
ln each of Problems 1 through \:

@ a. Draw a direction field tbr the given diltbrential equation.

b. Based on an inspection of the direction field, describe how

solutions behave lor large l.
c. Find the general soiution of the given diflerential equation.

and use it to determine how solutions behave as r --+ oo.

l. y'*3-r,:t+e-2t
^ a 1,!. \'' - l! : t-e-'

3. .)'* -v : te-t + |
I

J. .v'+:)':3cos(2l). t > 0
I

5. y' - 2y :3e'
6. ty'- y:t2e-t, l>0
7. )'+):5sin(2r)
!{ ').,/ r ,, - ?r2

t ) 
- 

J'

In each of Problems 9 though i l, find the solution of the given initial
value problem.

l.r ! :14:i'.i ":!.

9. y' - y :2te2', y(o) : 1

tl). y' + 2y : te-zt , y( 1) : 0

2 cosrll. y'+ 
ty:- )(zr):0, t>0

12. 11 +(t * 1)-v: t, y(1n2) : 1, r > 0

In each ofProblems il and I l:
@ a. Draw a direction tield lbr the given differential equation.

How do solutions appear to behave as r becomes large? Does the

behavior depend on the choice of the initial value a? Let as be

the value of a for which the transition from one type of behavior

to another occurs. Estimate the value of 46.

b" Solve the initial value problem and find the critical value a6

exactly.
c. Describe the behavior of the solution corresponding to the

initial value a6.

I

13. i'' - :r':2cosl. l'(0) : a')'
l+. 3.r' -2y : s-tt/2, )(0) : a

The main purpose of this example is to illustrate that sometimes the solution must be left in terms

of an integral. This is usualty at most a slight inconvenience, rather than a serious obstacle. For a given

value of r, the integral in equation (47) is a definite integral and can be approximated to any desired

clegree of accuracy by using readily available numerical integrators. By repeating this process for

many values of r and plotting the results, you can obtain a graph of a solution. Altematively, you can

use a numerical approximation method, such as those discussed in Chapter 8, that proceed directly

from the differential equation and need no expression for the solution. Soliware packages such as

Maple, Mathematica, MATLAB and Sage readily execute such procedures and produce graphs of

solutions of differential equations,

Figure 2.1.4 displays graphs of the solution (47) for several values of c. The particular solution

satisfying the initial condition "v(0) : 1 is shown in black. From the figure it may be plausible to

conjecture that all solutions approach alimit as / -> cc. The limit can also be found analytically (see

Problem ll).

Fr*hi**:s
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In each of Problems L-5 and l6:

Gl a. Draw a direction field for the given differential equation.

How do solutions appear to behave as / -+ 0? Does the behavior
depend on the choice of the initial value a ? Let asbe the critical
value of a, that is, the initial value such that the solutions for
a I as and the solutions for a ) as have different behaviors as

, -> co. Estimate the value of ao.

b. Solve the initial value problem and find the critical value a6

exactly.
c. Describe the behavior of the solution corresponding to the

initial value a6.

15. ty' +(t-ll)y-2te-t, )(1) : a, t) 0

16. (sinr)y'* (cosr)y : g/, y( 1) : a, 0 < t < r
@ tZ. Consider the initial value problem

,l
!' *;l:2cosI. Y(0) : -1.z

Find the coordinates of the first local maximum point of the solution
forr > 0.

O 18. Consider the initial value problem

.2 1

Y'+JY:t-it, Y(0):Yo.

Find the value of y6 for which the solution touches, but does not cross,

the /-axis.

19. Consider the initial value problem

,1 "-3+2cos(2t), y(0):0.Y-4t

a. Find the solution of this initial value problem and describe its
behavior for large r.

@ b. Oetermine the vaiue of r for which the solution first
intersects the line ! :12.

2ll. Find the value of y6 for which the solution of the initial value
problem

y' - y :1 *3sinr. y(0) ::r,o

remains finite as , -+ oo.

21. Consider the initial value problem

,3,' - i., :3t +Zet, y(0) :yo.

Find the value of )0 that separates solutions that grow positively as

, -> oo from those that grow negatively. How does the solution that
corresponds to this critical value of y0 behave as I -+ oo?

22. Show that all solutions of 2y' t ty : 2 [equation (41) of the

textl approach a limit as I -+ oo, and find the limiting value.
y'linr; Consider the general solution, equation (47). Show that the first

term in the solution (47) is indeterminate with form 0 . oo. Then, use

1'H6pital's rule to compute the limit as r -> oo.

23. Show that if a and ) are positive constants, and b is any real

number, then every solution of the equation

Y'+aY:[s-\t
has the properry that y -+ 0 as / -+ oo.
Illnr: Consider the cases a : .\ and a I ,\ separately.

In each of Problems 2-i through 27, construct a first-order linear
differential equation whose solutions have the required behavior as

/ -+ co. Then solve your equation and confirm that the solutions do

indeed have the specified property.

21. All solutions have the limit 3 as , -+ oo.

25. Al1 solutions are asymptotic to the line ! : 3 - r as / -+ oo.

26. All solutions are asymptotic to the line j :2t - 5 as , -+ oo.

27. All solutions approach the curve y : 4 - 12 as , -+ oo.

28. Yariation of Parameters. Consider the following method of
solving the general linear equation of first order:

Y' + P(t)Y: 8(/) '

a. If S( r) : 0 for all r, show that the solution is

(48)

whereAisaconstant.
tr. if g(t) is not everywhere zero, assume that the solution of
equation (48) is of the form

where A is now a function of r. By substituting for y in the given
differential equation, show that A(r) must satisfy the condition

A'1t1 :8(,).-e(/ e(D dt). (51)

c. Find A(r) from equation (51). Then substitute for A(l) in
equation (50) and determine y, Verify that the solution obtained
in this manner agrees with that of equation (33) in the text. This
technique is known as the method of variation of parameters;
it is discussed in detail in Section 3.6 in connection with second-
order Iinear equations.

In each of Problems 19 and 30, use the method of Problem lS to solve
the given differential equation.

29. y' - 2y - tze2t
I

3(1. y' + :y: cos(2r). I > 0
T

r: a.*n(- f ou, o,)' @s)

y : A(t)*, (- | l.tt ar), (so)
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In each of Problems i through S, solve the given differential equation.

,t2l. r": -')
2. .y'+ r'-2 sinx : o

3. ,y' : cos2(.r) cos'12y;

1. .r)'=(1-y2)t/2
- d| x-e ^:}. --:- : 

-
dx !*eY
dt x2A:
dx 1*),

n d)' ]'
dx .x

,, dt, -x
dx J'

ln each ol Problems't through ltr:
a. Find the solution of the given initial value problem in explicit
tbrm.

@ b. Piot the graph ofthe solution.
c. Determine (at least approximately) the interval in which the

solution is defined.

9. .1r':(1 -Zx)y?,,r,(0) : -1/6
1t). ),':(1 -2x)ly,,r'(1) :-2
I l. x dx * ye-r dy : Q, -r'(0) : 1

l:. dr lrt| : r210, r(l) :2
13. y' : x)3( | + 12)-112, -v(0) : 1

1:1. y' : 2x I (l * 2y), .r,(2) : 0

15. y' : (3x2 - e') lQv - 5), y(0) : I

16. sin(2-rr) dx * cos(3y) d:- :0, y(r 121 : v 13

Some of the results requested in Problems 1 I through ll can be

obtained either by solving the given equations analytically or by
plotting numerically generated approximations to the solutions. Try
to form an opinion about the advantages and disadvantages of each

approach.

Gl tZ. Solve the initial value problem

I r ?..2

)-, - :-:_::_. r.(0) : I
3.r'r - 61'

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the

integrai curve has a vertical tangent.

G! tS. Solve the initial value problem

3x-v': Y(i) :0
3r'2 - 4'

and determine the interval in which the solution is valid.
Hint: To lind the interval of definition, look for points where the

integral curve has a vertical tangent.

@ t,). Solve the initial value problem

y' :2-t2 + xy2, .v(0) : 1

and determine where the solution attains its minimum value.

(t :0. Solve the initial value problem

2-e'y= r'(0) :0

and determine where the solution attains its maximum value.

@ Z t . Consi<ier the initial value probiem

, tv(4 - r') . y(0) : )ir.

a. Determine how the behavior of the solution as I increases

depends on the initial value 1,e.

b. Suppose that.vs : 0.5. Find the time 7' at which the solution
first reaches the value 3.98.

@ ZZ. Consider the initial value problem

I I)(4- r')
1.' =' -!-. 

i.(0) :r.o) 0.
r +r

!1. Determine how the solution behaves as / -+ oo.

tr. If y6 :2, find the time 7 at which the soiution lirst reaches

the value 3.99.
c. Find the range ofinitial values for which the solution iies in
the interval 3.99 < "t < 4.01 by the time, : 2.

23. Solve the equation

dY aY+b
i':Y: q'+d'

where a, b, c, and d are constants.

21. Use separation of variables to solve the differential equation

dQ__= _ r(a + be:. e(O) = eo.

where a, b, r, and Qs are constants. Determine how the solution

behaves as / -> oo

Homogeneous Equations. If the right-hand side of the equation

dy I dx : "f(x, r) can be expressed as a function of the ratio y/x
only. then the equation is said to be homogeneous.l Such equations

can always be transformed into separable equations by a change of
the dependent variable. Problem l: illustrates how to solve first-order

homogeneous equations.

lThe word "homogeneous" has different meanings in different mathematical

contexts. The homogeneous equations considered here have nothing to do with
the homogeneous equations that will occur in Chapter 3 and elsewhere.

il



O :S. Consider the equation

b,:
dx r-),

ir. Show that equation (29) canbe rewritten as

dy *(ylx)-4.
dx- r-(r,/r)'

thus equation (29) is homogeneous.

lr. Introduce a new dependent variable v so that v : "-f 
x, or

t : "rt,(x). Express dt'ldx intermsof -r, v,anddvf dx.
c. Replace .t and dy ldx in equation (30) by the expressions

tiom part 1-. that involve , un4 ivf dx. Show that the resulting

differential equation is

dt, v -4
"'dr l-r,'

dt, tt2 * 4

dx 1-v
Observe that equation (31) is separable.

cl. Solve equation (31), obtaining rr implicitly in terms of x.
c. Find the solution of equation (29) by replacing l by y/r in
the solution in part ri.

1'. Draw a dircction field and some integral curves for
equation (29). Recall that the righrhand side of equation (29)

actually depends only on the ratio 1,/x. This means that integral

curves have the same slope at ali points on any given straight line

through the origin. although the slope chimges liom one line to
another. Therefore. the direction tield and the integral curves are

symmetric with respect to the origin. Is this symmetry property

evident from your plot?

The method outlined in Problem :: can be used for any

homogeneous equation. That is, the substitution J : xv("r) transforms
a homogeneous equation into a separable equation. The latter equation
can be solved by direct integration. and then replacing v by y I x
gives the solution to the original equation. In cach of Problems .lr.r

through :r 1:

l. Show that the given equation is homogeneous.

b. Solve the differential equation.

G c. Draw a direction field and some integral curves. Are they

symmetric with respect to the origin?

- dt' .rl + xr' + vltlz .:-:

dx .\l
1y d1' .r-: + 3r'l

dx 2:r l

y-4x
t29)

(30)

2ri.

:9.

d), :
d-r

dt:
dx

dy

dx

4-t' - 3.r

2x*y
4.r * 3r

2x*.y
.r- - J \'-

2xy
^) )
-J \'- - X-

2;l -r,

3{}.

