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Introduction

In this first chapter we provide a foundation for your study of differential equations in several
different ways. First, we use two problems to illustrate some of the basic ideas that we
will return to, and elaborate upon, frequently throughout the remainder of the book. Later,
to provide organizational structure for the book, we indicate several ways of classifying
differential equations.

The study of differential equations has attracted the attention of many of the world’s
greatest mathematicians during the past three centuries. On the other hand, it is important
to recognize that differential equations remains a dynamic field of inquiry today, with many
interesting open questions. We outline some of the major trends in the historical development
of the subject and mention a few of the outstanding mathematicians who have contributed to
it. Additional biographical information about some of these contributors will be highlighted
at appropriate times in later chapters.

11 Some Basic Mathematical Models;
Direction Fields

Before embarking on a serious study of differential equations (for example, by reading this
book or major portions of it), you should have some idea of the possible benefits to be gained by
doing so. For some students the intrinsic interest of the subject itself is enough motivation, but
for most it is the likelihood of important applications to other fields that makes the undertaking
worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world
are statements or relations involving rates at which things happen. When expressed in
mathematical terms, the relations are equations and the rates are derivatives. Equations
containing derivatives are differential equations. Therefore, to understand and to investigate
problems involving the motion of fluids, the flow of current in electric circuits, the dissipation
of heat in solid objects, the propagation and detection of seismic waves, or the increase
or decrease of populations, among many others, it is necessary to know something about
differential equations.

A differential equation that describes some physical process is often called a
mathematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to solve. It
is noteworthy that even the simplest differential equations provide useful models of important
physical processes.

EXAMPLE 1 | AFalling Object

that describes the motion.

v
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In each of Problems | through 4, draw a direction field for the
given differential equation. Based on the direction field, determine the
behavior of y as ¢ — oo. If this behavior depends on the initial value
of y at + = 0, describe the dependency.

O 1. y=3-2y
(G
® 3 y=-1-2y
© 4. y=1+2y

In each of Problems 5 and 6, write down a differential equation of the
form dy/dt = ay + b whose solutions have the required behavior as
t — oo.

b

y=2y-3

5. All solutions approach y = 2/3.
6. All other solutions diverge from y = 2.

In each of Problems 7 through 10, draw a direction field for the
given differential equation. Based on the direction field, determine the
behavior of y as t — oo. If this behavior depends on the initial value
of y att = 0, describe this dependency. Note that in these problems
the equations are not of the form y’ = ay + b, and the behavior of
their solutions is somewhat more complicated than for the equations
in the text.

O 7. y=y4-y

O 8 y=-35-»

0 9 y=»5

O 10. y=yy-2?2

Consider the following list of differential equations, some of which
produced the direction fields shown in Figures 1.1.5 through 1.1.10.

In each of Problems 11 through 16, identify the differential equation
that corresponds to the given direction field.

a. y=2y—1
b. yy=2+y
c. y=y-2
d. y'=y(y+3)
e. y =y(y-3)
f. y=1+42y

g y=-2-y
h. y'=y(3-y)
iy =1-2y
Jooy=2-y

11. The direction field of Figure 1.1.5.

N

| Problem 11.

14.

The direction field of Figure 1.1.6.

11 Problem 15.

16. The direction field of Figure 1.1.10.

AN ——

N———
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Y Problem 16.

17. A pond initially contains 1,000,000 gal of water and an unknown
amount of an undesirable chemical. Water containing 0.01 grams of
this chemical per gallon flows into the pond at a rate of 300 gal/h. The
mixture flows out at the same rate, so the amount of water in the pond
remains constant. Assume that the chemical is uniformly distributed
throughout the pond.

a. Write a differential equation for the amount of chemical in
the pond at any time.
b. How much of the chemical will be in the pond after a very
long time? Does this limiting amount depend on the amount that
was present initially?
c. Write a differential equation for the concentration of the
chemical in the pond at time ¢. Hint: The concentration is
c=a/v=a(t)/10°.
18. A spherical raindrop evaporates at a rate proportional to its
surface area. Write a differential equation for the volume of the
raindrop as a function of time.

