the conditions are as in Problem 16 except that
there is a force due to air resistance of magnitude v?/1325 directed
opposite to the velocity, where the velocity v is measured in m/s.

a. Find the maximum height above the ground that the ball

reaches.

b. Find the time that the ball hits the ground.

@ c. Plot the graphs of velocity and position versus time.

Compare these graphs with the corresponding ones in Problems

16 and 1
19. A body of constant mass m is projected vertically upward with
an initial velocity v in a medium offering a resistance k|v|, where k
is a constant. Neglect changes.in the gravitational force.

a. Find the maximum height x,, attained by the body and the
time #,, at which this maximum height is reached.

b. Show that if kvg/mg < 1, then t,, and x,, can be expressed

as
Lkvy 1 [kvp\?
v Vv Vv
PR RS L R
g 2 mg 3\ mg

o ) 2

0 2k 1/ kvo\~
xm:_) 1,__.&_1__ ,_‘.Q _—

2g 3mg 2\ mg

¢. Show that the quantity kv,/mg is dimensionless.

=

20. A body of mass m is projected vertically upward with an
initial velocity v in a medium offering a resistance k|v|, where &
is a constant. Assume that the gravitational attraction of the earth is
constant.

a. Find the velocity v(¢) of the body at any time.

b. Use the result of part o to calculate the limit of v(¢) as
k — O—that is, as the resistance approaches zero. Does this
result agree with the velocity of a mass m projected upward with
an initial velocity vy in a vacuum?

¢. Use the result of part « to calculate the limit of v(¢) as
m — O—that is, as the mass approaches zero.

21. A body falling in a relatively dense fluid, oil for example, is
acted on by three forces (see Figure 2.3.5): a resistive force R, a
buoyant force B, and its weight w due to gravity. The buoyant force
is equal to the weight of the fluid displaced by the object. For a slowly
moving spherical body of radius a, the resistive force is given by
Stokes’s law, R = 67 palv|, where v is the velocity of the body, and
i is the coefficient of viscosity of the surrounding fluid.”

7Slr George Gabriel Stokes (1819-1903) was born in Ireland but spent most of
his life at Cambridge University, first as a student and later as a professor.
Stokes was one of the foremost applied mathematicians of the nineteenth
century, best known for his work in fluid dynamics and the wave theory of
light. The basic equations of fluid mechanics (the Navier—Stokes equations)
are named partly in his honor, and one of the fundamental theorems of vector
calculus bears his name. He was also one of the pioneers in the use of divergent
(asymptotic) series.



a. Find the limiting velocity of a solid sphere of radius a and
density p falling freely in a medium of density p" and coefficient
of viscosity p.

b. In1910R. A. Millikan® studied the motion of tiny droplets of
oil falling in an electric field. A field of strength E exerts a force
Ee on a droplet with charge e. Assume that £ has been adjusted
so the droplet is held stationary (v = 0) and that w and B are
as given above. Find an expression for e. Millikan repeated this
experiment many times, and from the data that he gathered he
was able to deduce the charge on an electron.
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| FIGUR - A body falling in a dense fluid (see
Problem 21).

22. Letv(t) and w(¢) be the horizontal and vertical components,
respectively, of the velocity of a batted (or thrown) baseball. In the
absence of air resistance, v and w satisfy the equations

dv B dw 2
Er I
a. Show that
Yy =ucosA, w=—gt+usinA,

where u is the initial speed of the ball and A is its initial angle of
elevation.

b. Let x(¢) and y() be the horizontal and vertical coordinates,
respectively, of the ball at time ¢. If x(0) = O and y(0) = &, find
x(t) and y(7) at any time ¢.

@ c. Letg = 32 ft/s>, u = 125 ft/s, and h = 3 ft. Plot the
trajectory of the ball for several values of the angle A; that is,
plot x(7) and y(¢) parametrically.

d. Suppose the outfield wall is at a distance L and has height H.
Find a relation between u and A that must be satisfied if the ball
is to clear the wall.

¢. Suppose that L = 350 ft and H = 10 ft. Using the relation
in part (d), find (or estimate from a plot) the range of values of A
that correspond to an initial velocity of u = 110 ft/s.

f. For L = 350 and H = 10, find the minimum initial velocity
u and the corresponding optimal angle A for which the ball will
clear the wall.

€ 23. A more realistic model (than that in Problem 22) of a
baseball in flight includes the effect of air resistance. In this case the
equations of motion are
dv dw
_— =TV, _—
dt dt
where r is the coefficient of resistance.

=—g-—rw,

SRobert A. Millikan (1868-1953) was educated at Oberlin College and
Columbia University. Later he was a professor at the University of Chicago
and California Institute of Technology. His determination of the charge on an
electron was published in 1910. For this work, and for other studies of the
photoelectric effect, he was awarded the Nobel Prize for Physics in 1923.

a. Determine v(¢) and w(t) interms of initial speed u and initial
angle of elevation A.

b. Find x(t) and y(¢) if x(0) = 0 and y(0) = A.

© c. Plot the trajectory of the ball forr = 1/5,u = 125,h = 3,
and for several values of A. How do the trajectories differ from
those in Problem 22 with r = 0?

d. Assuming that » = 1/5 and # = 3, find the minimum initial
velocity « and the optimal angle A for which the ball will clear a
wall that is 350 ft distant and 10 ft high. Compare this result with
that in Problem 22f.

24, Brachistochrone Problem. One of the famous problems in
the history of mathematics is the brachistochrone® problem: to find
the curve along which a particle will slide without friction in the
minimum time from one given point P to another Q, the second
point being lower than the first but not directly beneath it (see Figure
2.3.6). This problem was posed by Johann Bernoulli in 1696 as a
challenge problem to the mathematicians of his day. Correct solutions
were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottfried Leibniz, and the Marquis de L’Hopital.
The brachistochrone problem is important in the development of
mathematics as one of the forerunners of the calculus of variations.
In solving this problem, it is convenient to take the origin as the
upper point P and to orient the axes as shown in Figure 2.3.6. The
lower point Q has coordinates (xq, yo). It is then possible to show
that the curve of minimum time is given by a function y = ¢ (x) that
satisfies the differential equation
(1+yHy =k, (38)
where k2 is a certain positive constant to be determined later.
a. Solve equation (38) for y'. Why is it necessary to choose the
positive square root?
b. Introduce the new variable ¢ by the relation

y = k?sin’¢. (39)
Show that the equation found in part a then takes the form
242 sin’ t dt = dx. (40)

¢. Letting @ = 2r, show that the solution of equation (40) for
which x = 0 when y = 0 is given by
x =k*0 —sinf)/2, y=k(1—cosf)/2. (41)

Equations (41) are parametric equations of the solution of
equation (38) that passes through (0, 0). The graph of equations
(41) is called a cycloid.
d. If we make a proper choice of the constant k, then the cycloid
also passes through the point (xg, yp) and is the solution of the
brachistochrone problem. Find k if xo = 1 and y, = 2.

P x

Qlxg, yg)

. The brachistochrone

9The word “brachistochrone” comes from the Greek words brachistos,
meaning shortest, and chronos, meaning time.




An introduction to numerical methods for first-order equations is given in Section 2.7, and a
systematic discussion of numerical methods appears in Chapter 8. However, it is not necessary
10 study the numerical algorithms themselves in order to use effectively one of the many
software packages that generate and plot numerical approximations to solutions of initial value
problems.

The linear equation y’ 4+ p(7)y = g(t) has several nice properties that can be
summarized in the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, containing an
arbitrary constant, that includes all solutions of the differential equation. A particular
solution that satisfies a given initial condition can be picked out by choosing the proper
value for the arbitrary constant.