1' dr' 
--r.! -:- 

-df

2.3 Modeting with First-Order Differential

Equations

Diff'erential equations are of interest to nonmathematicians primarily because of the possibility
of using them to investigate a wide variety of problems in the physical, biological, and social

sciences. One reason for this is that mathematical models and their solutions lead to equations

relating the variables and parameters in the problem. These equations often enable you to make
predictions about how the natural process will behave in various circumstances. It is often easy

to vary parameters in the mathematical model over wide ranges, whereas this may be very
time-consuming or expensive, if not impossible, in an experimental setting. Nevertheless,

mathematical modeling and experiment or observation are both critically important and

have somewhat complementary roles in scientific investigations. Mathematical models are

validated by comparison of their predictions with experimental results. On the other hand,
mathematical analyses may suggest the most promising directions to explore experimentally,
and they may indicate fairly precisely what experimental data will be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathematical models.
We begin by recapitulating and expanding on some of the conclusions reached in those

sections. Regardless of the specific field of application, there are three identifiable steps that

are always present in the process of mathematical modeling.

In this step the physical situation is translated into
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most critical
at this stage is to state clearly the physical principle(s) that are believed to govern the process.

For example, it has been observed that in some circumstances heat passes from a warmer to
a cooler body at a rate proportional to the temperature difference, that objects move abouf

in accordance with Newton's laws of motion, and that isolated insect populations grow at

a rate proportional to the current population. Each of these statements involves a rate of
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To determine the maximum altitude A.r* that the body reaches, we set v : 0 and x : A.o* in
equation (30) and then solve for,4.u,, obtaining

a
,;R

A-Trntdx - ) '

2gR - vi
(31)

(33)

a" Show that y : fTgh, where g is the acceleration rlue to

gravity.
h. By equating the rate of outflow m the rate of change of liquid
in the tank, show that &(l) satisfies the equation

dh
A(h\ dt 

: -aot/291 , (34)

where A( ft) is the area of the cross section of the tank at height ft

and a is the area of the outlet. The constant n is a contraction

coefticient that accounts fbr the observed fact that the cross

section of the (smooth) outflow stream is smaller than a. The

value of n 1br water is about 0.6.

c. Consider a water tank in the form of a right circular cylinder

that is 3m high above the outlet. The radius of the tank is 1m,

and the radius of the circular outlet is 0. 1 m. If the tank is initially
full of water, determine how long it takes to drain the tank down

to the level of the outlet.

5. Suppose that a sum Se is invested at an annual rate ol return r
compoundcd continuously.

*. Find the time I required for the original sum to double in
value as a function of r.
f r. Determine T il r :'7o/o.

e. Find the retum rate that must be achieved if the initial
investment is to double in 8 years.

ft, A young person with no initial capital invests k dollars per

year at an annual rate of return r. Assume that investments are made

continuously and that the return is compounded continuously.

a. Determine the sum S(l) accumulated at any time r.
lr. If r : 7.5%. determine t so that $1 million will be available

for retirement in 40 years.

c. If ft : $2000/year, determine the retum rate r that must be

obtained to have $l million available in 40 years.

Solving equation (3 1) for v6. we lind the initial velocity required to lift the body to the altitude A-o,,
namely,

vl) -
(32)

The escape velocity uo is then lound by letting A,rr, -+ oo. Consequently,

,,: ,/zsn.

The numerical value of v, is approximately 6.9 mi/s, or 1 1 .1 km/s

The preceding calculation of the escape velocity neglects the eft'ect of air resistance, so the

actual escape velocity (including the effect of air resistance) is somewhat higher. On the other hand,

the effective escape velocity can be signilicantly reduced if the body is transported a considerable

distance above sea level belbre being launched. Both gravitational and frictional forces are thereby

reduced; air resistance, in parricular, diminishes quite rapidly with increasing altitude. You should

! keep in mind also that it may well be impractical to impart too large an initial velocity instantaneously;

i space vehicles, for instance, receive their initial acceleration during a period ofa few minutes.
*
L-,,"**" 6*5

i:3 i.{: li lr,: l":'"i''-<

1. Consider a tank used in certain hydrodynamic experiments.

After one experiment the tank contains 200 L of a dye solution with
a concentration of 1 g/L. To prepare tbr the next experiment. the tank

is to be rinsed with fresh water flowing in at a rate of 2 L/min, the

well-stirred solution flowing out at the same rate. Find the time that

rvili elapse before the concentration of dye in the tank reaches 1 % of
its original value.

1. A rank initiatly contains 120 L of pure water. A mixture

containing a concentration of ^1 g/L of salt enters the tank at a rate

of 2 L/min, and the well-stired mixture leaves the tank at the same

rate. Find an expression in terms of 1 for the amount of salt in the

tank at any time r. Also find the limiting amount of sa-1t in the tank as

, -> oo.

3. A tank contains 100 ga1 of water arrd 50 oz of sa1t. Water
rl I \

containing a salt concentration of ; ( I + | sint ) ozlgal flows into
-\ t ,/

the tank at a rate of 2 gal/min, and the mixture in the tank flows out at

the same rate.

a. Find the amount of salt in the tank at any time.

Gl h. ptot the solution for a time period long enough so that you

see the ultimate behavior of the graph.

c, The longlime behavior of the solution is an oscillation about

a certain constant levei. What is this level? What is the amplitude
of the oscillation?

't. Suppose that a tank containing a certain liquid has an outlet near

the bottom. Let ft( l) be the height of the liquid surface above the outlet

at time l. Torricelli's2 principle states that the outflow velocity v at the

outlet is equal to the velocity of a particle falling freely (with no drag)

from the height ll.

rEvangelista Torricelli (1608-1647), successor to Galileo as court

mathematician in Florence, published this result in 1644. In addition to this

work in fluid dynamics, he is also known for constructing the tirst mercury

barometer and for making imporlant contributions to geometry'

la K-" R -F A-,,



i-. A cenain college graduate borrorvs 58000 ro buy a car. The
lender charges interest at an arnual rate of 10%. Assuming that interest
is compounded continuously and that the borrower makes payments
continuously at a constant annual rate t, determine the payment rate
k that is required to pay off rhe loan in 3 years. Also determine how
much interest is paid during the 3-year periocl.

fiil tt. A recent college graduate borrows $150,000 at an interest
rule of 6Vo to purchase a condominium. Anticipating steady salary
increases, the buyer expects to make payments at a monthly rate of
800 + 101. where I is the number of months since the loan was made.

lu. Assuming that this payment schedule can be maintained,
when wi-Il the loan be fully paid?
h. Assuming the same payment schedule, how large a loan could
be paid off in exactly 20 years?

qi. An important tool in archeological research is radiocarbon
dating, developed by the American chemisr Willard F. Libby.3 This
is a means of determining the age of certain wood and plant remains,
and hence of animal or human bones or aftifacts found buried at the
same levels. Radiocarbon dating is based on the fact that some wood
or plant remains contain residual amounts of carbon- 14, a radioactive
isotope of carbon. This isrxope is accumulated during the lifetime
of the plant and begins to decay ar irs death. Since the half-life of
carbon-14 is long (approximately 5730 years),4 measurable amounts
of carbon-14 remain atter many thousands ol'years. If even a tiny
fraction of the original amount of carbon-14 is still present, then by
appropriate laboratory measurements the proportion of the original
amount of carbon-14 that remains can be accurately determined. tn
other words, it Q(t) is the amounr of carbon-l4 at rime / and Qs is
the original amount, then the rurio QQ)lQo cut be determined, as

long as this quantity is not too small. Present measurement techniques
permit the use of this method for time periods of 50,000 years or more.

a. Assuming thar O sarisfies rhe ditTerential equarion
Q' : -r Q, determine the decay constant r for carbon-l4.
h" Find an expression for QQ) at any rime t,it 8Q) : Qo.
e. Suppose that certain remains are discovered in which the
current residual amount of carbon-14 is 20% of the original
amount. Determine the age of these remains.

G! tll. Suppose that a certain population has a growth rare thar
varies with time and that rhis population sarisfies the difl'erential
equation

rl. If y(0) : i, find (or estimate) the time r at which the
population has doubled. Choose other initial conditions and
determine whether the doubling time r depends on the initial
population.
Ii. Suppose that rhe growrh rate is repiaced by its average value
1/ 10. Determine the doubling time r in this case.
c. Suppose thar rhe term sin, in the dift'erential equation is
replaced by sin 2r l; that is, the variation in the growth rate has a
substantially higher frequency. What effect does this have on the
doubling time r ?

<i. Plot the solutions obtained in parts ir, ir, and t on a single set
of axes.

3willard F. Libby (1908-1980) was born in rural Colorado and received his
education at the University ofCalifornia at Berkeley. He developed the method
ofradiocarbon dating beginningin 1947 while he was at the University of
Chicago. For this work he was awarded the Nobel Prize in Chemisrry in 1960_
a McGraw-Hill Encyclopeclia of Science and Teclutology (8rh ed.) (New york:
McGraw-Hill, 1997), Vol. 5, p.48.

O t t. Suppose thar a cenain popuiation satist'ies the initial r.alue
problem

dtldr : r(r)-r'- ft, -v(0) : -r.6.

where the growth rare r(l) is given by r(r) : ( 1 + sinl)/5, and k
represents the rate of predation.

@:t. Suppose that ft : 1/5. Plot -1,- versus / for several values
ol y1y between I I 2 and l.
h. Estimate the critical initial popuiation ,y,, below which the
population will become cxrinct.
c" Choose other values of k and find the corresponding -r,,- for
each one.

Gl d. Use the data you have found in parrs r and l io plor _y(,

versus k.

12. Newton's law of cooling states that the temperature o1' an object
changes at a raie proportional to the difference between its temperature
and that of its surroundings. Suppose that the temperature of a cup of
col'fee obeys Newton's law of cooling. If the coffee has a temperature
of 200"F when lieshly poured, and 1 min later has cooled ro 190"F in
a room at 70oF, determine when the cofl'ec reaches a temperature of
150"F.

13. Heat transfer liom a body to its suroundings by radiation,
based on the Stefan-Boltzmams law. is describecl by the differential
equation

du

T:-a(u"-Tt\' (35)

where a(r) is the absolute temperature of the body at time /, f is
the absolute temperature of the suroundings, and o is a constant
depending on the physical parameters of the body. However, if u
is much larger than 7, then solutions of equation (35) are well
approximated by solutions of the simpler equation

du

- 
1-6ytr+

dt

Suppose that a body with initial temperature 2000 K is surounded by
a medium with temperature 300 K and that a :2.0, 1g-t2 6-37..

:i. Determine the temperature of the body at any time by solving
equation (36).

@ b. Plor the graph ofa versus ,.
8 c. Find the time r at which u(r) : 600-rhat is, rwice
the ambient temperature. Up to this time the error in using
equation (36) to approximate the solurions of equation (35) is
no more tharr 1%.

O t+. Consicler an insulated box (a building, perhaps) with
internal temperature u(t). According to Newton's iaw of cooling. u
satisfies the dilTerential equation

du

dt 
: -k(u - T(t)),

where I(l) is the ambient (external) temperature. Suppose that
7(t) varies sinusoidally; for example, assume thar
T(t) : To I Tt cos(crr).