19. Newton’s law of cooling states that the temperature of an
object changes at a rate proportional to the difference between the
temperature of the object itself and the temperature of its surroundings
(the ambient air temperature in most cases). Suppose that the ambient
temperature is 70°F and that the rate constant is 0.05 (min)~!. Write a
differential equation for the temperature of the object at any time. Note
that the differential equation is the same whether the temperature of
the object is above or below the ambient temperature.

1.2 Solutions of Some Differential Equations 9

20. A certain drug is being administered intravenously to a hospital
patient. Fluid containing 5 mg/cm?® of the drug enters the patient’s
bloodstream at a rate of 100 cm’/h. The drug is absorbed by body
tissues or otherwise leaves the bloodstream at a rate proportional to
the amount present, with a rate constant of 0.4/h.
a. Assuming that the drug is always uniformly distributed
throughout the bloodstream, write a differential equation for the
amount of the drug that is present in the bloodstream at any time.
b. How much of the drug is present in the bloodstream after a
long time?
@ 21. For small, slowly falling objects, the assumption made in
the text that the drag force is proportional to the velocity is a good one.
For larger, more rapidly falling objects, it is more accurate to assume
that the drag force is proportional to the square of the velocity.?
a. Write a differential equation for the velocity of a falling
object of mass m if the magnitude of the drag force is
proportional to the square of the velocity and its direction is
opposite to that of the velocity.
b. Determine the limiting velocity after a long time.
c. If m = 10 kg, find the drag coefficient so that the limiting
velocity is 49 m/s.
0O d. Using the data in part c, draw a direction field and compare
it with Figure 1.1.3.

In each of Problems 22 through 25, draw a direction field for the
given differential equation. Based on the direction field, determine the
behavior of y as t — oo. If this behavior depends on the initial value
of y att = 0, describe this dependency. Note that the right-hand sides
of these equations depend on ¢ as well as y; therefore, their solutions
can exhibit more complicated behavior than those in the text.

© 22. y="2+1t-y
O 23 y=e'+y
© 24. y =3sint+1+y
0 2. y/:_ztzﬁ

y

2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of
Aerodynamic Drag: A Primer for Mathematicians,” American Mathematical
Monthly 106 (1999), 2, pp. 127-135.

12 Solutions of Some Differential Equations

In the preceding section we derived the differential equations
v
Wegs = Mg —v
and

dp

—
a P

(€]

@

Equation (1) models a falling object, and equation (2) models a population of field mice preyed

on by owls. Both of these equations are of the general form

dy
— =gy —b,
dt @

(€))

where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of equations (1) and (2) by considering the
associated direction fields. To answer questions of a quantitative nature, however, we need
to find the solutions themselves, and we now investigate how to do that.
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‘urthel ‘ { ' Mathematical Mo Up to this point we have related our
d1scuss10n of dlfferentlal equatlons to mathematical models of a falling object and of a
hypothetical relation between field mice and owls. The derivation of these models may have
been plausible, and possibly even convincing, but you should remember that the ultimate test
of any mathematical model is whether its predictions agree with observations or experimental
results. We have no actual observations or experimental results to use for comparison purposes
here, but there are several sources of possible discrepancies.

In the case of the falling object, the underlying physical principle (Newton’s laws of
motion) is well established and widely applicable. However, the assumption that the drag
force is proportional to the velocity is less certain. Even if this assumption is correct, the
determination of the drag coefficient by direct measurement presents difficulties. Indeed,
sometimes one finds the drag coefficient indirectly —for example, by measuring the time of
fall from a given height and then calculating the value of y that predicts this observed time.

The model of the field mouse population is subject to various uncertainties. The
determination of the growth rate r and the predation rate k depends on observations of actual
populations, which may be subject to considerable variation. The assumption that r and k are
constants may also be questionable. For example, a constant predation rate becomes harder
to sustain as the field mouse population becomes smaller. Further, the model predicts that a
population above the equilibrium value will grow exponentially larger and larger. This seems
at variance with the behavior of actual populations; see the further discussion of population
dynamics in Section 2.5.