[ %]

There is an expression for the solution, namely, equation (7) or equation (8). Moreover,
although it involves two integrations, the expression is an explicit one for the solution
y = ¢ (t) rather than an equation that defines ¢ implicitly.

3. The possible points of discontinuity, or singularities, of the solution can be identified
(without solving the problem) merely by finding the points of discontinuity of the
coefficients. Thus, if the coefficients are continuous for all ¢, then the solution also exists
and is differentiable for all 7.

None of these statements are true, in general, of nonlinear equations. Although a nonlinear
equation may well have a solution involving an arbitrary constant, there may also be other
solutions. There is no general formula for solutions of nonlinear equations. If you are able
to integrate a nonlinear equation, you are likely to obtain an equation defining solutions
implicitly rather than explicitly. Finally, the singularities of solutions of nonlinear equations
can usually be found only by solving the equation and examining the solution. It is likely that
the singularities will depend on the initial condition as well as on the differential equation.

In each of Problems | through 4, determine (without solving the
problem) an interval in which the solution of the given initial value
problem is certain to exist.

L. (¢=3)y'+nn)y=2t, y(1)=2
2. y +(tant)y =sint, y(w) =0 0 13 y=03-y
3. 4=y + 2y =32 y(=3)=1 G 14 Y =yC-1y)
1. (Int)y' +y=cott, y(2)=3 © 15 y=—y3-1y)
In each of Problems 5 through &, state where in the ry-plane the G 16 y=1-1-3

hypotheses of Theorem 2.4.2 are satisfied.

5 o = aomh e iON D
¥ y=l=rsr Example 3 in the text.

In each of Problems 13 through |6, draw a direction field and plot (or
sketch) several solutions of the given differential equation. Describe
how solutions appear to behave as ¢ increases and how their behavior
depends on the initial value y, when ¢ = 0.

17. Consider the initial value problem y’ = y'/, y(0) = 0 from

6 e Infty| a. Is there a solution that passes through the point (1, 1) ? If so,
1 — 12+ y2 find it.

y = (12 4+ y2)3/2 b. Is there a solution that passes through the point (2, 1) ? If so,
S find it.

8. y = ¢. Consider all possible solutions of the given initial value

3y =y*

Ineach of Problems 9 through 172, solve the given initial value problem
and determine how the interval in which the solution exists depends
on the initial value yy.

9. ¥ =—4t/y, ¥0) =y
10. y' =2ty%, y(0) =y,
11. y+y*=0, y(0) =y
£2
12 y’ = — .\’(0) =Y

Y143

problem. Determine the set of values that these solutions have

att =2.
18. a. Verify that both y;(1) = 1 — ¢ and y,(1) = —t>/4 are
solutions of the initial value problem
, —t+A/12+4y
Yy = 5 , ¥(2)=-L

Where are these solutions valid?




b. Explain why the existence of two solutions of the
given problem does not contradict the uniqueness part of
Theorem 2.4.2.

¢. Show that y = ct + ¢?, where ¢ is an arbitrary constant,
satisfies the differential equation inpart aforr > —2¢.Ifc = ~1,
the initial condition is also satisfied, and the solution y = y,(#) is
obtained. Show that there is no choice of ¢ that gives the second
solution y = y»(1).

19. a. Show that ¢ (1) = ¢* is a solution of y' — 2y = 0 and that

y = c¢ (1) is also a solution of this equation for any value of the
constant c.
b. Show that ¢ (1) = 1/7is asolution of y' + y* = O forz > 0,
but that y = ¢ (1) is not a solution of this equation unless ¢ = 0
or ¢ = 1. Note that the equation of part b is nonlinear, while that
of part a is linear.

20. Show that if y = ¢ (1) is a solution of y" + p(1)y = 0, then

y = cé (1) is also a solution for any value of the constant c.

21. Lety = y(1) be a solution of

Y+ p(y =0, @7
and let y = y,() be a solution of

Y+ p@)y = g). (28)

Show that y = y; (1) + y»() is also a solution of equation (28).

22. a. Show that the solution (7) of the general linear equation (1)
can be written in the form

y =cni(t) + (1), (29)

where ¢ is an arbitrary constant.
b. Show that y; is a solution of the differential equation

Yy +p()y =0, (30)

corresponding to g(7) = 0.

¢. Show that y, is a solution of the full linear equation (1). We
see later (for example, in Section 3.5) that solutions of higher-
order linear equations have a pattern similar to equation (29).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear
equation by making a change of the dependent variable that converts
it into a linear equation. The most important such equation has the
form

Y4+ p(Dy=q()y",

and is called a Bernoulli equation after Jakob Bernoulli. Problems 23
and 75 deal with equations of this type.

23. a. Solve Bernoulli’s equation when n = 0; whenn = 1.
. Show thatif n 5 0, 1, then the substitution v = y'~" reduces
Bernoulli’s equation to a linear equation. This method of solution
was formulated by Leibniz in 1696.

In each of Problems 24 through 25, the given equation is a Bernoulli
equation. In each case solve it by using the substitution mentioned in
Problem 23b.

24. vy =ry—ky* r > 0and k > 0. This equation is important in
population dynamics and is discussed in detail in Section 2.5.

25, y'=ey—o0y* e > 0and o > 0. This equation occurs in the
study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes
occur in which one or both of the functions p and g have jump
discontinuities. If #, is such a point of discontinuity, then it is necessary
to solve the equation separately for 1 < 1, and t > #,. Afterward,
the two solutions are matched so that y is continuous at #y; this
is accomplished by a proper choice of the arbitrary constants. The
following two problems illustrate this situation. Note in each case that
it is impossible also to make y’ continuous at f.

26. Solve the initial value problem

v +2y=g(), y0) =0,
where
o I, 0<st=<1,
t) =
= 0, t= 1.
27. Solve the initial value problem
V+pny=0y0) =1,
where
2, 0<t<l,
(1) =
£ 1 ti il

25 Autonomous Differential Equations

and Population Dynamics

An important class of first-order equations consists of those in which the independent variable
does not appear explicitly. Such equations are called autonomous and have the form

dy/di = f(y). 0

We will discuss these equations in the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to global
economics. A number of other applications are mentioned in some of the problems. Recall that
in Sections 1.1 and 1.2 we considered the special case of equation (1) in which f(y) = ay+Db.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but the main
purpose of this section is to show how geometric methods can be used to obtain important
qualitative information directly from the differential equation without solving the equation. Of



—oolems | through 4 involve equations of the form dy/dt = f(y).In
=zcn problem sketch the graph of f(y) versus y, determine the critical
=cuilibrium) points, and classify each one as asymptotically stable or
—=sizble. Draw the phase line, and sketch several graphs of solutions
= the ry-plane.

dy/dt =ay +by*, a>0, b>0,
2. dy/dt=y(y-1D(y—-2), »=0
3. dy/dt=e¥ -1,
4. dy/dt=e7Y -1,
Semistable Equilibrium Solutions. Sometimes a constant
=Zzilibrium solution has the property that solutions lying on one side
°2 t2e equilibrium solution tend to approach it, whereas solutions lying
= the other side depart from it (see Figure 2.5.9). In this case the
=Z2ilibrium solution is said to be semistable.
i. Consider the equation

dy/dt = k(1 —y)?, (19)

=00 < Yp < 00

=00 < yp < 00

—X< yy<

where k is a positive constant. Show that y = 1 is the only critical
point, with the corresponding equilibrium solution ¢ (¢) = 1.
© b. Sketch f(y) versus y. Show that y is increasing as a
function of ¢ for y < 1 and also for y > 1. The phase line
has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it, and those
above it grow farther away. Therefore, ¢ (¢) = 1 is semistable.
. Solve equation (19) subject to the initial condition y(0) = y,
and confirm the conclusions reached in part b.
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* Inboth cases the equilibrium solution ¢ (1) = k
is semistable. (a) dy/dt < 0; (b) dy/dt > 0.

ch problem sketch the graph of f(y) versus y. determine the
—ical (equilibrium) points, and classify each one as asymptotically
. unstable, or semistable (see Problem 5). Draw the phase line,

dy/dr = y*(y* - 1),
dy/dt = y(1—y?),

—0< Yy < o0

-0 < Yy < 0

dy/dt
dy/dt

.\12(4 = .Vz) s

=y*(1-y?