; ;;ffi ;;; ii;;_ il; i;; ;,"f.;;;; ffi;;; ;; ;i;;il;;;;; ;;i;;;;;
law on empirical grounds in 1879. His student Ludwig Boltzmann (1844-1906)
derived it theoretically from the principles of thermodynamics in 1884.
Boltzmann is best known for his pioneering work in statistical mechanics.

di) 
= 10.5 + sin r){dt -)

(36)

(37)



ir. Solve equation (37) and express a(r) in terms of r,k,T6, \,
and c.-,. Observe that pan of your solution approaches zero as /
becomes large; this is called the transient part. The remainder of
the solution is called the steady srare; denore it by S( r) .

ffi lr, Suppose that , is measured in hours and that a : r I 12,
corresponding to a period of 24 h for 7'(r). Further, let
7ir :60"F, Ir : 15"F, andft : O.2/h.Draw graphsof S(l)
and 7(t) versus I on the same axes. From your graph estimate
the amplitude R of the oscillatory pafl of S(l). Also estimate
the time 1ag r between conesponding maxima of f (l) and S(r).
r. Let ft. 711, 7.1, and a now be unspecified. Write the oscillatory
part of S(l) in the form Rcos(L.r(r - r)). Use trigonometric
identities to lind exprcssions for R and ;-. Let 71 and c,, have
the values given in part b, and plot graphs of R and r versus ft.

i:, Consider a late of constant volume V containing at time /
an amount Q(t) of pollutant, evenly distribured rhroughout the lake
with a concentration c(/), where c(r) : QU)lV. Assume that
lvater containing a concentration ft of pollutant enters the lake at a
rate r, and that water ieaves the lake at the same rate. Suppose that
pollutants are also added directly to the lake at a constant ratc P.
Note that the given assumptions neglect a number of factors that may.
in some cases, be irnportant-fbr example, the water added or lost
by precipitation, absorption, and evaporation; the stratifying effect ol
temperature differences in a deep lake; the tendency of irregularities
in the coastline to produce sheltered bays; and the fact that pollutants
are deposited unevenly throughout the lake but (usually) ar isolated
points around its periphery. The results below must be interpreted in
light of the neglect of such lactors as these.

Ir. If at time t : 0 the concentration of pollutant is c1;, find an
expression for the concentration c(t) at any time. What is the
limiting concentration as , -+ oo?
fu. If the addition of pollutants to the lake is tcrminated (ft : 0
and P : 0 tbr r > 0). determine the time inrerval f that must
elapse belbre the concentrarion of pollutants is reduced to 50%
of its original value; to 10% of its original value.
r'. Table 2.3.2 contains data6 lor several of the Great Lakes.
Using these data, determine lrom part b the time 7 that is needed
to reduce the contamination of each of these lakes to 10% of the
original value.

\ oliutrr' :uit! i,Lrrc li:ii:r i*l'thr. (irr:tlTABLr ?.:"i, I,lir.s
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Erie
Ontario
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ffi lZ. Assume that the conditions are as in Problem :., except
that there is a force due to air resistance of magnitude lv l/ 30 directed
opposite to the velocity, where the velocity y is measured in m/s.

lt. Find the maximum height above the ground that the ball
reaches.

b. Find the time thar the ball hits the ground.

S! *:. Plot the graphs of velocity and position versus rime.
Compare these graphs with the coresponding ones in Problem
il'.

ffi I g. Assume that the conditions are as in Problem i i) except rhat
there is a force due to air resistance of magnitude v2 f 1325 directed
opposite to the velocity, where the velocity l is measured in m,/s.

ir" Find the maximum height above the ground that the balt
reaches.

Ii. Find the time that rhe ball hits the ground.

St c. Plot the graphs of velocity and position versus rime.
Compare these graphs with the coresponding ones in Problems
lir66 1''

i {i. A body of constanl mass ,z is projected vertically upward with
an initial velocity r,11 in a rnedium oft'ering a resistance ftlr,l, where ft
is a constant. Negiect changll.il the gravitational force.

a. Find the maximum height -1,, attained by the body and the
time ,,,, at which this maximum height is reached.

lr. Show that if kt,o f ftig < 1, then t,,, and )t. can be expressed
AS

.. Show that the quantity ftyuf mg is dimensionless.

:(,. A body of mass ru is projected vertically upward with an
initial velocity ue in a medium offering a resistance tlvl, where fr

is a cclnstant. Assume that the gravitational attraction of the earth is
constant.

ru" Find the velocity u(r) of the body at any rime.

lr. Use the result of part.i to calculate the limit of v(r) as

/r --+ 0-that is, as the resistance approaches zero. Does this
result agree with the velocity oI a mass z projected upward with
an initial velocity u6 in a vacuum?

q:. Use the result of part,, to calculate the limit of r,(r) as

in -+ 0-that is, as the mass approaches zero.

I l. A body falling in a relatively dense fluid. oil for example. is
acted on by three forces (see Figure 2.3.5): a resistive force R, a
buoyant lorce B, and its weight r.r. due to gravity. The buoyant force
is equal to the weight of the fluid displaced by rhe object. For a slowly
moving spherical body of radius a. the resistive force is given by
Stokes's law, R : 6tr palvl, where y is the velocity of the body, and
p is the coefficient of viscosity of rhe surrounding f1uid.7

il ;;;;;; c"u;;, il;;ii il;-;il3;;;; ;;;;;; i;;ffiil;*"* ;;;;r
his life at Cambridge University, llrst as a student and later as a professor.
Stokes was one of the foremost applied mathematicians of the nineteenth
century, best known for his work in l1uid dynamics and the wave theory of
light. The basic equations of fluid mechanics (the Navier-Stokes equations)
are named partly in his honor, and one of the f'undamental theorems of vector
calculus bears his name. He tvas also one of the pioneers in the use of divergent
(asymptotic) series.

/. _! (, _l*.1(*),_ 
)
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G :r,. A ball with mass 0.15 kg is thrown upward with initial
'. eiocity 20 m/s from the roof of a building 30 m high. Neglect air
::sistarce.

ii. Find the maximum height above the ground that the ball
reaches.
ir. Assuming that the ball misses the building on rhe way down,
trnd the time that it hits the ground.

G ,.. Plot the graphs of velocity ancl position versus time.

- --:j\ problemis based on R. H. Rainey, "Natural Displacement olPollution

--::: ihe Creat Lakes," Sclezce /.55 (1967), pp. 1242-1243 the informarion in
:-:: ::bie was taken from that source.

12.2

4.9

0.46
1.6



;r. Find the limiting velocity of a solid sphere of radius a and

density p falling freely in a medium of density p' and coefficient

of viscosity p.
h. In 1910 R. A. Millikans studied the motion of tiny droplets of
oil lalling in an electric field. A field of strength E exerts a fbrce

Ee on adroplet with charge e. Assume that E has been adjusted

so the droplet is held stationary (v : 0) and that Iu and B are

as given above. Find ar expression for e. Miliikan repeated this

experiment many times, and liom the data that he gathered he

was able to deduce the charge on an electron.

I

Ilw

:',, -.r',.r:,,.r:,'. ''r A body falling in a dense fluid (see

Problem .l l).

22. Let r,(r) and x (r) be the horizontal and vertical components,

respectively. of the velocity of a batted (or thrown) basebali. In the

absence of air resistance. r, and t,r,' satisfy the equations

d,- dw

- 
:0. 

-: 
-q.dt dt

ru, Show that

r, : ucosA, w : -8t*ilsinA,
where u is the initiai speed of the ball and A is its initial emgle of
elevation.
h. Let r(l) and y(r) be the horizontal and vertical coordinates,

respectively. of the ball at time /. If x( 0) : 0 and y( 0) : lr, find

.r(I) and r'(I) at iiny time /.

G!e. Let c : 32 ftls2, u : 125 frJs, and h : 3 ft. Plot the

trajectory ofthe ball for several values ofthe angle A; that is,

plot r( r) and -v( r) parametrically.
ti. Suppose the outfield wall is at a distance I and has height 11.

Find a relation between u md A ihat must be satisfied if the ba.ll

is to clear the wal1.

c. Suppose that L : 350 ft and g - l0 tt. Using the relation

in part (d), find (or estimate from a p1o0 the range of values ol A
that coruespond to an initial velocity of u : 1 10 ltls.
1". For L :350 and Il : 10, find the minimum initial velocity
ru and the corresponding optimal angle A for which the ball will
clear the wal1.

6l ::. A more realistic model (than that in Problem ll) of a

baseball in flight includes the effect of air resistance. In this case the

equations of motion are

dt, dtv

E:_rr,, 
___8_rtf,

where r is the coefficient ofresistance.

ERobert A. Millikan (1868-1953) was educated at Oberlin College and

Columbia University. Later he was a professor at the Univercity of Chicago

and California Institute of Technology. His determination of the charge on an

electron was published in 1910. For this work, and for other studies of the

pholoelectric effect, he was awarded the Nobel Prizc for Physics in 1923.

a. Determine v( r) and n' ( r) in terms of initial speed a and initial
angle of elevation A.
b. Find "r(t) and "v(r) if .t(0) : 0 and .r(0) : lz.

Gl c. Plot the trajectory olthe ball 161 v : 1 f 5, 1 : l2J, h = 3,

and for several values of A. How do the trajectories differ tiom
those in Problem : l with r : 0?

rl. Assuming that r : 1/5 and /l : 3. lind the minimum initial
velocity rz and the optimal angle A for which the ball will clear a

wall that is 350 ft distant and 10 1i high. Compare this result with

that in Problem .l I i'.

:J. Brachistochrone Problem. One of the famous problems in

the history of mathematics is the brachistochronee problem: to iind
the curve along which a particle will slide without liiction in the

minimum time from one given point P to another Q, the second

point being lower than the lirst but not directly beneath it (see Figure

2.3.6). This problem was posed by Johmn Bemoulli in 1696 as a

challenge problem to the mathematicians of his day. Correct solutions

were lbund by Johann Bernoulli and his brother Jakob Bernoulli and

by isaac Newton, Gottfried Leibniz. and the Marquis de L'H6pital.
The brachistochrone problem is important in the development of
mathematics as one of the lbrerunners of the calculus of vzriations.

In soiving this problem, it is convenient to take the origin as the

upper point P and to olient the axes as shown in Figure 2.3.6. The

lower point Q has coordinates (;ts, -rir). It is then possible to show

that the curve of minimum time is given by a function y : p (x) that

suislics the diflcrcnt ial equation

(1+)'2))':ft2, (38)

where ftr is a certain positive constant to be determined later.

a. Solve equation (38) for ),'. Why is it necessary to choose the

positive square root?
b. Introduce thc new variable t by the relation

'11',

):Arsinrt
Show that the equation found in part ii then takes the form

2k2 sin2 t dt : (lx.

(3e)

(40)

c. Letting 0 :2t, show that the solution ofequation (40) fot
which x : 0 when,y : 0 is givenby

x : k2(0 - sinil 12, I : k2( | - cos?) 12. (41)

Equations (41) are parametric equations of the solution of
equation (38) that passes through ( 0, 0) . The graph of equations

(41) is called a cycloid.
d. If we make a proper choice of the constant f , then the cycloid
also passes through the point (xo, )o) and is the solution of the

brachistochrone problem. Find fr il:;6 : 1 and lo -2.
Px

;i,..iffit1.i..li;;t rhe brachistochrone

(see Problem 1-r).

gThe worcl "brachistochrone" comes from the Creek words brachistos.

meaning shortest. and chronos, meaning time.



-\n introduction to numerical methods for first-order equations is given in Section 2.7, and a

s1'stematic discussion of numerical methods appears in Chapter 8. However, it is not necessary

:rr study the numerical algorithms themselves in order to use effectively one of the many

.otiware packages that generate and plot numerical approximations to solutions of initial value
problerns.

The linear equation t-' + p(t)y : g(/) has several nice properties that can be

summarized in the following statements:

1. Assuming that the coelficients are continuous, there is a general solution, containing an

arbitrary constant, that includes all solutions of the diff'erential equation. A ptrticular
solution that satisfies a given initial condition can be picked out by choosing the proper

value for the arbitrary constant,

l. There is an expression tbr the solution, namely, equation (7) or equation (8). Moreover,

although it involves two integrations, the expression is an explicit one for the solution

-)' : e ( /) rather than an equation that detines @ implicitly.