If the differences between actual observations and a mathematical model’s predictions are
too great, then you need to consider refining the model, making more careful observations,
or perhaps both. There is almost always a tradeoff between accuracy and simplicity. Both are
desirable, but a gain in one usually involves a loss in the other. However, even if a mathematical
model is incomplete or somewhat inaccurate, it may nevertheless be useful in explaining
qualitative features of the problem under investigation. It may also give satisfactory results
under some circumstances but not others. Thus you should always use good judgment and
common sense in constructlng mathematical models and in using their predictions.

‘ The greatest mathe-
matician of the elghteenth century, Leonhard Euler (1707 1783), grew up near Basel,
Switzerland and was a student of Johann Bernoulli. He followed his friend Daniel Bernoulli to
St. Petersburg in 1727. For the remainder of his life he was associated with the St. Petersburg
Academy (1727-1741 and 1766-1783) and the Berlin Academy (1741-1766). Losing sight
in his right eye in 1738, and in his left eye in 1766, did not stop Euler from being one of the
most prolific mathematicians of all time. In addition to publishing more than 500 books and
papers during his life, an additional 400 have appeared posthumously.

Of particular interest here is Euler’s formulation of problems in mechanics in
mathematical language and his development of methods of solving these mathematical
problems. Lagrange said of Euler’s work in mechanics, “The first great work in which analysis
is applied to the science of movement.” Among other things, Euler identified the condition
for exactness of first-order differential equations (Section 2.6) in 1734—1735, developed the
theory of integrating factors (Section 2.6) in the same paper, and gave the general solution of
homogeneous linear differential equations with constant coefficients (Sections 3.1, 3.3, 3.4,
and 4.2) in 1743. He extended the latter results to nonhomogeneous differential equations in
1750-1751. Beginning about 1750, Euler made frequent use of power series (Chapter 5) in
solving differential equations. He also proposed a numerical procedure (Sections 2.7 and 8.1)
in 1768-1769, made important contributions in partial differential equations, and gave the first
systematic treatment of the calculus of variations.

Joseph-Louis Lagrange (1736-1813) became professor of mathematics in his native
Turin, Italy, at the age of 19. He succeeded Euler in the chair of mathematics at the Berlin
Academy in 1766 and moved on to the Paris Academy in 1787. He is most famous for his
monumental work Mécanique analytique, published in 1788, an elegant and comprehensive
treatise of Newtonian mechanics. With respect to elementary differential equations, Lagrange
showed in 1762-1765 that the general solution of a homogeneous nth order linear differential
equation is a linear combination of n independent solutions (Sections 3.2 and 4.1). Later, in
1774-1775, he offered a complete development of the method of variation of parameters
(Sections 3.6 and 4.4). Lagrange is also known for fundamental work in partial differential
equations and the calculus of variations.

Pierre-Simon de Laplace (1749-1827) lived in Normandy, France, as a boy but arrived in
Paris in 1768 and quickly made his mark in scientific circles, winning election to the Académie
des Sciences in 1773. He was preeminent in the field of celestial mechanics; his greatest work,
Traité de mécanique céleste, was published in five volumes between 1799 and 1825. Laplace’s
equation is fundamental in many branches of mathematical physics, and Laplace studied it
extensively in connection with gravitational attraction. The Laplace transform (Chapter 6)
is also named for him, although its usefulness in solving differential equations was not
recognized until much later.

By the end of the eighteenth century many elementary methods of solving ordinary
differential equations had been discovered. In the nineteenth century interest turned more
toward the investigation of theoretical questions of existence and uniqueness and to the
development of less elementary methods such as those based on power series expansions (see
Chapter 5). These methods find their natural setting in the complex plane. Consequently, they
benefitted from, and to some extent stimulated, the more or less simultaneous development of
the theory of complex analytic functions. Partial differential equations also began to be studied
intensively, as their crucial role in mathematical physics became clear. In this connection a
number of functions, arising as solutions of certain ordinary differential equations, occurred
repeatedly and were studied exhaustively. Known collectively as higher transcendental
functions, many of them are associated with the names of mathematicians, including Bessel
(Section 5.7), Legendre (Section 5.3), Hermite (Section 5.2), Chebyshev (Section 5.3), Hankel,

and many others.