—00 < yp < 00

=X < yy < 0

10.  Complete the derivation of the explicit formula for the solution
(11) of the logistic model by solving equation (10) for y.

11. In Example 1, complete the manipulations needed to arrive at
equation (13). That is, solve the solution (11) for ¢.

12. Complete the derivation of the location of the vertical asymptote
in the solution (15) when y, > 7. That is, derive formula (16) by
finding the value of  when the denominator of the right-hand side of
equation (15) is zero.

13.  Complete the derivation of formula (18) for the locations of the
inflection points of the solution of the logistic growth model with a
threshold (17). Hint: Follow the steps outlined on p. 66.
14, Consider the equation dy/dt = f(y) and suppose that y; is a
critical point—that is, f(y;) = 0. Show that the constant equilibrium
solution ¢ (1) = y; is asymptotically stable if f'(y;) < 0 and unstable
if f'(y»1) > 0.
15. Suppose that a certain population obeys the logistic equation
dy/dt =ry(1 - (y/K)).
a. If yp = K/3, find the time 7 at which the initial population
has doubled. Find the value of 7 corresponding to r = 0.025 per
year.
b. If yo/K = «, find the time T at which WT)/ K = 8,
where 0 < o, f < 1. Observe that T — oo as a — 0 or
as 3 — 1. Find the value of T for r = 0.025 per year, a = 0.1,
and 8 = 0.9.
© 16. Another equation that has been used to model population
growth is the Gompertz'> equation

ai=(5)
— =ryln{ — |,
dt ’ y

where  and K are positive constants.

a. Sketch the graph of f(y) versus y, find the critical points,
and determine whether each is asymptotically stable or unstable.
b. For 0 < y < K, determine where the graph of y versus ¢ is
concave up and where it is concave down.

¢. Foreach yin0 < y < K, show that dy/dt as given by
the Gompertz equation is never less than dy/dt as given by the
logistic equation.

17. a. Solve the Gompertz equation

dy <K>
—— =ryln|l — s
dt . y

subject to the initial condition y(0) = yj.

Hint: You may wish to let u = In(y/K).

b. For the data given in Example 1 in the text (* = 0.71 per
year, K = 80.5 x 10° kg, yo/ K = 0.25), use the Gompertz
model to find the predicted value of y(2).

¢. For the same data as in part b, use the Gompertz model to find
the time 7 at which y(7) = 0.75K.

15 Benjamin Gompertz (1779-1865) was an English actuary. He developed his

model for population growth, published in 1825, in the course of constructing
mortality tables for his insurance company.




18. A pond forms as water collects in a conical depression of radius
a and depth k. Suppose that water flows in at a constant rate k and is
lost through evaporation at a rate proportional to the surface area.
a. Show that the volume V(t) of water in the pond at time ¢
satisfies the differential equation

dv
dt

where « is the coefficient of evaporation.

b. Find the equilibrium depth of water in the pond. Is the
equilibrium asymptotically stable?

¢. Find a condition that must be satisfied if the pond is not to
overflow.

=k— a7r(3a/7rh)2/3V2/3,

Harvesting a Renewable Resource. Suppose that the population y of
a certain species of fish (for example, tuna or halibut) in a given area
of the ocean is described by the logistic equation

dy ( y)
= =r(1=-=)y.
dt K

Although it is desirable to utilize this source of food, it is intuitively
clear that if too many fish are caught, then the fish population may be
reduced below a useful level and possibly even driven to extinction.
Problems 19 and 20 explore some of the questions involved in
formulating a rational strategy for managing the fishery.'®

19. Ata givenlevel of effort, it is reasonable to assume that the rate
at which fish are caught depends on the population y: the more fish
there are, the easier it is to catch them. Thus we assume that the rate at
which fish are caught is given by Ey, where E is a positive constant,
with units of 1/time, that measures the total effort made to harvest the
given species of fish. To include this effect, the logistic equation is
replaced by

%:r(l——"}(—)y—ﬁ‘y. (20)
This equation is known as the Schaefer model after the biologist
M. B. Schaefer, who applied it to fish populations.
a. Show that if E < r, then there are two equilibrium points,
yy=0and y, = K(1—E/r) > 0.
b. Show that y = y; is unstable and y = y, is asymptotically
stable.
¢. A sustainable yield Y of the fishery is a rate at which fish can
be caught indefinitely. It is the product of the effort £ and the
asymptotically stable population y,. Find Y as a function of the
effort £; the graph of this function is known as the yield -effort
curve.
. Determine E so as to maximize Y and thereby find the
maximum sustainable yield Y,,,.

2. 1In this problem we assume that fish are caught at a constant rate
h independent of the size of the fish population. Then y satisfies

dy y
dt-r(l K)} h. @2n
The assumption of a constant catch rate # may be reasonable when y
is large but becomes less so when y is small.

a. If h < rK/4, show that equation (21) has two equilibrium

points y; and y, with y; < y,; determine these points.

b. Show that y; is unstable and y, is asymptotically stable.

c. From a plot of f(y) versus y, show that if the initial

population yq > y;, then y — y, ast — oo, but that if

16 An excellent treatment of this kind of problem, which goes far beyond what
is outlined here, may be found in the book by Clark mentioned previously,
especially in the first two chapters. Numerous additional references are given
there.

yo < y1.then y decreases as ¢ increases. Notwam’ = (isnotan
equilibrium point, so if yy < y;, then e)ginc’tion will be reached
in a finite time. :

d. If h > rK /4, show that y decréases to zero as ¢ increases,
regardless of the value of yy.

e. If h = rK/4, show that thére is a single equilibrium point
y = K /2 and that this point is semistable (see Problem 5). Thus
the maximum sustainable yield is h,, = rK/4, corresponding
to the equilibrium value y = K/2. Observe that h;, has the
same value as Y,, in Problem 19d. The fishery is considered to
be overexploited if y is reduced to a level below K /2.

Epidemics. The use of mathematical methods to study the spread of
contagious diseases goes back at least to some work by Daniel
Bernoulli in 1760 on smallpox. In more recent years many
mathematical models have been proposed and studied for many
different diseases.!” Problems 21 through 23 deal with a few of the
simpler models and the conclusions that can be drawn from them.
Similar models have also been used to describe the spread of rumors
and of consumer products.

21. Suppose that a given population can be divided into two parts:
those who have a given disease and can infect others, and those
who do not have it but are susceptible. Let x be the proportion of
susceptible individuals and y the proportion of infectious individuals;
then x + y = 1. Assume that the disease spreads by contact between
sick and well members of the population and that the rate of spread
dy/dt is proportional to the number of such contacts. Further, assume
that members of both groups move about freely among each other, so
the number of contacts is proportional to the product of x and y. Since
x = 1 — y, we obtain the initial value problem
dy
e ay(l—-y),

where o is a positive proportionality factor, and y, is the initial
proportion of infectious individuals.

a. Find the equilibrium points for the differential equation (22)

and determine whether each is asymptotically stable, semistable,

or unstable.

b. Solve the initial value problem 22 and verify that the

conclusions you reached in part a are correct. Show that y(¢) —

1 ast — oo, which means that ultimately the disease spreads

through the entire population.

y(0) = yo, (22)

22. Some diseases (such as typhoid fever) are spread largely by

carriers, individuals who can transmit the disease but who exhibit no
overt symptoms. Let x and y denote the proportions of susceptibles
and carriers, respectively, in the population. Suppose that carriers are
identified and removed from the population at a rate 3, so

— = —0y. (23)

Suppose also that the disease spreads at a rate proportional to the
product of x and y; thus

dx
dt
a. Determine y at any time 7 by solving equation (23) subject to
the initial condition y(0) = yj.
b. Use the result of part 2 to find x at any time ¢ by solving
equation (24) subject to the initial condition x(0) = x.
¢. Find the proportion of the population that escapes the
epidemic by finding the limiting value of x as t — oc.