-1. The possible points of discontinuity, or singukuities, of the solution can be identified
(without solving the problem) merely by finding the points of discontinuity of the

coefficients. Thus, ifthe coefficients are continuous for all r, then the solution also exists

and is differentiable for al1 r.

\one of these statements are true, in general, of nonlinear equations. Although a nonlinear'

equation may well have a solution involving an arbitrary constant, there may also be other

solutions. There is no general formula for solutions of nonlinear equations. If you are able

ro integrate a nonlinear equation, you are likely to obtain an equation defining soluticlns

:mplicitly rather than explicitly. Finally, the singularities of solutions of nonlinear equations

can usually be found only by solving the equation and examining the solution. It is likely that

rhe singularities will depend on the initial condition as well as on the differential equation.

a_-::
:,=' : ;.'".t i,:i I i': j'j j a.

ln each of Problems I through :, determine (without solving the

:roblem) an interval in which the solution of the given initial value

:roblem is certain to exist.

i. (t - 3).y'* (lnr)r,:2t, -v(1) :2
:. -r,'+ (tanr).y - sinr, )(;r) :0
l. (4 - t2)y' *2ty :3t2, .v(-3) : 1

+. (1nl)-,-'* ) : cot/, r,(2) :3
h each of Problems I through r, state where in the t-l-plane thc
i1'potheses ol Theorem 2.4.2 are satisfied.

5. .1,,:(1-y2-r21tlt
ln lr.r'l

' l-Il+r.l
, a ,. rr,. )":(f-+1'-)-/-

)i. ,:fj.-
J.f - )-

In each of Problems 9 through i .r, solve the given initiai value problem

"nd deternine how the interval in which the solution exists depends

or the initial value y11.

9, )" : -4t ly, l(o) : .lo

1 r|. ),' : 2t ),2 , )( 0) : lir
I 1. .t.', + ,y3 : 0, -y(0) : yo

nt-
i :. .\'' : --:-:---;:. .r'( 0) : r',,y(l+I')

In each of Problems I .l through I (;, draw a direction field and plot (or

sketch) several solutions of the given differential equation. Describe
how solutions appear to behave as , increases and how their behavior
depends on the initial value ys when t : 0.

Gl l:. 1.' : 1_1,(3 * _v)

GI t-t. .y' :.r(3 - /y)

B 15. y' - -1'(3 - /_v)

Gl lrr. )":t-7-y2
17, Consider the initial value problem y' : y113, )(0) : 0 from
Example 3 in the text.

a. Is there a solutionthat passes through the point (1. 1)? If so,

find it.
b. Is there a solutionthat passes through the point (2. 1)? If so,

find it.
c. Consider ail possible solutions of the given initial value
problem. Dctermine the set of values that these solutions have

Idtt 
- 

L.

liqi. a" Verify that both yr(l) : 1 - I and f:(r) : -t2f 4 are

solutions of the initial value problem

, _t* Jt') +t
' r'(2) : -1'

Where are these solutions valid?



h. Explain why the existence of two solutions
given problem does not contradict the uniqueness

Theorem2.4.2.
c. Show that.y : ct | 62, r.vhere c is an arbitrary constant.

satisfies the difl'erential equation in part a for, > -2c.lf c : *1,
the initial condition is also satisfled, and the solution 1' : y1 ( t) is
obtained. Show that there is no choice of c that gives the second

solution ,r' : .iz(l).
19. rr, Show that o(r) : e2' is a solution of )' - 2-v = 0 and that

y : cO U) is also a solution of this equation lbr any value of the

constant c.

lr. Showthato(l) :lltisasolutionof r"+)'2:0forr > 0,

but that ,- : cd (t) is not a solution of this equation unless c : 0

or c : 1. Note that the equation of part i) is nonlinear, while that

of part ,r is linear.

2ll. Show that if y : o(l) is a solution of -'f'' + p(t)-i, : 0, then

y : cd G) is also a solution lor any value of the constant c.

21. Let y : y1(r) be a solution of

of the and is called a Bemoulli equation after Jakob Bemoulli. Problems l
part of and ,r': deal with equations of this type.

(30)

23. a. Solve Bernoulli's equation when n : 0; when rr - 1.

b. Show that if ru I 0, 1, then the substitution l : ', |-n reduces

Bernoulli's equation to a linear equation. This method ol solution

was lormulated by Leibniz in 1696.

In each of Problems i I through 1!. the given equation is a Bernoulli
equation. In each case solve it by using the substitution mentioned in
Problem.l:r.

2J. y':ry -ky',, > 0andft > 0.Thisequationisimportantin
population dynamics and is discussed in detail in Section 2.5.

:5, ,),/:6],-oy3,e ) 0ando ) 0.Thisequationoccursinthe
study of the stability of fluid flow.

Discontinuous Coelficients. Linear differential equations sometimes

occur in which one or both of the t-unctions p and g have jump

discontinuities. If41 is such a point ofdiscontinuity, then it is necessary

to solve the equation separately for t < 4y and r > t6. Afterward.

the two solutions are matched so that ) is continttous al ls; this

is accomplished by a proper choice of the ubitrary constants. The

following two problems illustrate this situation. Note in each case that

it is impossible also to make y' continuous at 11;.

26. Solve the initiat value problem

Y' +2Y:8(/), )(0) :0,

u'here

(1.0<r<1.
3(r) : iLo, /> l.

2i. Solve the initial vaiue problem

.v'+ p(r).),:0, 1(o) : 1,

rvhere

(2- 0<r<1.
p(/) : tl, -, , 

'.

l" * P(r).r':0,

and let l, : :"2(t) be a solution of

(27)

(28)v'+P(t)"r:8(r).
Show that -v : -yt(l) +.1'2(/) is also a solution of equation (28).

22, a. Show that the solution (7) of the general linear equation (1)

can be written in the form

.)' : c-vr(/) +,v2(r), (29)

where c is an arbitrary constant.

h. Show that .),1 is a solution ol the differential equation

)"+p(r),):o
corresponding to g(/) : 0,

c. Show t5u1 .1,2 is a soiution of the tull linear equation (1). We

see later (fbr example, in Section 3.5) that solutions of higher-

order linear equations have a pattern similar to equation (29).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear
equation by making a change of the dependent variable that converts

it into a linear equation. The most important such equation has the

form

!" * P(t11': q(t)t'n

2.5 Autonomous Differentia I

and Population Dynamics

An important class of first-order equations consists of those in which the independent variable
does not appear explicitly. Such equations are called autonomous and have the form

dYldt: f1Y1. (1)

We will discuss these equations in the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to global

economics. A number of other applications are mentioned in some of the problems. Recall that
inSections 1.1and l.2weconsideredthespecialcaseof equation(1)inwhich f (y) : ay-fb.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but the main
purpose of this section is to show how geometric methods can be used to obtain important
qualitative information directly from the differential equation without soiving the equation. Of

Equations

--
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l- :-::is through I involve equarions of the form dt, ldt :,f (-r,).In
', :, ::obiem sketch the graph of /( f ) versus r'J determine the critical
:: -:-:rrium) points, and classily each one as asymptotically stable or
-::i-r-i. Draw the phase iine. and sketch several graphs olsolutions
- -. - -n1"..

O 1. rtt'ldt:ay+by2, a>0, b>0. -cc(-1,s(co
6 :. dt'fdt:-r'(-r*1)(y-2). .rb>0
O -1. dt'ldt: et * 1, -co ( _1j1 

( oo

O 1. dt'ltlt: e-r - 1, -co ( .)i1 ( oo

-' Semistable l)quilibrium Solutions. Sometimes a constant
:: "'::ium soiution has the property that solutions lying on one side
, :.- equilibrium solution tend to approach it, whereas solutions iying

--:-i orher sidc depart from it (see Figure 2.5.9). In this case the
:- ---:r:ium solution is said to be semistable.

.r. Consider the cquation

dtlclt:ft(1-r)2 ( 1e)

; iere ft is a positive constant. Show that y : 1 is the only critical
rcint. rvith the corresponding cquilibrium solution @ ( /) : 1.

@ b. Sketch /(-r) versus y. Show thar 1, is increasing as a

:unction of r for y < I and also for.l, > l. The phase line
:as upward-pointing arrows both below and above -r' : 1. Thus
solutions below the equilibrium solution approach it, and those
.'5or e it grow farther away. Therefo re, o (t) : I is semistable.
r, Solve equation (19) subject to the initial condition r,( 0) : .1,,,

.nd confirm the conclusions reached in part i,.

1(i" Complete the derivation ol the explicit lbrmula for the solution
(11) o1'the logistic model by solving equarion (10) for -i,.

I1, In Exzrnple 1, complete the manipulations neede<i to arrive at
equation (13). That is, solve rhe solution (1 1) tbr r.

I :. Complete the derivation of the location of the vertical asymprote
in the solution (15) when _1b > f . That is. derive formula (16) by
linding the value of r when the denominator of the rishrhand side of
equation (1 5) is zero.

I "1. Complete the derivation ol formula (18) for the locations of the
inllection points of the solution of the logistic growth model with a
threshold (17). Hint: Follow the steps outlined on p. 66.

lJ. Consider the equation dt f dt : /(_r) and suppose that -r,1 is a
critical point- that is, /( y; ) : 0. Show that the constanr equilibrium
solution o (t) : y1 is asymptotically stable if 

"f 
'(.,-r ) < 0 and unstable

if /'(1'1) > o.

I5. Suppose that a cerrain population obeys the togistic equation
d,- I dt : r)( 1 - (.-r,/r)).

a. If yo : Kl3,findtherimer arwhichtheinitialpopulation
has doubled. Find the value ofr coresponding to r : 0.925 O.t
year.

b. If yslK : tr, find rhe rime I at which 1,e)lK : B,
where 0 < a, 13 < 1. Observe that 7' --+ cc as o -+ 0 or
as p + 1. Findthe value of T for r :0.025 perlear. a : 0.1,
and C : 0.9.

G tfr" Another equation that has been used to model population
growth is rhe Gompenzl5 equarion

',t:.rlrf{\.dt \: /
where r and K are positive constants.

a, Sketch the graph of "f(f,) versus ), lind the critical points.
and determine whether each is asymptotically stable or unstable.
h. For 0 < -y < K, determine where the graph of .], versus , is
concave up and where it is concave down.
t. For each 1,in 0 < 1 < K, show that d.yldr as given by
the Gompertz equation is never less than dy ldt as given by the
logistic equation.

I7" a. Solve the Gompertz equation

subject to the initial condition.l'(0) : y6.
Hint: Yol may wish to let z : ln(y I K).
h. For the data given in Example 1 in the rexr (r : 0.71 per
year, K : 80.5 x 106 kg, j.ol K :0.25), use the Gomper"tz
model to find the predicted value of .r,( 2) .

e " For the same data as in part h, use the Gompenz model to finrl
the time r at which -1,(r) : 0.75K.

rsBenjamin Gompertz(!779-186-5) was an English actuary. He developed his
model for population growth, published in I 825, in the course of constructing
mortality tables for his insurance company.

tt tt
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-l=.\ \\.. OU)=k

(a)

In both cases the equilibrium solution o(r) : k
-: :emistable. (a) d1, ldt < 0; (&) dy ldt > 0.