@ 1. Solve each of the following initial value problems and plot
the solutions for several values of y,. Then describe in a few words
how the solutions resemble, and differ from, each other.

a. dy/dt=-y+5, y(0) =y
b. dy/dt=-2y+5, y(0) =y
c. dy/dt=-2y+10, y(0) =y

@ 2. Follow the instructions for Problem 1 for the following

initial-value problems:
a. dy/dt=y—35, y(0) =y
O©b.dy/di=2y-5, y(0) =y
c. dy/dt=2y—10, y(0) =y

3. Consider the differential equation
dy/dt = —ay + b,

where both @ and b are positive numbers.
a. Find the general solution of the differential equation.
@ b. Sketch the solution for several different initial conditions.
¢. Describe how the solutions change under each of the
following conditions:

i. a increases.
ii. b increases.
iii. Both @ and b increase, but the ratio b/a remains the same.

4. Consider the differential equation dy/dt = ay — b.
a. Find the equilibrium solution y,.
b. Let Y(#) = y — y.; thus Y(#) is the deviation from the
equilibrium solution. Find the differential equation satisfied by
Y(1).
5. Undetermined Coefficients. Here is an alternative way to solve
the equation

dy
— =ay —b. 31
e (31)
a. Solve the simpler equation
dy
— =ay. 32
TR (32)

Call the solution y;(1).
b. Observe that the only difference between equations (31) and
(32) is the constant —b in equation (31). Therefore, it may seem
reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumption by trying
to find a constant k such that y = y(¢) + k is a solution of
equation (31).
¢. Compare your solution from part b with the solution given in
the text in equation (17).
Note: This method can also be used in some cases in which the
constant b is replaced by a function g(¢). It depends on whether you
can guess the general form that the solution is likely to take. This
method is described in detail in Section 3.5 in connection with second-
order equations.

6. Use the method of Problem 5 to solve the equation
dy
dt

7. The field mouse population in Example 1 satisfies the
differential equation

= —ay+b.

D _P_ys.

dt 2
a. Find the time at which the population becomes extinct if
p(0) = 850.
b. Find the time of extinction if p(0) = pg, where 0 < pgy <
900.

() c. Find the initial population pq if the population is to
become extinct in 1 year.
8. The falling object in Example 2 satisfies the initial value

problem
dv v
— =9.8——,
dt 5
a. Find the time that must elapse for the object to reach 98% of
its limiting velocity.
b. How far does the object fall in the time found in part a?

v(0) =0.
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9. Consider the falling object of mass 10 kg in Example 2, but
assume now that the drag force is proportional to the square of the
velocity.

a. If the limiting velocity is 49 m/s (the same as in Example 2),
show that the equation of motion can be written as
dv 1
ar =25
Also see Problem 21 of Section 1.1.
b. Ifv(0) = 0, find an expression for v(¢) at any time.
@ c. Plot your solution from part b and the solution (26) from
Example 2 on the same axes.
d. Based on your plots in part c, compare the effect of a
quadratic drag force with that of a linear drag force.
e. Find the distance x(¢) that the object falls in time ?.
(D f. Find the time 7' it takes the object to fall 300 m.

10. A radioactive material, such as the isotope thorium-234,
disintegrates at a rate proportional to the amount currently present.
If Q(¢) is the amount present at time ¢, then dQ/dt = —rQ, where
r > 0is the decay rate.
a. If 100 mg of thorium-234 decays to 82.04 mg in 1 week,
determine the decay rate r.
b. Find an expression for the amount of thorium-234 present at
any time ¢.
¢. Find the time required for the thorium-234 to decay to one-
half its original amount.