= —qaXxy. (24)

17 A standard source is the book by Bailey listed in the references. The models
in Problems 21, 22, and 23 are discussed by Bailey in Chapters 5, 10, and 20,
respectively.
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-3. Daniel Bernoulli’s work in 1760 had the goal of appraising the
“zctiveness of a controversial inoculation program against smallpox,
1 at that time was a major threat to public health. His model
zoplies equally well to any other disease that, once contracted and
suvived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (¢t = 0),
=22 let () be the number of these individuals surviving ¢ years later.
_zt x(1) be the number of members of this cohort who have not had
lIpox by year ¢ and who are therefore still susceptible. Let 3 be
e at which susceptibles contract smallpox, and let v be the rate
ch people who contract smallpox die from the disease. Finally,
=2 u2(1) be the death rate from all causes other than smallpox. Then
2 dt. the rate at which the number of susceptibles declines, is given

dx
— =—(f t 25
7 (B4 p(n)x. (25)
Toe first term on the right-hand side of equation (25) is the rate at
susceptibles contract smallpox, and the second term is the rate
hich they die from all other causes. Also

dn

—d’; = -—l//3x = /l(f)n9 (26)

=here dn/dt is the death rate of the entire cohort, and the two terms
1e right-hand side are the death rates due to smallpox and to all
causes, respectively.

Ner C

a. Let z = x/n, and show that z satisfies the initial value
problem

dz ;

d_; =-0z(1 -vz), 2z(0)=1. (27)

Observe that the initial value problem (27) does not depend on
w(t).
b. Find z(¢) by solving equation (27).
¢. Bernoulli estimated that » = 3 = 1/8. Using these
values, determine the proportion of 20-year-olds who have not
had smallpox.
“ore: On the basis of the model just described and the best mortality
Zata available at the time, Bernoulli calculated that if deaths due to
smallpox could be eliminated (v =0), then approximately 3 years
could be added to the average life expectancy (in 1760) of 26 years, 7
months. He therefore supported the inoculation program.

Bifurcation Points. For an equation of the form

dy
= = f(a,y), 28)

where a is a real parameter, the critical points (equilibrium solutions)
ssually depend on the value of a. As a steadily increases or decreases,
iz often happens that at a certain value of a, called a bifurcation point,
critical points come together, or separate, and equilibrium solutions
may be either lost or gained. Bifurcation points are of great interest in
many applications, because near them the nature of the solution of the
underlying differential equation is undergoing an abrupt change. For
e \nmplc in fluid mechanics a smooth (laminar) flow may break up and
oecome turbulent. Or an axially loaded column may suddenly buckle
znd exhibit a large lateral displacement. Or, as the amount of one of
the chemicals in a certain mixture is increased, spiral wave patterns of
varying color may suddenly emerge in an originally quiescent fluid.
Problems 24 through 26 describe three types of bifurcations that can
occur in simple equations of the form (28).

24, Consider the equation

— =a—y-. 29)

a. Find all of the critical points for equation (29). Observe that
there are no critical points if @ < 0, one critical pomt ifa =0,
and two critical points if a > 0.

@ b. Draw the phase line in each case and determme whether
each critical point is asymptotically stable, /semistable, or
unstable.

@ c. In each case sketch several solutions of equation (29) in
the ry-plane.

Note: If we plot the location of the critical points as a function of @ in
the ay-plane, we obtain Figure 2.5.10. This is called the bifurcation
diagram for equation (29). The bifurcation at @ = 0 is called a
saddle - node bifurcation. This name is more natural in the context
of second-order systems, which are discussed in Chapter 9.

y
2+ __—
1 Asymptotically stable
| | | | | |
-2 -1 1 2 3 4 a
\
N
~
il S~ Unstable
o) = T~

Bifurcation diagram for y' = a — y?.

25. Consider the equation
dy 3 2
= ) — VT =V — V7). 30
A ya=—y) (30)

@ a. Againconsiderthe casesa < 0,a = 0,anda > 0.Ineach
case find the critical points, draw the phase line, and determine
whether each critical point is asymptotically stable, semistable,
or unstable.

€3 b. In each case sketch several solutions of equation (30) in
the ty-plane.
@ c. Draw the bifurcation diagram for equation (30)—that is,
plot the location of the critical points versus a.
Note: For equation (30) the bifurcation point at @ = 0 is called a
pitchfork bifurcation. Your diagram may suggest why this name is
appropriate.

26. Consider the equation

‘(—% =ay = > =y(a—y). @)
a. Again consider the casesa < 0,a = 0, and ¢ > 0. In each
case find the critical points, draw the phase line, and determine
whether each critical point is asymptotically stable, semistable,
or unstable.

b. In each case sketch several solutions of equation (31) in the
ty-plane.
¢. Draw the bifurcation diagram for equation (31).

Note: Observe that for equation (31) there are the same number of

critical points fora < 0anda > 0 but that their stability has changed.

For a < 0 the equilibrium solution y = 0 is asymptotically stable

and y = a is unstable, while for « > 0 the situation is reversed.

Thus there has been an exchange of stability as a passes through

the bifurcation point @ = 0. This type of bifurcation is called a

transcritical bifurcation.

;



27. Chemical Reactions. A second-order chemical reaction
involves the interaction (collision) of one molecule of a substance
P with one molecule of a substance Q to produce one molecule of
a new substance X; this is denoted by P + Q — X. Suppose that
p and g, where p # g, are the initial concentrations of P and Q,
respectively, and let x(7) be the concentration of X at time ¢. Then
p — x(t) and g — x(¢) are the concentrations of P and Q at time ¢,
and the rate at which the reaction occurs is given by the equation

d
—d—f=a(p—x><q—x>, (32)

a. If x(0) = 0, determine the Iimiting/fvalue of x(1) ast — o©
without solving the differential equation. Then solve the initial
value problem and find x(¢) for any .

b. If the substances P and Q ar¢/the same, then p = ¢ and
equation (32) is replaced by

%/aa(p—x)z. (33)
>

If x(0) = 0, determine the limiting value of x(¢) as f —> oo

without solving the differential equation. Then solve the initial

value problem and determine x(¢) for any ¢.

where o is a positive constant.

26 Exact Differential Equations and
Integrating Factors

For first-order differential equations there are a number of integration methods that are
applicable to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a class of
equations known as exact differential equations for which there is also a well-defined method
of solution. Keep in mind, however, that the first-order differential equations that can be solved
by elementary integration methods are rather special; most first-order equations cannot be
solved in this way.

EXAMPLE 1

Solve the differential equation

2x +y* 4+ 2xyy' = 0. (1)

Solution:

The equation is neither linear nor separable, so the methods suitable for those types of equations are
not applicable here. However, observe that the function ¢ (x, ¥) = x* 4+ xy? has the property that

o ov
x+yr=——, 2xy=—.
i Ox ’ dy

Therefore, the differential equation can be written as

v Ov dy

dx dy dx
Assuming that y is a function of x, we can use the chain rule to write the left-hand side of equation (3)
as di(x, y)/dx. Then equation (3) has the form

@

3)

dy d 5 5
E(-’C,)) = E(x +xy7) =0. )
Integrating equation (4) we obtain
Y(x,y) =x"+x’ =, )

where c is an arbitrary constant. The level curves of ¢ (x, y) are the integral curves of equation (1).
Solutions of equation (1) are defined implicitly by equation (5).