-:r:ems .r through'i involve cquations of the lbrm dyldt : f (t).-- ::ch problem sketch the graph of ./()r) versus -r,, determine the
-:----:;a1 {equilibrium) points, and classify each one as asymptotically
,-::-r-. unstable. or sernistable (see Problem i). Draw the phase line,
---: :kerch several graphs of solutions in the ry-p1ane.

O ir. dt, lat : -y2(,r'2 - 1), *oo ( 
-)i1 

( cc

O l. d1,fdt-,y(l-r2), -oo<.)!o<cc
O s. d1, ldt: )*2e* y2), -6e 4 _ye ( oc

O 9. 4_,-ldt - )2(t - _v)2, -oc < .ib < oo

dt' /r\
d, 

:')' t'(';i '



*ii 1.ll;',::lli

Iti, A pond forms as water collects in a conical depression of radius

a and depth /2. Suppose that water flows in at a constant rate ft and is

lost through evaporation at a rate proportional to the surface area.

a. Show that the volume V(t) of water in the pond at time ,
satisfies the differential equation

dv
d' 

: k - ar(3af th)2/3v2lt'

where o is the coefticient of evaporation.
ll. Find the equilibrium depth ol water in the pond. Is the

equilibrium asymptotically stable?

c. Find a condilion that must be satisfied if the pond is not to

overflow.

Harvesting a Renewable Resource. Suppose that the population y of
a certain species of fish (for example, tuna or halibut) in a given area

of the ocean is described by the logistic equation

d! :,(r _ l) r.dt \ K/
Although it is desirable to utilize this source of food, it is intuitively
clear that if too many fish are caught, then the fish population may be

reduced below a useful level and possibly even driven to extinction.

Problems 19 and ^i0 expiore some of the questions invoived in
formulating a rational strategy for managing the fishery.l6

19. At a given level of effort, it is reasonable to assume that the rate

at which fish are caught depends on the population 1': the more fish

there are, the easier it is to catch them. Thus we assume that the rate at

which fish are caught is given by E1'. where E is a positive constant,

with units of 1/time, that measures the total eftbrt made to harvest the

given species of fish. To include this effect, the logistic equation is

replaced by

(20)

This equation is known as the Schaefer model after the biologist
M. B. Schaefer, who applied it to fish populations.

a. Show that if E < r, then there are two equilibrium points,

.)r : 0and )': : K(l - El r) > 0.

b. Show that y : y1 is unstable and 1, - y2 is asymptotically
stable.
c. A sustainable yield I of the fishery is a rate at which fish can

be caught indefinitely. It is the product ol the effort E and the

asymptotically stable population .y2. Find I as a function of the

effort E; the graph of this function is known as the yield-effort
curve.

d. Determine E so as to maximize I and thereby find the

maximum sustainable yield I,r.
2(). In this problem we assume that fish are caught at a constant rate

ll independent of the size ol the fish population. Then y satisfies

(2t)

The assumption of a constant catch rate le may be reasonable when 1'

is large but becomes less so when y is small.

a. If /r < r K 14, show that equation (21) has two equilibrium
points y1 and 1,2 with )r ( )zi determine these points.

b. Show that y1 is unstable and .yz is asymptotically stable.

c. From a plot of /(-y) versus 1,, show that if the initial
population -],0 ) ,)1 , then ) -+ )r oS , --) oo, but that if

16An excellent treatment of this kind of problenl which goes far beyond what

is outlined here, may be found in the book by Clark mentioned previously,

especially in the first two chapters. Numerous additional references are givcn
there.

--vo 
( )r, then y decreases as / increases. Note tbat-y : 0 is not an

equilibrium point, so if -r'o ( )r, then exginffi6n will be reached

in a finite time. ./
d. If l, > rKl4, show that y delases to zero as, increases.

regardless of the value of -u'11. /
c, If h : rKl4, show that there is a single equilibrium point

)' : K l2 and that this point is,'semistable (see Problem i). Thus

the maximum sustainable yield is h,, : rK /4, corresponding

to the equilibrium value y = K12. Obser-ve that h,,, has the

same value as Y. in Problem i\)(1. The iishery is considered to

be overexploited ify is reduced to a level below K 12.

Epidemics. The use of mathematical methods to study the spread of
contagious diseases goes back at least to some work by Daniel

Bernoulli in 1760 on smallpox. In more recent years many

mathematical models have been proposed and studied for many

different diseases.lT Problems )i through.lr deal with a few of the

simpler models and the conclusions that can be drawn from them.

Similar models have also been used to describe the spread of rumors

and of consumer products.

21. Suppose that a given population can be divided into two parts:

those who have a given disease and can infect others, and those

who do not have it but are susceptible. Let x be the proportion of
susceptible individuals and rr the proportion ofinfectious individuals;

then r + .r' : 1. Assume that the disease spreads by contact between

sick and well members of the population and that the rate ol spread

dt I dt is proportional to the number of such contacts. Further, assume

that members of both groups move about freely among each other, so

the number of contacts is proportional to the product ofx and .v. Since

.r : 1 - 1', we obtain the initial vaiue problem

d"t

E: oY(l - "v)' )(0) : yo' Qz)

where a is a positive proportionality factor, and y6 is the initial
proportion of int'ectious individuals.

a. Find the equilibrium points for the difl'erential equation (22)

and determine whether each is asymptotically stable, semistable,

or unstable.
b. Solve the initial value probiem 2 l and verify that the

conclusions you reached in part a are correct. Shor,v that )(t) ->
1 as t -+ oo. which means that ultimately the disease spreads

through the entire population.

22. Some diseases (such as typhoid fever) are spread largely by

carriers, individuals who can transmit the disease but who exhibit no

overt symptoms. Let x and y denote the proportions of susceptibles

and carriers, respectively, in the population. Suppose that carriers are

identified and removed from the population at a rate 6, so

d1'

at 
: -cY'

Suppose also that the disease spreads at a

product ofx and 1'; thus

dx

- 
: -axv.dt

(23)

rate proportional to the

(24)

a. Determine ) at any time t by solving equation (23) subject to

the initial condition )(0) : .y9.

b. Use the result of part ii to find x at any time I by solving
equation (24) subject to the initial condition x(0) : s,,.

c. Find the proportion of the population that escapes the

epidemic by tinding the iimiting value of .r as / -> oc.

l7A standard source is the book by Bailey listed in the references. The models

in Problems I 1, -ll, and .l.r are discussed by Bailey in Chapters 5, 10, and 20,

respectively.

d! -,(r-t)r-r.dr \ K/"



--: Daniel Bemoulli's work in 1760 had the goal of appraising the
. -:::rr'3ns5s of a controversial inoculation program against smailpox,
- ,-,::: at that time was a major threat to public health. His model
.::.:e. equally well to any other disease that, once contracted and

, -:-.:r eC. conf-ers a iifetime immunity.
Crrsidcr the cohort of individuals born in a given year (t : 0),

-: -et n ( r) be the number of these individuals surviving r years later.' :'. :,: i ) be the number ol members of this cohort who have not had
:::-. -ro\ by year I and who are therefore sti1l susceptibie. Let p be
,-: :r:3 at rvhich susceptibles contract smallpox, and let z be the rate
. ..i:ich people who contract smallpox dic liom the disease. Finaily.
.:- - r r be the death rate from all causes other than smallpox. Then
i !'i. the rate at which the number of susceptibles declines, is given

a. Find all of the critical points ior equation (29). Observe that
there are no critical points ifa < 0, one critical poirit if a : 0,
and two critical points if a > 0. i
fi! ir. Draw the phase line in each case and detednine whether
each critical point is asymptotically stable, ,,'semistable, or
unsrablc.

@ e. In each case sketch several soiutions o{ equation (29) in
the tr'-plane.

Note: If weplot the location ol the critical points as ! function of a in
the a.y-plane, we obtain Figure 2.5.10. This is called the bifurcation
diagram for equation (29). The bifurrcation at a : 0 is called a

saddle - node bil'urcation. This narne is morc natural in the context
of second-order systems. which are discussed in Chapter 9.

Bifurcation diagram for,1,' : a - \,2

.:-: :-rst term on the right-hand side of equation (25) is the rate at

:.:Jr su,\ceptibles contract smallpox, and the second term is the rate
.. .,. iich they die from all other causes. Also

dt
(h:-('i*lr(t)).r.

dn

,lt:-rJr-p(t)n,

dt
at:'f(o'Y)'

.':-::= dn f dt is the death rate ol the entire cohort, and the two terms
.,- ::e right-hand side are the death rates due to smallpox and to a1l

:3i causes, respectively.
a. Let : : xln, and show that;
problem

d:.
--._:-l-(1-tt-\
dt

Observe that the initial value problem (27) does not depend on

rr(t)'
ir, Find r(I) by solving equation (27).

c. Bernoulli estimated that / * A 1/8. Using these
values. determinc the proportion of 2O-year-olds who have not
had smailpox.

'..':r,. On the basis of the model just described and the best mortality

-::: ar,ailable at the time, Bernoulli calculated that if deaths due to
.::lllpox could be eliminated (u :0), then approximately 3 years
: r.:id be added to the average life expectancy (in 1760) of26 years, 7

:.rruhs. He therefore supported the inoculation program.

Bifurcation Points. For an equation ofthe form

S! a. Again consider the cases a < 0, a : 0, and a > 0. In each
case find thc critical points, draw the phase 1ine, and determine
whether each critical point is asymptotically stable, semistable,
or unstable.

@ Ii. In each case sketch several solutions of equation (30) in
the ft,-plane.
(l e " Draw the biturcation cliagram lbr equation (30)-rhat is,
plot the location ol the critical points versus a.

Note: For equation (30) the bifurcation point at a : 0 is called a
pitchfork bifurcation. Your diagram may suggest why this name is
appropriate.

:6. Consider the equation

ar. Again consider the cases a < 0, cr: 0, and a > 0. In each
case find the critical points. draw the phase line. and determine
whether each critical point is asymptotically stabie, semistable,
or unstable.
ll. In each case sketch several solutions of equation (31) in the
l-r-plane.
t. Draw the bifurcation diagram for equation (3i).

Nole.'Observe that for equation (31) there are the same number of
criticai points lor a I 0 and a ) 0 but thar their stability has changed,
For a < 0 the equilibrium solution .r' : 0 is asymptorically stable
and _r' : a is unstable, while lbr a > 0 the situation is reversed.
Thus there has been an exchange of stability as ,/ passes through
the biturcation point n : 0. This type of bifurcation is called a

transcritical trifurcation,

(25 )

(26)

satisfies the initial value

z(0) : l. (27)

(28)

:5. Consider the equation

dy

at:oY-)'3=l'(a-lr)
(30)

(3r)

.,i rere d is a real parameter, the critical points (equilibrium solutions)

-.ually depend on the value ofa. As d steadily increases or decrcases,
. . ..ften happens that at a certain value of n , called a bifurcation point,
:r:ica1 points come together, or separate, and equilibrium solutions
:r1 be either lost or gained. Bifurcation points are of great interest in
::::ei' applications, because near them the nature of the solution of the

-:derlying differential equation is undergoing an abrupt change. For
::';.lmplc. in fluid mechanics a smooth (laminar) l1ow may break up and
r3come turbulent. Or an axially loaded column may suddenly buckle
.:d exhibit a large lateral displacement, Or, as the amount ol one of
-::e chemicals in a certain mixture is increased, spiral wave patterns t.ll
;:1ing color may suddenly emerge in an originally quiescent fluid.
P:oblems t 1 through.'t'' describe three types of bifurcations that can

----cur in simple equations oI the lbrm (28).

ll. Consider the equation

dy .::A*V-
dt

Asymptotically stable
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27. Chemical Reactions. A second-order chemical reaction
involves the interaction (collision) of one molecule of a substance
P with one molecule of a substance Q to produce one molecule of
anew substance X; this is denotedby P * Q - X. Suppose that
pandq, wherep * q,we theinitialconcentrations of P wtdQ,
respectively, and let x(t) be the concentration of X at time r. Then
p - x(t) arrdq - x(r) are the concenffations of P and Q at time /,
and the rate at which the reaction occurs is given by the equation

--) oo
initial

qaJj,d

(33)

-"If x(0) : 0, deterniine the limiting value of x(r) as / -) oo
without solving the differential equation. Then solve the initial
value problem and determinex(r) for any t.

dx
dt:o(p-x)(q-x),

where o is a positive constant.