49% —y?).

11.  The half-life of a radioactive material is the time required for an
amount of this material to decay to one-half its original value. Show
that for any radioactive material that decays according to the equation
Q" = —rQ, the half-life 7 and the decay rate r satisfy the equation
r7 =1n2.

12. According to Newton’s law of cooling (see Problem 19 of
Section 1.1), the temperature u( ) of an object satisfies the differential
equation

d
d—”: = —k(u —T),

where 7' is the constant ambient temperature and k is a positive
constant. Suppose that the initial temperature of the object is
u(0) = uy.
4. Find the temperature of the object at any time.
b. Let 7 be the time at which the initial temperature difference
up — T has been reduced by half. Find the relation between k
and 7.

13.  Consider an electric circuit containing a capacitor, resistor, and

battery; see Figure 1.2.3. The charge O(z) on the capacitor satisfies
the equation®

where R is the resistance, C is the capacitance, and V is the constant
voltage supplied by the battery.
Ga 1100 = 0, find Q(r) at any time ¢, and sketch the graph
of Q versus 7.
b. Find the limiting value Q; that O(¢) approaches after a long
time.
© c. Suppose that O(r;) = Q and that at time ¢ — t; the
battery is removed and the circuit is closed again. Find Q(¢) for
t > 1 and sketch its graph,

R
— W

v
[

|{
I\
C

1=+ The electric circuit of Problem 13.

@ 14. Apond containing 1,000,000 gal of water is initially free
of a certain undesirable chemical (see Problem 17 of Section 1.1).
Water containing 0.01 g/gal of the chemical flows into the pond at
a rate of 300 gal/h, and water also flows out of the pond at the same
rate. Assume that the chemical is uniformly distributed throughout the

pond.
a. Let O(¢) be the amount of the chemical in the pond at time

t. Write down an initial value problem for ().

b. Solve the problem in part a for Q(1). How much chemical is
in the pond after 1 year?

¢. At the end of 1 year the source of the chemical in the pond
is removed; thereafter pure water flows into the pond, and the
mixture flows out at the same rate as before. Write down the
initial value problem that describes this new situation.

d. Solve the initial value problem in part c. How much chemical
remains in the pond after 1 additional year (2 years from the
beginning of the problem)?

¢. How long does it take for Q(7) to be reduced to 10 g?

f. Plot O(t) versus ¢ for 3 years.

This equation results from Kirchhoff’s laws, which are discussed in Section
3.7.

13 Classification of Differential Equations

The main purposes of this book are to discuss some of the properties of solutions of differential
equations and to present some of the methods that have proved effective in finding solutions
or, in some cases, in approximating them. To provide a framework for our presentation,
we describe here several useful ways of classifying differential equations. Mastery of this
vocabulary is essential to selecting appropriate solution methods and to describing properties
of solutions of differential equations that you encounter later in this book—and in the real

world.

One important classification is based on

whether the unknown function depends on a single independent variable or on several

1.3 Classification of Differential Equations

independent variables. In the first case, only ordinary derivatives appear in the differential
equation, and it is said to be an ordinary differential equation. In the second case, the
derivatives are partial derivatives, and the equation is called a partial differential equation.
All the differential equations discussed in the preceding two sections are ordinary
differential equations. Another example of an ordinary differential equation is
(1) | do(n) | 1
L R + = 0(1) = E(1), 1
gt R = O =B )
for the charge Q(#) on a capacitor in a circuit with capacitance C, resistance R, and inductance
L; this equation is derived in Section 3.7. Typical examples of partial differential equations
are the heat conduction equation

o2 0%u(x, 1) _ Ou(x, 1)
0x2 ot

2

and the wave equation
a262u(x, 1) _ 0%u(x, t).
Ox? ot?
Here, a? and a? are certain physical constants. Note that in both equations (2) and (3) the
dependent variable u depends on the two independent variables x and 7. The heat conduction

equation describes the conduction of heat in a solid body, and the wave equation arises in a
variety of problems involving wave motion in solids or fluids.