In solving equation (1) the key step was the recognition that there is a function ¢ that
satisfies equations (2). More generally, let the differential equation

M(x,y) +N(x,y)y =0 (6)




¥ Integrating the first of equations (32) with respect to x, we obtain

4 1%
Y(x,y) =x"y+ Ex‘yz + h(y).

Substituting this expression for ¢’ (x, y) in the second of equations (32), we find that

X+ x%y 4+ h'(y) =2 + 2%y,

so i'(y) = 0and h(y) is a constant. Thus the solutions of equation (31), and hence of equation (19),

are given implicitly by

1
3y —2¢2:,
x,\+2x,\ e

(33)

Solutions may also be found in explicit form since equation (33) is quadratic in y.
You may also verify that a second integrating factor for equation (19) is

it

T T . S
n(x,y) R

and that the same solution is obtained, though with much greater difficulty, if this integrating factor

is used (see Problem 272).

v e s st S

Determine whether each of the equations in Problems | through ¢ is
=xact. If it is exact, find the solution.

(2x+3)+(2y—2)y' =0
2. (2x+4y) +(2x—2y)y' =0
(3x% = 2xy +2) +(6y* = x* +3)y' =0

dy  ax+by
odx _bx—l—c_\‘
- dy  ax—by
dx  bx— cy

(ye™ cos(2x) —2e*Y sin(2x) +2x) +(xe* cos(2x) —3)y' =0
(v/x+6x)+(Inx—=2)y =0, x>0
X y dy
) 737+ ) 370 g
(x2+y2)32 * (x2+y%)32 dx
ach of Problems 9 and 10, solve the given initial value problem
determine at least approximately where the solution is valid.
Ox?+y—1) —(4y—x)y' =0, y(1)=0
= each of Problems 11 and 12, find the value of b for which the given
=guation is exact, and then solve it using that value of 4.

<

nc

2x—=y)+Q2y—x)y =0,

(xy? +bx%y) + (x + y)x%y' =0
12 (ye* 4 x) +bxe®y' =0

Assume that equation (6) meets the requirements of Theorem
26.1 in a rectangle R and is therefore exact. Show that a possible
function ¥ (x, y) is

X vy

v(x,y) = / M(s, o) ds +/ N(x,t)dt,
.\'0 ‘(

Yo

where (xg, Yo) 1S a point in R.

1

4. Show that any separable equation
M(x)+N(y)y =0
is also exact.
In each of Problems |5 and 16, show that the given equation is not

exact but becomes exact when multiplied by the given integrating
factor. Then solve the equation.

15, ¥ +x(14+)y =0, p(x,» =1/(xy)
16. (x+2)siny+ (xcosy)y =0, u(x,y) =xe*

17.  Show that if (Ny — M,)/M = Q, where Q is a function of y
only, then the differential equation

M+ Ny =0

has an integrating factor of the form
uly) = cxp/ Q(v)dy.

Ineach of Problems ! % through 21, find an integrating factor and solve
the given equation.

18. B2y +2xy+yH) +(x2+yH)y =0
19. y=e¥+y-1
20, 1+ (x/y—siny)y =0
21, y+(2xy—e )y =0
22. Solve the differential equation
Bxy + ) + (22 +xy)y =0
using the integrating factor p(x, y) = (xy(2x + y)) "L Verify that

the solution is the same as that obtained in Example 4 with a different
integrating factor.



The Euler method.

In Example 2 the general solution of the differential equation is
y =14 — 4t + ce™*/? amn

and the solution of the initial value problem (9) corresponds to ¢ = —13. The family
of solutions (17) is a converging family since the term involving the arbitrary constant ¢
approaches zero as t — oc. It does not matter very much which solutions we are approximating
by tangent lines in the implementation of Euler’s method, since all the solutions are getting
closer and closer to each other as ¢ increases.

On the other hand, in Example 3 the general solution of the differential equation is

7l 0

)’z—z+§t+ce , (18)
and, because the term involving the arbitrary constant ¢ grows without bound as t — oc, this
is a diverging family. Note that solutions corresponding to two nearby values of ¢ become
arbitrarily far apart as ¢ increases. In Example 3 we are trying approximate the solution for
¢ = 11/4, but in the use of Euler’s method we are actually at each step following another
solution that separates from the desired one faster and faster as ¢ increases. This explains why
the errors in Example 3 are so much larger than those in Example 2.

In using a numerical procedure such as the Euler method, you must always keep in mind
the question of whether the results are accurate enough to be useful. In the preceding examples,
the accuracy of the numerical results could be determined directly by a comparison with the
solution obtained analytically. Of course, usually the analytical solution is not available if a
numerical procedure is to be employed, so what we usually need are bounds for, or at least
estimates of, the error that do not require a knowledge of the exact solution. You should also
keep in mind that the best that we can expect, or hope for, from a numerical approximation
is that it reflects the behavior of the actual solution. Thus a member of a diverging family of
solutions will always be harder to approximate than a member of a converging family.

If you wish to read more about numerical approximations to solutions of initial value
problems, you may go directly to Chapter 8 at this point. There, we present some information
on the analysis of errors and also discuss several algorithms that are computationally much
more efficient than the Euler method.

Note about Variations of Computed Results. Most of the problems
in this section call for fairly extensive numerical computations. To
handle these problems you need suitable computing hardware and
software. Keep in mind that numerical results may vary somewhat,
depending on how your program is constructed and on how your
computer executes arithmetic steps, rounds off, and so forth. Minor
variations in the last decimal place may be due to such causes and do
not necessarily indicate that something is amiss. Answers in the back

of the book are recorded to six digits in most cases, although more
digits were retained in the intermediate calculations.

In each of Problems | through <:
€ 4. Find approximate values of the solution of the given initial
value problem at 1 = 0.1, 0.2, 0.3, and 0.4 using the Euler
method with 2 = 0.1.
€ b. Repeat part (a) with h = 0.05. Compare the results with
those found in a.




O . Repeat part a with 4 = 0.025. Compare the results with
—ose found in a and b.
O d. Find the solution y = ¢(1) of the given problem and
=vzlvate o(t) att = 0.1, 0.2,0.3, and 0.4. Compare these values

th the results of a, b, and c.
y(0) =1
y=1 0 =1
=05—-t+2y, y(0) =1
y(0) =0
= =zo= of Problems 5 through 8, draw a direction field for the given

“=rzmuzl equation and state whether you think that the solutions are
=zing or diverging.
vV =5— 3ﬁ
¥ =y(3-1y)
v = —ty +0.1y3
V=12 +y2
22 Problems 9 and 10, use Euler’s method to find approximate
2= of the solution of the given initial value problem at t = 0.5,

2.3.and 3: (a) With & = 0.1, (b) With 2 = 0.05, (c¢) With

= 0.025. (d) With 2 = 0.01.
@ 5 y=5-3/5 w0)=2
D | Vi=y(3—1y), y(0) =0.5

Consider the initial value problem
7 3¢?
y =
3y2—4

- =3cost — 2y,

, y(1) =0.

© 2. Use Euler’s method with 4 = 0.1 to obtain approximate
zues of the solution atr = 1.2, 1.4, 1.6, and 1.8.
O b. Repeat part a with & = 0.05.

Compare the results of parts a and b. Note that they are
~=zsonably close for r = 1.2, 1.4, and 1.6 but are quite different
“or ¢ = 1.8. Also note (from the differential equation) that
= line tangent to the solution is parallel to the y-axis when

=12/ \/5 = =£1.155. Explain how this might cause such
= difference in the calculated values.