(321

2.6 Exact Differential and

Fa cto rs

For first-order differential equations there are a number of integration methods that are
applicable to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a class of
equations known as exact differential equations for which there is also a well-defined method
of solution. Keep in mind, however, that the first-order differential equations that can be solved
by elementary integration methods are rather special; most first-order equations cannot be
solved in this way.

EXAMPLE 1

Solve the differentiai equation

2.r -f yz * Zxyt'

The equation is neither linear nor separable, so the methods suitable for those types of equations are
not applicable here. Horvever. observe that the function ilG, y) : xz * xy2 has the property that

Eq uations

I ntegratin g

2r'-r Stls')-,, - :-:-- dt
Therefore, the differential equation can be written as

Al, 1tL,dv

-* 
. '-0.

dx dv dx

Assuming that y is a function of .r, we can use the chain rule to write rhe left-hand side of equation (3)
as dd (x, y) I dx .Then equation (3) has the form

dr!, d ^

f (x. rt : ;G2 +x1':) :0.

Integrating equation (4) we obtain

{t(x, y) : x2 * xy2 : c,

wherecisanarbitraryconstant.Thelevelcurvesof/(x,)) aretheintegralcurvesofequation(1).
Solutions of equation (1) are defined implicitly by equation (5).

In solving equation (1) the key step was the recognition that there is a function { that
satisfies equations (2). More generally, let the differential equation

(2)
a1b

0x

(3)

(s)

M(x, y) * N(x, ))y' : 0
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Integrating the first of equations (32) with respect to r, we obtain

"tdG,il:x3)* ,*'r'+n(il.
Substituting this expression for t! (x, y) in the second of equations (32), we find that

x3+x2y+h'(y):x3+x2y,

soft'(y):0andft(y)isaconstant.Thusthesolutionsofequation(31),andhenceofequation(19),
are given implicitly by

. 1r,
x'Y * 1x"Y' 

: c. (33)

Solutions may also be found in explicit form since equation (33) is quadratic in y.
You may also verify that a second integrating factor for equation (19) is

1

u(x, y) : 
rrlz* + g

and that the same solution is obtained, though with much greater difficulty, if this integrating factor
is used (see Problem 22).

Problems
Dercrmine whether each of the equations in Problems I though 8 is
aract. If it is exact, find the solution.

1. (2x * 3) + (2y - 2)y', :0
:. (2x * 4y) + (2x - Zy)y' :0
3. (3x2 -Zxy +2) +(6y2 - x2 *3)y':6
. dt ax*bv

dx bx*cy
- dy ax-by

6. ( )e'-' cos(2.r) -2e'v sirr(Zx) *2x) a (x ext cos( 2x) - 3) y' : 0

7. (ylx+ 6x) *(lnx -2)y':0, x ) 0

8. x J- Y !!:o
(xz 1 yzlt/z ' (r, + y2f 12 iy - "

In each of Problems 9 and 10, solve the given initial value problem
md determine at least approximately where the solution is valid.

9. (2x-y) +(2y-x)y':0, )(1) -3
10. (9xz +y -D -@y - x)y' :0, y(1) :0
Ia each of Problems 1 1 and 12, find the value of D for which the given
eguadon is exact, and then solve it using that value of b.

11. (.ty2 * b*'y) + (x * y)xzy' : O

l:. lyext a x) + bxe2') y' - O

1.1. Assume that equation (6) meets the requirements of Theorem
1.6.1 in a rectangle r? and is theretbre exact. Show that a possible
finctionT/(x, y) is

11. Show that any separable equation

M(x) + N(y)y': o

is also exact.

In each of Problems 1-< and 16, show that the given equation is not
exact but becomes exact when multiplied by the given integrating
factor. Then solve the equation.

15. x2y3 + x(l+ yz)y' :0, p(x,y) : tl(xf)
16. (x +2) siny * (xcosy)y/: Q, F(x,y) : xe*

17. Show that if (N, - Mt)lM - Q, where Q is a tunction of y
only, then the differential equation

M + Ny' :0
has an integrating factor of the form

tt(y):r*, I Q1lor.
J

In each of Problems 1 I through 2 I , find an integrating factor and solve
the given equation.

18. (3xzy * 2xy + y3) + (.r2 + y2) y' : O -.

19. y':e2**y-1
20. 1+(xly-siny)y'-0
21, y*(2xy-e-zY)y':o
22, Solve the differential equation

(3xy*y\+e2+*y)y,_o
using the integrating factor p,(x,y) : (xy(Zx + y))-1.Verify that
the solution is the same as that obtained in Example 4 with a different
integrating factor.

,1,G,il: 
l-o

M(s,yo) o'n 
l:"Ne,t) 

dt,

e-kre (x6, ys) is a point in R
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Note about Yariations of Computed Results. Most of the problems

in this section call for fairly extensive numerical computations' To

handle these problems you need suitable computing hardware and

software. Keep in min<l that numerical results may vary somewhat'

depending on how your program is constructed and on how your

computer executes arithmetic steps, rounds off, and so forth' Minor

variations in the last decimal place may be due to such causes and do

not necessarily indicate that something is amiss' Answers in the back

" . ':;l -l Thc Euler method.
i- ,.:..,.1 ,":-1 -;::'---t

InExample2thegeneralsolutionofthedifferentialequationis

) :14 - 4t + ce-'12

and the solution of the initial value problem (9) corresponds to c - -13. The family

of solutions (17) is a converging family since the term involving the arbitrary constant c

approaches zero as / -> oo. It does not matter very much which solutions we are approximating

by tangent lines in the implementation of Euler's method, since all the solutions are getting

closer and closer to each other as / increases'

On the other hand, in Example 3 the general solution of the differential equation is

711,
y:-4*;t-fce-',

and, because the term involving the arbitrary constant c grows without bound as / -+ oo' this

is a diverging family. Note that solutions corresponding to two nearby values of c become

arbitrarily far apart as , increases. In Example 3 we are trying approximate the solution for

c : fif 4,butln the use of Euler's method we are actually at each step following another

solution that separates from the desired one faster and faster as / increases' This explains why

the erors in Example 3 are so much larger than those in Example 2'

In using a numerical procedure such as the Euler method, you must always keep in mind

the question of whether the results are accurate enough to be useful. In the preceding examples'

the accuracy of the numerical results could be determined directly by a comparison with the

solution obiainecl analytically. Of course, usually the analytical solution is not available if a

numerical procedure is to be employed, so what we usually need are bounds for, or at least

estimates of. the error that do noi require a knowledge of the exact solution' You should also

keep in mind that the best that we can expect, or hope for. from a numerical approximation

is that it reflects the behavior of the actual solution. Thus a member of a diverging family of

solutions will always be harder to approximate than a member of a converging family'

If you wish to read more about numerical approximations to solutions of initial value

problems, you may go directly to Chapter 8 at this point. There, we present some information

tn the analysis of erors ancl also discuss several algorithms that are computationally much

more efficient than the Euler method

of the book are recorded to six digits in most cases, although more

<ligits were retained in the intermediate calculations.

In each of Problems i through -i:

Cl a. Find approximate vaiues of the solution of the given initial

value problem at, : 0.1,0.2.0.3, and 0'4 using the Euler

method *i16 72 : 0. 1.

@ b. Repeat part (a) with ft : 0.05. Compare the results with

those found in ir.

( 17)

( 18)

"* 
L* l* i:"::;



O Repeat part :, with /r : 0.025. Compare the results with
.- .: :i'.rnd in . and . .

Q .. Find thc solurion y : A0) of the given problem and
: - -::e rt( t) at I : 0. 1,0.2. 0.3. and 0.4. Compa_re these values

--, ::c rcsults of .i, 1,, and -.
:-:-r-.r. .r.(0):l

I,r - i. _1,(0) : 1

::,.5-r-lt. r(0):l
-:;.r.r - 2r'. r.(0) :0

-- :--- - Problems r through \, draw a clirection liclil for the given

- :-:---:3.uation and state whetheryou think that lhe solutions arc
- : -:.:_-: ..r dit-erging.

B .r (3 - r.r)

O -rr + 0. 1-y3

A , _.r,..1Y 
-I 

T}

- : * - - P:oblems ,; an<I . i). use Euler's methocl to find approximate

- - : , - .:-: solution of the given initial value problem at / : 0.5,
: : :.:. and 3: (a)With h : 0.1, (b) Wirh ft : 0.05. (c) With

= -:. Cr With /r : 0.01.

-v.,. .r.(0):2
3 - : r(3 - r.r,), 1.(o) :0.5

l ..icer the initial value problem

?rl
\'' - --:' . .\( l) :0.

JJ--4

Q .r, L se Euler's method with ft : 0. 1 to obtain approximate
. -:! of the solution att :1.2, 1.4, 1.6. and 1.8.

O . Rcpeat part ii with il : 0.05.
, 'lonpare thc results of parts a and b. Note that rhcy iire
:. .:ltbl1.close lor t : 1.2.1.4, and 1.6 but arc cluite different

: . : 1.U. Also note (fiom the differenrial equarion) thar

--. -r:: tangent to the solution is parallel to the y-axis when

-- -1 \/3: +1.155. Explain how rhis might cause such
. - -::rence in the calculated valucs.

f I Consider rhe initiat value problem

)r : t2 + )-?. -r'(o) : t.

. :--.: : ntcrhod wirh /r : 0.1, 0.05, 0.025, and 0.01 to explore the

-- , :: :ris problem for 0 < / < 1. What is your best estimate
-:: . -: oi the solution at / : 0.8? At / : 1? Are vour results

..: -: '.,.irh the direction fleld in Problem .'l

, -..ricr the initial value problem

l'' : -l.r' * 0. 1.r3, .t'(0) : a,

::-: ,: : qir gn number.

ffi;i, Draw a direction field for thc differential equation (or
reexamine lhe one from Problem ,'). Obsele that there is a

critical value of o in the interval 2 < o. < 3 that separates
converging solutions from diverging ones. Call this critical
vaiue a1;.

ffi Fr" Use Euler's mcthod with ft : 0.01 to estimatc n11. Do this
by restricting o6 to an interval [n, D]. where b - a :0.01.

l-t, Consider the initial value problem

)., : !2 * t2, ),(0) : n.

wherc a is a given number.

ffi "r. Draw a direction field lbr the difl'erential equation. Note
that thcre is a critical value of a in the interval 0 < o A 1

that separates converging solutions from diverging ones. Call this
critical value ae.
ffi ir" Use Euler's method with ft : 0.01 ro estimate o 6. Do this
by restricting cre to ilt interval [a. D]. where b - ct :0.01.

t5" Convergence of Euler's Method. It can be shown tha[
under suitable conditions on /. the numerical approximation
generated by the Euler method for the initial value problem

)" : f (t, -r'), .)'(fu) : 1ir converges to the exact solution as the step
size /r decreases. This is illustrated by the lollowing example. Consider
the initial value problem

,r,, : 1 -l *,r,, .t,(/o) :.y0.

o. Showthattheexact solutionis ]' : p(/) : 1,11,-4,;e1-l041.
ffi h. Using the Euler fonnula. show that

"yi : (1 *li)11-, * lt - hts-1, k : 1,2, ... .

r'. Noting rhat -r.1 : (1+ l)(.r.0 - ro) t 11. showby induction
that

.r;,: (1*/i)"(1,,, - ro) +/,, (19)

lbr each positive integer rz.

ri. Consider a lixed point t > 111 and for a given n choose
h : (t - t1) f n. Then tn : t for every il. Note also that /u -+ 0
as ,, --) co. By substituting lor /r in equation (19) and lettiag
tt -+ ca, show that y, --+ o(t) as n -> cxc.