©)

s of Different Another classification of differential equations de-
pends on the number of unknown functions that are involved. If there is a single function
to be determined, then one differential equation is sufficient. However, if there are two or
more unknown functions, then a system of differential equations is required. For example, the
Lotka-Volterra, or predator-prey, equations are important in ecological modeling. They have
the form

i =ax —ax

dt 4

dy

AN 4
7 cy +vxy, C)

where x(¢) and y(t) are the respective populations of the prey and predator species. The
positive constants a, a, ¢, and vy are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 7 and 9;
in particular, the Lotka-Volterra equations are examined in Section 9.5. In some areas of
application it is not unusual to encounter very large systems containing hundreds, or even
many thousands, of differential equations.

The order of a differential equation is the order of the highest derivative that appears
in the equation. The equations in the preceding sections are all first-order equations, whereas
equation (1) is a second-order equation. Equations (2) and (3) are also second-order partial
differential equations. More generally, the equation

F(t, u(t), w'(o), ... ,u<">(t)) -0 5)

is an ordinary differential equation of the n™ order. Equation (5) expresses a relation between
the independent variable ¢ and the values of the function u and its first n derivatives

w',u”, ..., u™ It is convenient and customary in differential equations to write y for u(z),
with y', y”, ...,y standing for u'(¢), u"(t), ..., u™(¢). Thus equation (5) is written as
F(t, %y, ... ,y(")> =0. (6)

For example,
Y +2e'y" 4+ yy' =1t ™

is a third-order differential equation for y = u(¢). Occasionally, other letters will be used
instead of 7 and y for the independent and dependent variables; the meaning should be clear
from the context.

17
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previously computed results. (Lorenz restarted the computation with three-digit approximate
solutions, not the six-digit approximations that were stored in the computer.) In 1976 the
Australian mathematician Sir Robert M. May (1938-) introduced and analyzed the logistic
map, showing that there are special values of the problem’s parameter where the solutions
undergo drastic changes. The common trait that small changes in the problem produce large
changes in the solution is one of the defining characteristics of chaos. May’s logistic map is
discussed in more detail in Section 2.9. Other classical examples of what we now recognize as
“chaos” include the work by French mathematician Henri Poincaré (1854-1912) on planetary
motion and the studies of turbulent fluid flow by Soviet mathematician Andrey Nikolaevich
Kolmogorov (1903-1987), American mathematician Mitchell Feigenbaum (1944-), and
many others. In addition to these and other classical examples of chaos, new examples continue

to be found.

Solitons and chaos are just two of many examples where computers, and especially
computer graphics, have given a new impetus to the study of systems of nonlinear differential
equations. Other unexpected phenomena (Section 9.8), such as strange attractors (David
Ruelle, Belgium, 1935-) and fractals (Benoit Mandelbrot, Poland, 1924-2010), have been
discovered, are being intensively studied, and are leading to important new insights in a
variety of applications. Although it is an old subject about which much is known, the study
of differential equations in the twenty-first century remains a fertile source of fascinating and

important unsolved problems.

In each of Problems | through 4, determine the order of the given
differential equation; also state whether the equation is linear or
nonlinear.

d? d
1. 222 2D + 2y =sint

dt? dt
d?y dy
2 _
2. (l-l—y) t2+[dt—|—y_6t

d'y dy d’y dy
ATl A A O =1
at Tttty

2

dy
4. — +sin(t + y) = sint
i (t+y)

In each of Problems 5 through 10, verify that each given function is a
solution of the differential equation.

W

So ¥ —y=0; y(t) =€, yy(t) =cosht

6. y'+2y =3y=0; y(1) =e™, yt) =¢

7oty —y=1t*% y=3t+41

8 Y"+4y"+3y=1t; y(1) =1/3, y(1) =e +1/3

9. 2y'+5ty'+4y =0, t>0; y(1) =172, yy(t) = t2Int

t
10. y' —2ry =1; yzefz/ e ds + e
0

In each of Problems 11 through 13, determine the values of 7 for which
the given differential equation has solutions of the form y=e".