D 12

Consider the initial value problem

Y=£r+y, y0) =1

- Zolers method with 2 = 0.1, 0.05, 0.025, and 0.01 to explore the

w=on of this problem for 0 < ¢ < 1. What is your best estimate
== vzlue of the solution at 1 = 0.8? At t = 1? Are your results
smmssscent with the direction field in Problem 8?2

Consider the initial value problem
y ==ty +0.1y3, 30 =a,

¥IeT= o IS a given number.

@ 2. Draw a direction field for the differential equation (or
reexamine the one from Problem 7). Observe that there is a
critical value of o in the interval 2 < o < 3 that separates
converging solutions from diverging ones. Call this critical
value « 0-

3 b. Use Euler’s method with 2 = 0.01 to estimate . Do this
by restricting o to an interval [a, b], where b — a = 0.01.

14.  Consider the initial value problem

Y=y-12 y0) =,

where « is a given number.
a. Draw a direction field for the differential equation. Note
that there is a critical value of « in the interval 0 < o < 1
that separates converging solutions from diverging ones. Call this
critical value .
3 b. Use Euler’s method with /# = 0.01 to estimate o o0- Do this
by restricting v to an interval [a, b], where b — a = 0.01.

15, Convergence of Euler’s Method. It can be shown that
under suitable conditions on f, the numerical approximation
generated by the Euler method for the initial value problem
v = f(t,y), y(1)) = yo converges to the exact solution as the step
size h decreases. This is illustrated by the following example. Consider
the initial value problem

V=1—1+4y, v = .

a. Show that the exact solutionis y = ¢ (1) = (yg—to)e’ 0 +1.
€3 b. Using the Euler formula, show that

=0+ 1+h—ht_y, k=1,2,....

¢. Noting that y; = (14 1) (yy — ty) + t;, show by induction
that

VYn = (1 ga h) ”(}'o = t()) + 1 (19)

for each positive integer n.

d. Consider a fixed point 1 > 1, and for a given n choose

h = (t —1y)/n. Then t, = t for every n. Note also that i1 — 0

as n — oo. By substituting for £ in equation (19) and letting

n — oo, show that y, — ¢ (1) asn — oo.

Hint: lim (1 4+a/n)" = €“.

h—>00

Ineach of Problems 16 and 17, use the technique discussed in Problem
15 to show that the approximation obtained by the Euler method
converges to the exact solution at any fixed point as & — 0.

16. y =y, y0)=1

17. y'=2y—1, y(0)=1 Hint:y =(1+2h)/2+1/2

25 The Existence and Uniqueness Theorem

= == section we discuss the proof of Theorem 2.4.2, the fundamental existence and

imc= certain conditions on f(¢, y), the initial value problem
Y= ft,y),

nes = omique solution in some interval containing the point #,.

y(ty) = o

tmzozness theorem for first-order initial value problems. Recall that this theorem states that

&)



4. Are there other solutions of the integral equation (3) besides y = ¢ (t)?
To show the uniqueness of the solution y = ¢ (t), we can proceed much as in the
example. First, assume the existence of another solution y = (7). It is then possible to
show (see Problem 18) that the difference ¢ (¢) — () satisfies the inequality

lo (1) =¥ (<A

t

lo(s) —¥(s)lds (30)

0

for O <t < h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem (2) other than the one generated by the method of successive approximations.

In each of Problems | and 2, transform the given initial value problem
into an equivalent problem with the initial point at the origin.
1. dy/dt=1>+3y% y(1)=2
2. dy/dt=1-y% y(=1)=3
In each of Problems 3 through 4, let ¢((#) = 0 and define {¢,(7)} by
the method of successive approximations.
a. Determine ¢, () for an arbitrary value of n.
@ b. Ploté,(1) forn = 1, ... , 4. Observe whether the iterates
appear to be converging.

¢. Express lim ¢,(r) = ¢ (1) in terms of elementary
n—o0
functions; that is, solve the given initial value problem.

@ d. Plot |¢(1) — ¢,(1)| for n = 1,...,4. For each of

?1(1), ..., ¢4(1), estimate the interval in which it is a
reasonably good approximation to the actual solution.

0O 3 y=2y+1, »0)=0

@ 4. y=-y/2+1, 0 =0

In each of Problems 5 and 6, let ¢¢(#) = 0 and use the method of
successive approximations to solve the given initial value problem.
a. Determine ¢, (¢) for an arbitrary value of n.
@ b. Plot¢,(1) forn = 1, ... , 4. Observe whether the iterates
appear to be converging.
¢. Show that the sequence {¢,(#)} converges.
5. yy=ty+1, y0) =0
6. yV=r>y—1, y0)=0
In each of Problems 7 and 3, let ¢((z) = 0 and use the method of
successive approximations to approximate the solution of the given
initial value problem.
a. Calculate ¢(1), ..., 03(1).
@ b. Plot ¢,(1), ..., 05(t). Observe whether the iterates
appear to be converging.
T F=Fgyt 900 =0
8. y=1-%, y0) =0
In each of Problems 9 and 10, let ¢4(7) = 0 and use the method of
successive approximations to approximate the solution of the given
initial value problem.
a. Calculate ¢ (1), ...,04(t), or (if necessary) Taylor
approximations to these iterates. Keep terms up to order six.
@ b. Plot the functions you found in part a and observe whether
they appear to be converging.

9, y=—siny+1, y(0)=0
32+ 4t +2
10, y=———, y0)=0
) 35 -1 y(0)

11. Let¢,(x) = x" for0 < x < 1 and show that
{0, O=x< I,

lim ¢,(x) =
im ¢,(x) 1. qpa=il.

n—oo
This example shows that a sequence of continuous functions may
converge to a limit function that is discontinuous.

12. Consider the sequence ¢ ,(x) = 2nxe”’“'2. O0<x<l1.
a. Show that lim ¢,(x) =0 for0 < x < 1; hence

n—oc

1
/ lim ¢,(x)dx =0.
(

) n—>o0

I
b. Show that/ 2nxe ™ dx =1 —e7"; hence
0

1
Iim/ on(x)dx =1.
n—00 J0

Thus, in this example,

b b
lim/ On(x)dx # lim ¢,(x)dx,

n—00 a n—oo

even though lim ¢,(x) exists and is continuous.
n—>0o0

o0 2%
/2

13. a. Verify that ¢ (1) = E m is a solution of the integral
k=1

equation (9).
b. Verify that ¢ () is also a solution of the initial value problem
(6).

gk
! .
¢. Use the fact that E il = €' to evaluate ¢ (¢) in terms of

k=0
elementary functions.

d. Solve initial value problem (6) as a separable equation.
e. Solve initial value problem (6) as a first order linear equation.

InProblems 14 through 17, we indicate how to prove that the sequence
{0, (1)}, defined by equations (4) through (7), converges.

oo y
12
a. Verify that ¢ (1) = Z ¥ is a solution of the integral

equation (9). st

b. Verify that ¢ (1) is also a solution of the initial value problem

(6).

(o]
k
t . .
¢. Use the fact that E - e’ to evaluate ¢ (¢) in terms of

k=0
elementary functions.

d. Solve initial value problem (6) as a separable equation.
e. Solve initial value problem (6) as a first order linear equation.




‘<. Ifdf/dy is continuous in the rectangle D, show that there is a a. Show that

[9a(D] = 101(D]+102(1) =1 (D) |+ +1Pa(t) = Pp_1(D) -

£, 31) = £(8, y2)| = Kly1 = 32l GL b. Use the results of Problem 16 to show that

(Kh)? - (Kh)”)

e (1, v;) and (1, y,) are any two points in D having the same ¢
iinate. This inequality is known as a Lipschitz** condition.
== Hold 1 fixed and use the mean value theorem on f as a function

only. Choose K to be the maximum value of |0//8y|in D. c. Show that the sum in part b converges asn — oo and, hence,
the sum in part a also converges as n — 00. Conclude therefore

that the sequence {¢,(#)} converges since it is the sequence of
partial sums of a convergent infinite series.