Hint: 
'l::'(1 

r 0f n)" : s" '

In each of Problems i i-- and .,. use the technique discussed in Problem
::' to show that the approximation obtained by the Euler method
converges to the exact solution at any fixcd point as h + 0.

i6. .)'' :,1', .r,(0) : 1

\-i. )" :2y- l, "r.(0) : 7 Hint: -v1 
: (1 +2h)12+ 112

: s The Existence and U niqueness Theorem

-. ---,: :3'-titln we discuss the proof of rheorem 2.4.2, the fundamental existence and

-: :-:r-:!s theorem for first-order initial value problems. Recall that this theorem states that
-' -:- :=::ain conditions on /(1, y), the initial value problem

y' : f (t, !-), .y(/o) : .yo

- : -,---cue solution in some interval containin_u the point /e.

(i)



1. Are there other solutions of the integral equation (3) besides y : 0 (t) ?

To show the uniqueness of the solution y : O(t),we can proceed much as in the

example. First, assume the existence of another solution y : l,Q). It is then possible to

show (see Problem 18) that the difference O (t) - ',i/ ( r) satisfies the inequality

(30)

for 0 < t < h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem (2) other than the one generated by the method of successive approximations.

ld(t) - tt(t11 5 a 
lr' W(s) - r/(s) ld,s

F r* h l'"*::::
In each ofProblems 1 and l, transform the given initial value problem

into an equivalent problem with the initial point at the origin.

1. dyldt : t2 + )'2, y(l) :2
2. dy ldt : 1 - y3, ),(-1) : 3

In each of Problems 3 through.l, let oo(l) : 0 and define {o,(r)} by
the method of successive approximations.

:r. Determine tpr(l) for an arbitrary value of n.

@ b. Plotp,,(r) forn : 1. .. . ,4. Observewhethertheiterates
appear to be converging.
c. Express lim o,,(r) : o(t) in terms of elementary

I'unctions; ,illii? ,olr. the given initial value problem.

Gld.ptot lo(r) - p,,(r)libr rr : 1,....4. For each of
pr(t), . .. ,ec(t). estimale the interval in which it is a

reasonably good approximation to the actual solution.

O 3. y' :2(y * t), y(o) : o

O "t. y':-v12+t, -v(o):o
In each of Problems r and (r, let oo(r) : 0 and use the method of
successive approximations to solve the given initial value problem.

a. Determine o, ( r) for an arbitrary value of n.

@ b. Ploto,( t) forn : 1, . . ., 4. Observewhethertheiterates
appcar to be converging.
e. Show that the sequence {ti "(t)} converges.

5. ),' : /)'* 1, -v(0) : 0

6. y' : t2y - t, -v(o) : o

In each of Problems 7 and ti, let oo(l) : 0 and use the method of
successive approximations to approximate the solution of the given
initial value problem.

a. Calculate Qr(t), ... , qr(r).
@ b. ntot or(r), . .. ,dz]). Observe whether the iterates

appear to be converging.

7. y':t2+y2, )(o):o
tt. _y':l-)3, y(0):0

In eachof Problems 9 and lt), 1et @o(/) : 0 anduse the method of
successive approximations to approximate the solution of the given
initial value problem.

a. Calculate pr(l), . .. ,d{.t), or (if necessary) Taylor
approximations to these iterates. Keep terms up to order six.

Gl tr. ptot the functions you found in part a and observe whether
they appear to bc converging.

9. y' : - sin-v + l, .v(0) : 0

3t2 +4t +2Il|. y': --------------, r'(0) :0' 2(r - 1)

This example shows that a sequence of continuous functions may

converge to a limit tunction that is discontinuous.

l:. Consider the sequence o,(r) : 2nxe-"'2 , 0 < -r < 1.

a. Show that lim d,G) :0 for 0 < .t < l; hence
n+6

11. Let 6,(x) : xn for 0 < -r

lim pn(x):
tl+@

<1

lo.
\r,

l,' ,*r'.,)dx : o'

and show that

0<x< 1,

x:1.

tl

lr. Show that I 2n*r-'*14,:1 -e-";hence
.lu

It
lim / on(t')dr :1.

n**.Jl

Thus. in this example,

th pb

lim / o,(.r)dx* I fime,(x)dx.
n-nJ, Ja n-u

even though lim /r(x) exists and is continuous.
tr+t 

.t. ,2(
13. a. Verify that @(l) : ) ;; is a solution of the integral

=K:cquation 19).

b. Verily that d (r) is also a solution of the initial value problem
(6). 

!
e. Use the fact ttrat f ; : ,'to evaiuate o(r) in terms of

[=0
elementary functions.
d. Solve initial value problem (6) as a separable equation.
c, Solve initial value problem (6) as a first order linear equation.

In Probiems l,l through I 7, we indicate how to prove that the sequence

{o,, ( t) }, defined by equations (4) through (7), converges.
rc -tt

a. Verify that d(r) : t i ir u solution of the integrai
?kl

equation (9).

ll. Verify that d ( r) is also a solution of the initial value problem
(6). 

rc

c. Use the fact *rat f ; 
: ,'to evaluate o(r) in terms of

t=0
elementary functions.
cl. Solve initial value problem (6) as a separable equation.

c. Solve initial value problem (6) as a first order linear equation.

-il



- ,i r) f I i:)t is continuous in the rectangle D, show that there is a

: >-:-i e constanl K such that

l.l(r,.r,r) - f (t,yz) I < Klyr -.v:1. (31)

-.:: r. -r'1) and (/, -r,,) are any two points in D having the same,

- ::rrare. This inequality is known as a Lipschitz22 condition.

.:, :. Hold r f ired and use the mean value theorem on .f as a function
::11 . Choose K to be the maximum value of l0 J'l d vl in D .

j ii.:,,-r(r) andp,,(r) aremembersofthesequence {o,(r)},use
,---. :::iit of Problem i , to show that

ii t. o,(t)) - f (t, o,, 11t.))] s r ct,,(t) -o,,-,(r) i.

' .r. Show that if lr | < i. then

lot(t)l < MVl,

'.ihere M is chosen so that l/(r..r') I I M lbr (r, -r') in D.
rr. Use the results of Problem t:; and part rr of Problem .ir to
::O$ thal

1,3(I)-o1(r)l< Y!)i

.. Show, by mathematica inauction, tna-t

io,,(r) - a,-t(trt. MK'--tltl" < MK"-th'
trl - ril

- :):alt) + (r.(r) -or(r))+.. + (d,,(r) -o,,-1(r)).

-'l:.. German n.nthematician Rudolf Lipschitz (1832-1903), prolessorat the

- --, ::.it1 ol' Bonn tbr many years, worked in several areas of mathematics.

1:. ::quality (i) can replace the hypotlicsis that dJ ldv is continuous in
l:. - :::l 1.8- 1 I this results irr a slightly stronger theorem.

a" Show that

1.p,,(r)l < lor(r)l+ lo:(r) -or(r)l+...+ lo,,(r) * e,-t(t)|.
[r, Use the results of problem :.i to show that

M ( -.. ( K/r): (/(h)" \lo,,(rt,< -l Klt + r...-F l.K\'. :l n! )
c, Show thatthe suminpart', converges asn -+ oo and,hence,
the sum in parl a also converges as ,? --+ oo. Conclude therefbre
rhat the sequence {o,(t)} converges since it is the sequence of
partiai sums of a convergent infinite series.

1S. In this problem we deal with the question of uniqueness of the

solution of the integral equation (3)

o(t): I f(r.o(r))dr.
Jo

;1. Suppose that o and i, are two solutions oiequation (3). Show

that,fbrr>0,

o(r) - -u,(r) : / (,f(r, o(s)) - l(s. {,(.s))) ds.
I

h. Show that

lo(r) - qr(r) | S 
J,,, 

Jrt. o(.s)) - /(.s. i,(s))) d,r.

r', Use the result of Problem . . to show that

r'
lo(r) - rtr,tl 

= 
* 

.1,, 
o(,s) - r:'(s)ld.i,

r.vhere K is an uppel bound 1br l).f I Ayl in D. This is the same

as equation (30). and the rest of the proof may be constructed as

indicated in the tcxt.

2.s Fi rst-O nd e r

--.:trugh a continuous model leading to a differential equation is reasonable and attractive
: ranl, problems, there are some cases in which a discrete model may be more natural.

- : rnstance. the continuous model of compound interest used in Section 2,3 is only an

-::rr\imation to the actual discrete process. Similarly. sometimes population growth may
:,= ::scribed more accurately by a discrete model than by a continuous model. This is true. for

-=-,"::.rple. of species whose generations do not overlap and that propagate at regular intervals,
:--t.tsatparticulartimesofthecalendaryear.Thenthepopulation.'!,11 of thespeciesinthe

_ .i: /r - 1 is some lunction of ir and the population -y,, in the preceding year'; that is,

(t)
::-"rion (1) is called a first-order diU'erence equation. It is tirst-order because the value
, .. -t depends on the value of -y,, but not on earlier values )'r-1, -]ir-1, and so forth. As

- :ift-erential equations, the difference equation (I) is linear if ./ is a linear function of y,,:

:-:nr i-se. it is nonlinear. A solution of the difference equation (1) is a sequence of numbers

....1:,... thatsatisfytheequationforeachru.Inadditiontothedifferenceequationitself,

--,::3 may also be an initial condition

,)o : 0 (2)

--,.: :rescribes the value of the first term of the solution sequence.
\\'e now assume temporarily that the tunction / in equation (1) depends only on,r.,,, but

- : ,rn /r. In this case

Difference Equations

),n*1 :./(-ri,), n :0,7.2, (3)
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Problenrs 99

9. A homebuyer wishes to finance the purchase with a $95,000
mortgage with a 20-year term. What is the maximum interest rate the
buyer can afford if the monthly payment is not to exceed $900?

The Logistic Difference Equation. Problems l0 through 1-5 deal with
the difference equation (21), u,a1 : pun(1, - u).
10. Carry out the details in the linear stability analysis of the
equilibrium solution un : (p - 1) I p. That is, derive the difference
equation (26) in the text for the perturbation v,.

11. O a. For p : 3.2, plot or calculate the solution of the logistic
equation (21) for several initial conditions, sa!, ils - 0.2,0.4,
0.6, and 0.8. Observe that in each case the solution approaches a

steady oscillation between the same two values. This illustrates
that the long-term behavior of the solution is independent of the
initial conditions.
Gl U. Uate similar calculations and verify that the nature of the
solution for large n is independent of the initial condition for
othervalues of p, such as2.6,2.8, and 3.4.

L2. Assume that p > 1 in equation (21).

@ a. Draw a qualitatively correct stairstep diagram and thereby
show that if a9 < 0, then un --+ -oo as ,2 -> oo.