11. y/+2y=0
12. y//+y/—6y=0
13, y"—3y" 12y =0

In each of Problems 14 and 15, determine the values of » for which the
given differential equation has solutions of the form y=t"fort > 0.

14. 2y + 41y’ +2y =0
15, 12y — 4ty +4y =0

In each of Problems 16 through 18, determine the order of the given
partial differential equation; also state whether the equation is linear
or nonlinear. Partial derivatives are denoted by subscripts.

16, sex +uyy +u,; =0

17, tyrer + 2Uxxyy + Uyyyy =0
18, +uuy =1+ uy,

In each of Problems 19 through 21, verify that each given function is
a solution of the given partial differential equation.

190 wyx +uyy =0; wuy(x,y) = cosx cosh v,

uz(x, y) = In(x? + y?)

20. Q2upy =up;  u(x,t) = e~ sinx,

up(x,1) = e~ sin \x, X areal constant

21 @Puxy = uy;  ui(x,1) = sin(\x) sin(\at),
uy(x,t) = sin(x —at), ) areal constant

22.  Follow the steps indicated here to derive the equation of motion
of a pendulum, equation (12) in the text. Assume that the rod is rigid
and weightless, that the mass is a point mass, and that there is no
friction or drag anywhere in the system.
4. Assume that the mass is in an arbitrary displaced position,
indicated by the angle §. Draw a free-body diagram showing the
forces acting on the mass.
b. Apply Newton’s law of motion in the direction tangential to
the circular arc on which the mass moves. Then the tensile force
in the rod does not enter the equation. Observe that you need to
find the component of the gravitational force in the tangential
direction. Observe also that the linear acceleration, as opposed to
the angular acceleration, is Ld*0 /dt?, where L is the length of
the rod.
€. Simplify the result from part b to obtain equation (12) in the
text.

23.  Another way to derive the pendulum equation (12) is based on
the principle of conservation of energy.
a. Show that the kinetic energy 7' of the pendulum in motion is

2

1, (do
T=:mi?( ).
2" <dt>

b. Show that the potential energy V of the pendulum, relative to
its rest position, is

V =mgL(1 —cosf).

¢. By the principle of conservation of energy, the total energy

Computer software for differential equations changes too fast for
particulars to be given in a book such as this. A Google search
for Maple, Mathematica, Sage, or MATLAB is a good way to
begin if you need information about one of these computer algebra
and numerical systems.

There are many instructional books on computer algebra systems,
such as the following:

Cheung, C.-K., Keough, G. E., Gross, R. H., and Landraitis,
C., Getting Started with Mathematica (3rd ed.) (New York:
Wiley, 2009).

Meade, D. B., May, M., Cheung, C.-K., and Keough, G. E.,
Getting Started with Maple (3rd ed.) (New York: Wiley,
2009).

For further reading in the history of mathematics, see books such

as those listed below:

Boyer, C. B., and Merzbach, U. C., A History of Mathematics (2nd
ed.) New York: Wiley, 1989).

Kline, M., Mathematical Thought from Ancient to Modern Times
(3 vols.) (New York: Oxford University Press, 1990).

E = T 4+ V is constant. Calculate d E /dt, set it equal to zero,
and show that the resulting equation reduces to equation (12).

24. A third derivation of the pendulum equation depends on the
principle of angular momentum: The rate of change of angular
momentum about any point is equal to the net external moment about
the same point.
a. Show that the angular momentum M, or moment of
momentum, about the point of support is given by M =
mL?d0/dt.
b. Set dM/dt equal to the moment of the gravitational force,
and show that the resulting equation reduces to equation (12).
Note that positive moments are counterclockwise.

A useful historical appendix on the early development of

differential equations appears in

Ince, E. L., Ordinary Differential Equations (London: Longmans,
Green, 1927; New York: Dover, 1956).