+ -

2! n!

M
loa()] < E (Kh =

(5. Ifo,_;(1) and ¢,(1r) are members of the sequence {¢,(1)}, use
=z result of Problem 14 to show that

f(t, da(t)) — f(t, c‘)”(;(t))i < K‘(b,,(t) — b1 (1) i 18. In this problem we deal with the question of uniqueness of the
solution of the integral equation (3)

a. Show that if |r| < h, then

o (1) :/ f(s, 0(s))ds.
0

[o1(0)] < Mzl
where M is chosen so that | f(z, y)| < M for (1, y) in D. a. Suppose that ¢ and ¢ are two solutions of equation (3). Show
b. Use the results of Problem 15 and part a of Problem 16 to that, for ¢ > 0,
show that '
‘ MK|t)? o) —¢() = / (f(s,0(5)) = f(s,9(s))) ds.
[@2(8) —o1(D] = 5 . Jo

= . Show that
¢. Show, by mathematical induction, that

MK g)" = MK"'n" lo(r) —w(D)] < / (f(s,0(5)) = f(s,%(s))) ds.
: 0

lon(t)_cﬁjn—l(t)i =< |
n!

Note thnt ¢. Use the result of Problem 14 to show that

1) = @I(f) + (02([) _fol(r)) =t iviieeste (cﬁ,,(l‘) “Qn—-l(ﬂ)- iO(l) o U(l‘)| < K /t [O(S) —‘l‘,")(s)[ds.
JO

where K is an upper bound for |9f/dy| in D. This is the same
as equation (30), and the rest of the proof may be constructed as
indicated in the text.

U= ity of Bonn for many years, worked in several areas of mathematics.
Th quality (i) can replace the hypothesis that Jf/0y is continuous in
T==orem 2.8.1; this results in a slightly stronger theorem.

29 First-Order Difference Equations

~lthough a continuous model leading to a differential equation is reasonable and attractive
“or many problems, there are some cases in which a discrete model may be more natural.
For instance, the continuous model of compound interest used in Section 2.3 is only an
zoproximation to the actual discrete process. Similarly, sometimes population growth may
~= described more accurately by a discrete model than by a continuous model. This is true, for
==zmple, of species whose generations do not overlap and that propagate at regular intervals,
<uch as at particular times of the calendar year. Then the population y,+, of the species in the
vzzr n + 1 is some function of n and the population y, in the preceding year; that is,

Yne1 = f(n, ¥n), n=0,1,2,.... (D

Zouation (1) is called a first-order difference equation. It is first-order because the value

7 v._; depends on the value of y, but not on earlier values y,_y, y,—», and so forth. As

“or differential equations, the difference equation (1) is linear if f is a linear function of y,;

~therwise, it is nonlinear. A solution of the difference equation (1) is a sequence of numbers

_v:i. Vs, ... that satisfy the equation for each n. In addition to the difference equation itself,
—ere may also be an initial condition

Yo =0 @)
—z1 prescribes the value of the first term of the solution sequence.
We now assume temporarily that the function f in equation (1) depends only on y,, but
=27 on n. In this case

Vo= (Vn)s w2012, s (3)
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] ,,,,7J|// szzgested that if the growth rate p is too large, then it will be impossible to make effective
~ong-range predictions about these insect populations. The occurrence of chaotic solutions
= seemingly simple problems has stimulated an enormous amount of research, but many
Zzestions remain unanswered. It is increasingly clear, however, that chaotic solutions are much

—ore common than was suspected at first and that they may be a part of the investigation of a

=:de range of phenomena.

== zzch of Problems | through 4, solve the given difference equation
= =zrms of the initial value y,. Describe the behavior of the solution

ImE — OO.
Va1 = =09y,
! n+3
g i1 = Pl l)'n
Ya1 = (—=1)"tly,
& Y1 =05y, +6

5. An investor deposits $1000 in an account paying interest at a
== 0f 8%, compounded monthly, and also makes additional deposits
- 525 per month. Find the balance in the account after 3 years.

A certain college graduate borrows $8000 to buy a car. The

= ment rate is required to pay off the loan in 3 years? Compare your
===zt with that of Problem 7 in Section 2.3.

A homebuyer takes out a mortgage of $100,000 with an interest
=== 0f 9%. What monthly payment is required to pay off the loan in
=0 vzars? In 20 years? What is the total amount paid during the term

© =z loan in each of these cases?

. If the interest rate on a 20-year mortgage is fixed at 10% and
= z monthly payment of $1000 is the maximum that the buyer can
o0, what is the maximum mortgage loan that can be made under

==z conditions?

9. A homebuyer wishes to finance the purchase with a $95,000
mortgage with a 20-year term. What is the maximum interest rate the
buyer can afford if the monthly payment is not to exceed $900?

The Logistic Difference Equation. Problems 10 through |5 deal with
the difference equation (21), u, 1 = pu,(1 —u,).

10.  Carry out the details in the linear stability analysis of the
equilibrium solution u, = (p — 1)/p. That is, derive the difference
equation (26) in the text for the perturbation v,,.

11. €3 a. For p = 3.2, plot or calculate the solution of the logistic
equation (21) for several initial conditions, say, uy = 0.2, 0.4,
0.6, and 0.8. Observe that in each case the solution approaches a
steady oscillation between the same two values. This illustrates
that the long-term behavior of the solution is independent of the
initial conditions.
€3 b. Make similar calculations and verify that the nature of the
solution for large n is independent of the initial condition for
other values of p, such as 2.6, 2.8, and 3.4.

12.  Assume that p > 1 in equation (21).
€3 2. Draw a qualitatively correct stairstep diagram and thereby
show that if gy < 0. then u, — —o0 asn — 0.
@ b. In a similar way, determine what happens as n — oo if
ug > 1.




13. The solutions of equation (21) change from convergent
sequences to periodic oscillations of period 2 as the parameter p passes
through the value 3. To see more clearly how this happens, carry out
the following calculations.
€3 a. Plot or calculate the solution for p = 2.9, 2.95, and
2.99, respectively, using an initial value u of your choice in the
interval (0, 1). In each case estimate how many iterations are
required for the solution to get “very close” to the limiting value.
Use any convenient interpretation of what “very close” means in
the preceding sentence.
€3 b. Plot or calculate the solution for p = 3.01, 3.05, and
3.1, respectively, using the same initial condition as in part a.
In each case estimate how many iterations are needed to reach a
steady-state oscillation. Also find or estimate the two values in
the steady-state oscillation.

€% 14. By calculating or plotting the solution of equation (21) for
different values of p, estimate the value of p at which the solution
changes from an oscillation of period 2 to one of period 4. In the same
way, estimate the value of p at which the solution changes from period
4 to period 8.
@ 15. Let p; be the value of p at which the solution of
equation (21) changes from period 2"~ to period 2%, Thus, as noted
in the text, p; = 3, p = 3.449, and p; = 3.544.
a. Using these values of py. p,. and pj, or those you found in
Problem 14, calculate (p> — p1)/(p3 — p2).
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Miscellaneous Problems. One of the difficulties in solving first-
order differential equations is that there are several methods of
solution, each of which can be used on a certain type of equation.
It may take some time to become proficient in matching solution
methods with equations. The first 24 of the following problems are
presented to give you some practice in identifying the method or
methods applicable to a given equation. The remaining problems
involve certain types of equations that can be solved by specialized
methods.

Ineach of Problems | through 2, solve the given differential equation.
If an initial condition is given, also find the solution that satisfies it.