@ U. tn a similar way, determine what happens as n -+ oo if
us) 1.

tl
tl
tl
tl
il
I
I

@ffi Two solutions of u,q1 : pun(l - u,) for
p : 3.65; uo : 0.3 and ,lo : 0.305.

cr his analysis of this equation as a model of the population of certain insect species, May
*ggested that if the growth rate p is too large, then it will be impossible to make effective
kng-range predictions about these insect populations. The occurrence of chaotic solutions
in seemingly simple problems has stimulated an enormous amount of research, but many
qmtions remain unanswered. It is increasingly clear, however, that chaotic solutions are much
rxne courmon than was suspected at first and that they may be a part of the investigation of a
ride range of phenomena.

Problems
trm ah of Problems 1 through 4, solve the given difference equation
fu rerrrs of the initial value ye. Describe the behavior of the solution
lEtr+co.
l. _'f'n41 : -0.9y,
. 1;+z; -,;_,: 

V n+ty,
l- -1;+t : (-1)'+1yn

{ -1a+r : 0.5y,, + 6

rc of 8%, compounded monthly, and also makes additional deposits
dS5 per month. Find the balance in the account after 3 years.

a. A certain college graduate borrows $8000 to buy a car. The
lHgr stlargss interest at an annual rate of 10%. What monthly

Irymnt rate is required to pay off the loan in 3 years? Compare your
usrrh q,-ith that of Problem 7 in Section 2.3.

-{ homebuyer takes out a mortgage of $100,000 with an interest
* of 9Vo. What monthly payment is required to pay off the loan in
il pars? In 20 years? What is the total amount paid during the term
dfu loan in each of these cases?

S' If the interest rate on a 20-yeu mortgage is fixed at l\Vo atd
ff'a monthly payment of $1000 is the maximum that the buyer can
,ffi- what is the maximum mortgage loan that can be made under
fue conditions?
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13. The solutions of equation (21) change from convergent

sequences to periodic oscillations ofperiod 2 as the parameter p passes

through the vaiue 3. To see more clearly how this happens, carry out

the 1bllowing calculations.

[f r. Plot or calculate the solution for p : 2.9, 2.95, and

2.99, respectively, using an initial value 116 of your choice in the

interval (0, 1). In each case estimate how many iterations are

required for the solution to get "very close" to the limiting value.

Use any convenient interpretation of what "very close" means in
the preceding sentence.

Gl h, ptot or calculate the solution for p : 3.01, 3.05, and

3.1, respectively, using the same initial condition as in part a.

In each case estimate how many iterations are needed to reach a

steady-state oscillation. Also find or estimate the two values in
the steady-state oscillation.

Gl t +. By calculating or plotting the solution of equation (2 1 ) for
different values of p, estimate the value of p at which the solution

changes from an oscillation of period 2 to one of period 4. In the same

way, estimate the value of p at which the solution changes from period

4 to period 8.

O 15. Let p1, be the value of p at which the solution of
equation (21) changes from period 2k-1 to period 2t. Thus, as noted

in the text, p t : 3, p2 = 3.449, and p1 =- 3.544.

u. Using these values of pr, pt, and p:, or those you found in
Problem i-1 ,calculate (pz- pt)/(pt- p).

b. Let 6, : (p, - pn-)l(pn+t - p).Itcanbe shownthatdn
approaches a limit 6 as r? -) co, where 6 = 4.6692 is known as

the Feigenbaum24 number. Determine the percentage dillerence

between the limiting value 5 and 62, as calculated in part a.

c. Assume that 63 : 6 and use this relation to estimate p4, the

value of p at which solutions of period 16 appear.

@ d. BV plotting or calculating solutions near the value of pa

found in part c, try to detect the appearance of a period 16

solution.
e. Observe that

pn : pt + (pz * p) * (pz - P) 1'"'* (p, - Pn-t).

Assuming that

pt - p3 : (pt - p)l-t , Ps - P4: (P3 - P)6-2,

and so forth, express pr as a geometric sum. Then find the limit
p, as n -+ oo. This is an estimate of the value of p at which the

onset ofchaos occurs in the solution ofthe logistic equation (21).

2lThis result for the logislic difference equation was discoveted in August

1975 by Mitchell Feigenbaum (1944-), while he was working at the Los

Alamos National Laboratory. Within a few weeks he had established that the

same limiting vaiue also appears in a large class of period-doubling ditTerence

equations. Feigenbaum, who has a doctorate in physics from M.I.T., is now at

Rockefeller University.

ilha pt*r lQeviel+' F l"oh [*ms
Miscellaneous Problems. One of the difficulties in solving first-
order differential equations is that there are several methods of
solution, each of which can be used on a certain type of equation.

It may take some time to become proficient in matching solution

methods with equations. The first 24 of the following problems are

presented to give you some practice in identifying the method or
methods applicable to a given equation. The remaining problems

involve certain types of equations that can be solved by specialized
methods.

In each ofProblems i through 2.+, solve the given differential equation.

If an initial condition is given, also find the solution that satisfies it.

x3 -2!

^ dt,(-rr+)')+(x+e:)1:0
dl

(x * y) + (r + zY)-fi :0. -v(2) = 3

(e'+t)!!:u-un'
dx

dy e*' cos -r, - e2Jcosx

dr 
: 

-e- stny + 2e\tu
d.r )v ^
dx: e'' + sY

! *r, = s-x2-2x. l'(o) : 3
ax

,r1^?a)' Jx'- t)1 - y'
dx 2x * 3x1,2

1,' : e'*''

10.

ll.

t2.

13.

l{.

15.

16.

17.

1ll.

19.

2$.

)'l

22.
6.

1

8.

l. dv

dx
-, dy;. -;

ox

3. dv

dx

-1. dv

dx
_dy

dx

x
I * cosx

2 - siny
)v J- tt

: -" '-t r'(0) :03+3),r-x
:3-6x*y-2xy

2xv+v2+1
x2 + 2x1'

dy:f
d7'

,ff*<,*t)y:szt
xy':y*xell'

2y2+6:cy-4
3x?+4xy+3y?

:0

dy

dx
dy

dx

x
il

"r-y -i- )''
.r+)
r-)

Hint:Let u : t2
dvrd*+xy:l-y. y(l):0
dy ^ sinx.; + 2v: ------, r(2) : 1

dy 2xy*l
dx x2 +2y

(x2y *-r) - y) + (x2) - zr'1fi

13. (3.v2+ 2xy') -(2.r1 **'1fl:O
21. xy' + y - y2e2' :0, .l'( 1) : 2

9. :0

-



:-i. Riccati Equations. The equation

dy

fi:or{,)+s2G)v+%(t)v2

-. .cou'n as a Riccatizs equation. Suppose that some panicular solution
:: this equation is known. A more general solution containing one

:--:irar], constant can be obtained through the substitution

y-)r(')++
v(r)

i::r that v( t) satisfies the firsrorder linear eqttation

dv

V:_Gz*2qy)v_q.
\-:: that r,(r) will contain a single arbitrary constant.

lr. \ierify that the given I'unction is a particular solution of the given
i;----ati equation. Then use the method of Problem li to solve the
- - -o$ in_s Riccati equations:

a. -r': 1+t2 -2ty+y2: ylt) :t
b. r': -1 - I * rr, )r(r) : !'t2tt

dt' 2cos2/-sinlr+v2c' 
dt 

: --- Z""rt-; )1 (I) :5in1

:'. The propagation of a single action in a large population (for
:=::nple. drivers tuming on headlights at sunset) often depends
r.-r\ on external circumstances (gathering darkness) and partly on
. ::ndency to imitate others who have already perlbrmed the action
- iuestion. In this case the proportion l'(r) of people who have

-:--'ormed the action can be described26 by the equation

dyldt: ( 1 - y)(x(r) + D_y), (28)

;::re.r(r) measures the external stimulus and b is the imitation
::e:icient-

a. Observe that equation (28) is a Riccati equation and that
-r1(r) : 1 is one solution. Use the transformation suggested in
Problem J5, and find the linear equation satisfied by r( r) ,

b. Find u(r) in the case that.r(r) : at, wherea is a consrant.
Leave your answer in the form of an integral.

--a;cati equations are named for Jacopo Francesco Riccati (1676-1754), a-.:::tian 
nobleman, who declined university appointments in Italy, Austria,

=.: Russia to pursue his mathematical studies privately at home. Riccati

==red these equations extensively; however, it was Euler (in 1760) who
::.:or.ered the result stated in this probiem.
:- L-e .{natol Rapoport, "Contribution to the Mathematical Theory of Mass
l:r-r'ior: L The Propagation of Single Acts,,, Bulletin of Mathematical
j.-.:lrrsics 14 (1952), pp. 159-169, and John Z.Hearc:n,,,Note on the Theory
:: \lass Behavior," Bulletin of Mathetnatical Biophysics l7 (lgls),pp. 7-13.
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Some Special Second-Order Differentiat Equations. Second-order
differential equations involve the second derivative of the unknown
function and have the general form -y,, : f(t,y,y,). Usually,
such equations cannot be solved by methods designed for frrst-order
equations. However, there are two types of second-order equations
that can be transformed into first-order equations by a suitable change
of variable. The resulting equation can sometimes be solvecl by the
methods presented in this chapter. Problems 23 through .17 deal with
these types of equations.

Equations with the Dependent Variable Missing. For a second-
order differential equation of the form )"' : f (t, ),) , the substitution
v : !', v' : y" leads to a first-order differential equation of the
form y' : f (t, v). If this equation can be solved for r,, then y can be
obtained by integrating dy I dt : y. Note that one arbitrary constant
is obtained in solving the first-order equation for y, and a second is
introduced in the integration for y. In each of Problems lii tfuough
-l l, use this substitution to solve the given equation.

2tt. tzy" +2ty'-1:0,,> 0

29. tyt' + yt :1, / > 0

3{}. y" +t(r-')z:O
3I. ztzy" +(y')3:Zty,, / > 0

Equations with the Independent Variable Missing. Consider
second-order differential equations of the form y,,-f(y,y,), in
which the independent variable / does not appear explicitly. If
we let y:y', then we obtain jltf f,.t:f(y,v). Since the right_
hand side of this equation depends on ), and y, rather than on
t and r,, this equation contains too many variables. However, if
we think of -v as the independent variable, then by the chain
nie, dvf dt:ldvldi@tldtl:v(dvldy*). Hence rhe original
differential equation can be written as v(dt, I d1) : f (y, rr) . provided
that this first-order equation can be solved, we obtain y as a function
of y. A relation between y and r resulrs from solving dy lr)t :v(y),
which is a separable equation. Again, there are two arbitrary comtants
in the final result. In each of Problems .rl through .jl, use this merhod
to solve the given differential equation.

32. yy" + (y)z :0
33. y"+y:0
3rr. yy" - (y)3 : o

35. -r-" +(y')2:2e-!"
Hint: InProblem -15 the transformed equation is a Bernoulli equation.
See Problem l.: in Section 2.4.

In each of Problems 36 through 37, solve the given initial value
problem using the methods of Problems l\ through .i:.
36. y'y":2, )(0): l, yt(Q):2
37. (l+t\ytt +Ty'+3t-2:9, y(1):2, yt(l): -l

Rei*r#ne*s
lhe two books mentioned in Section 2.5 arc
3ailey. N. T. J., The Mathematical Theory of Infectiou,s Diseases

and lts Applications (2nd ed.) (New york Hafner press,
i975).

l-ark. Colin W., Mathematical Bioeconomics (2nd ed.) (New
York: Wiley-Interscience, 1990).

A good introduction to population dynamics, in general, is
Frauenthal, I. C., Introduction to populatiott Modeling (Boston:

Birkhauser, 1980),

A fuller discussion of the proof of the fundamental existence and
uniqueness theorem can be found in many more advanced books
on differential equations. Two that are reasonably accessible to
elementary readers are