1 dy__x3—2y

Codx X

N _dl_l—{»cosx

T dx T 2—siny
dy 2xFy

3 fh . 500
dx  3+4+3y2—x ¥(0)
dv

4. o3 _6x+y-2xy
dx

5 Q__ny—f—yz{—l

Todx T xZ42xy
dv

6 x—i-%xy:l—y, y(1)=0
dx
dv

P koGPt yEed
dx

3 dy  2xy+1

% odx T x2+42y

2 2, 4y
9. (x%y+xy—y) +(2y -2 =0
dx

b. Leté, = (pn — pn_1)/(pns1 — pu). It can be shown that 6,
approaches a limit 6 as n — oo, where § = 4.6692 is known as
the Feigenbaum?* number. Determine the percentage difference
between the limiting value 6 and 65, as calculated in part a.

¢. Assume that 63 = 6 and use this relation to estimate p4, the
value of p at which solutions of period 16 appear.

@ d. By plotting or calculating solutions near the value of p4
found in part ¢, try to detect the appearance of a period 16
solution.

e. Observe that

pn=p1+(p2—=p1) +p3—p2)++(pn—pn-1)-
Assuming that

ps—p3=(p3—pDb6~", ps—ps=(p3—p2)672,

and so forth, express p,, as a geometric sum. Then find the limit
pn asn — oo. This is an estimate of the value of p at which the
onset of chaos occurs in the solution of the logistic equation (21).

2*This result for the logistic difference equation was discovered in August
1975 by Mitchell Feigenbaum (1944-), while he was working at the Los
Alamos National Laboratory. Within a few weeks he had established that the
same limiting value also appears in a large class of period-doubling difference
equations. Feigenbaum, who has a doctorate in physics from M.LT., is now at
Rockefeller University.

. dy
10. (x> +y) +(x+e)22 =0
dx

d7
11. (X+y)+(x+2y)3};=0, =1
dy '
12, (eF+ 12 =y —ye!
dx
13 dy _ e ¥ cosy — e¥ cos x
T odx T —etsiny 4 2% sinx
14. 2 _ 2513,
Codx Y
_dy ;
15. —L+2y=e“x =2 y(0) =3
dx
s 2. s 8
T ) oh
dX 2x+3x/‘:2

17. y = et
s )2 AT e
18. dy i ﬁjﬂ_&? 2l
dx = 3x%+4xy +3y?

dy .
19. zj’t- O T

21, — = Hint: Letu = x2.
dx x2y + }»3

A A
dx X —y

2 2 d ]
23, (3y*+2xy) — (2xy +x°) —c% =0

24, xy'+y—y%¥ =0, y(1)=2




~=.  Riccati Equations. The equation

d
d_i =q1(1) + g2(8)y + g3(1) y2

: mown as a Riccati® equation. Suppose that some particular solution
of this equation is known. A more general solution containing one
iooirary constant can be obtained through the substitution

1
)= y1(f) + —— .
y =y T
Szow that v(r) satisfies the first-order linear equation
dv
iy S X + 2 Y1)V —g3.
7 (g2 +2g3y1)v — g:

otz that v(t) will contain a single arbitrary constant.

Verify that the given function is a particular solution of the given
ti equation. Then use the method of Problem 25 to solve the
“2Zowing Riccati equations:

a. y =1+4+12-2y+y% i) =t

1y 5 1
b, YV=—=—=+3y% 3@ =-
] 2 y e 1 (7 ;
dy 2cos”t—sin®t + 2 (1) = sin?
c. — = Y = sin
dt 2cost %

=7. The propagation of a single action in a large population (for
==zmple. drivers turning on headlights at sunset) often depends
zily on external circumstances (gathering darkness) and partly on
= tzndency to imitate others who have already performed the action

question. In this case the proportion y(7) of people who have
~erformed the action can be described®® by the equation

dy/dt = (1—y)(x(1) +by), (28)

o

re x(t) measures the external stimulus and b is the imitation
coefficient.

a. Observe that equation (28) is a Riccati equation and that
vi(r) = 1 is one solution. Use the transformation suggested in
Problem 25, and find the linear equation satisfied by v(1).

b. Find v(¢) in the case that x(¢#) = at, where a is a constant.
Leave your answer in the form of an integral.

ti equations are named for Jacopo Francesco Riccati (1676-1754), a
" znetian nobleman, who declined university appointments in Italy, Austria,
=2 Russia to pursue his mathematical studies privately at home. Riccati
=odied these equations extensively; however, it was Euler (in 1760) who
“scovered the result stated in this problem.

= Sce Anatol Rapoport, “Contribution to the Mathematical Theory of Mass
vior: I The Propagation of Single Acts,” Bulletin of Mathematical
ohysics 14 (1952), pp. 159-169, and John Z. Hearon, “Note on the Theory
== Mass Behavior,” Bulletin of Mathematical Biophysics 17 (1955), pp. 7-13.
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he two books mentioned in Section 2.5 are

Sziley, N. T. J., The Mathematical Theory of Infectious Diseases
and Its Applications (2nd ed.) (New York: Hafner Press,
1975).

Clark, Colin W., Mathematical Bioeconomics (2nd ed.) (New

York: Wiley-Interscience, 1990).

Some Special Second-Order Differential Equations. Second-order
differential equations involve the second derivative of the unknown
function and have the general form y” = f(t,y, ). Usually,
such equations cannot be solved by methods designed for first-order
equations. However, there are two types of second-order equations
that can be transformed into first-order equations by a suitable change
of variable. The resulting equation can sometimes be solved by the
methods presented in this chapter. Problems 28 through 37 deal with
these types of equations.

Equations with the Dependent Variable Missing. For a second-
order differential equation of the form y” = f(t, y'), the substitution
v =y, v/ = y” leads to a first-order differential equation of the
form v" = f(t,v). If this equation can be solved for v, then y can be
obtained by integrating dy/dt = v. Note that one arbitrary constant
is obtained in solving the first-order equation for v, and a second is
introduced in the integration for y. In each of Problems 2 through

21, use this substitution to solve the given equation.

28, 12y 42y —1=0, t>0

29 iy'+y' =1, t>0

30. y'+1(y)2=0

3. 22y 4+ () =21y, >0

Equations with the Independent Variable Missing. Consider
second-order differential equations of the form y”= f(y,y'), in
which the independent variable ¢ does not appear explicitly. If
we let v=y’, then we obtain dv/dt= f(y,v). Since the right-
hand side of this equation depends on y and v, rather than on
¢ and v, this equation contains too many variables. However, if
we think of y as the independent variable, then by the chain
rule, dv/dt=(dv/dy)(dy/dt) =v(dv/dy). Hence the original
differential equation can be written as v(dv/dy) = f(y,v).Provided
that this first-order equation can be solved, we obtain v as a function
of y. A relation between y and ¢ results from solving dy/dt=v(y),
which is a separable equation. Again, there are two arbitrary constants
in the final result. In each of Problems 32 through 35, use this method
to solve the given differential equation.

32. »'+()?=0

33. y'+y=0

34. yy// _ (y/)S =0

35. y// s ()1/)2 = sy

Hint: In Problem 35 the transformed equation is a Bernoulli equation.
See Problem 23 in Section 2.4.

In each of Problems 36 through 37, solve the given initial value
problem using the methods of Problems 2§ through 35.

36. yy'=2, y0)=1, y'(0) =2

37 1+ +20y +3t72=0, y(1) =2, y(1) =—1

A good introduction to population dynamics, in general, is

Frauenthal, J. C., Introduction to Population Modeling (Boston:
Birkhauser, 1980).

A fuller discussion of the proof of the fundamental existence and
uniqueness theorem can be found in many more advanced books
on differential equations. Two that are reasonably accessible to
elementary readers are