Encyclopedic sources of information about the lives and

achievements of mathematicians of the past are

Gillespie, C. C., ed., Dictionary of Scientific Biography (15 vols.)
(New York: Scribner’s, 1971).

Koertge, N., ed., New Dictionary of Scientific Biography (8 vols.)
(New York: Scribner’s, 2007).

Koertge, N., ed., Complete Dictionary of Scientific Biography
(New York: Scribner’s, 2007 [e-book]).

Much historical information can be found on the Internet. One

excellent site is the MacTutor History of Mathematics archive

http://www-history.mcs.st-and.ac.uk/history/

created by O’Connor, J. J., and Robertson, E. F., Department
of Mathematics and Statistics, University of St. Andrews,
Scotland.




First-Order Ditferential
Equations

This chapter deals with differential equations of first order

dy

df _f(tvy)! (1)
where f is a given function of two variables. Any differentiable function y = ¢ (#) that
satisfies this equation for all # in some interval is called a solution, and our objective is
to determine whether such functions exist and, if so, to develop methods for finding them.
Unfortunately, for an arbitrary function f, there is no general method for solving the equation
in terms of elementary functions. Instead, we will describe several methods, each of which is
applicable to a certain subclass of first-order equations.

The most important of these are linear equations (Section 2.1), separable equations
(Section 2.2), and exact equations (Section 2.6). Other sections of this chapter describe
some of the important applications of first-order differential equations, introduce the idea of
approximating a solution by numerical computation, and discuss some theoretical questions
related to the existence and uniqueness of solutions. The final section includes an example of
chaotic solutions in the context of first-order difference equations, which have some important
points of similarity with differential equations and are simpler to investigate.

21 Linear Differential Equations; Method
of Integrating Factors

If the function f in equation (1) depends linearly on the dependent variable y, then equation (1)
is a first-order linear differential equation. In Sections 1.1 and 1.2 we discussed a restricted
type of first-order linear differential equation in which the coefficients are constants. A typical
example is
4y b 2
78 ay + b, @
where a and b are given constants. Recall that an equation of this form describes the motion
of an object falling in the atmosphere.
Now we want to consider the most general first-order linear differential equation, which
is obtained by replacing the coefficients a and b in equation (2) by arbitrary functions of . We
will usually write the general first-order linear differential equation in the standard form

dy _
E+p(t)y = g(1), 3

where p and g are given functions of the independent variable ¢#. Sometimes it is more
convenient to write the equation in the form

d
H0£+me=mn, @)

where P, O, and G are given. Of course, as long as P(¢) # 0, you can convert equation (4)
to equation (3) by dividing both sides of equation (4) by P(?).

In some cases it is possible to solve a first-order linear differential equation immediately
by integrating the equation, as in the next example.

Ay

2.1 Linear Differential Equations; Method of Integrating Factors

EXAMPLE 1

- w—— . e TR s e ]
R SO RAS S e e B S A S

| Solve the differential equation
d
(4+12)d—i+21y=4t. )

I Solution:

The left-hand side of equation (5) is a linear combination of dy/dt and y, a combination that also
| appears in the rule from calculus for differentiating a product. In fact,

d d
@+ =+ 2y = 2 ((4+)):

it follows that equation (5) can be rewritten as

| %«$H%ﬂ=m. (6)
‘ Thus, even though y is unknown, we can integrate both sides of equation (6) with respect to 7, thereby
,f obtaining

(4+1)y=2%+c, 0
;Lj where c is an arbitrary constant of integration. Solving for y, we find that

i 2

| This is the general solution of equation (5).

|

Unfortunately, most first-order linear differential equations cannot be solved as illustrated
in Example 1 because their left-hand sides are not the derivative of the product of y and some
other function. However, Leibniz discovered that if the differential equation is multiplied by
a certain function y(#), then the equation is converted into one that is immediately integrable
by using the product rule for derivatives, just as in Example 1. The function 4 (7) is called an
integrating factor and our main task in this section is to determine how to find it for a given
equation. We will show how this method works first for an example and then for the general
first-order linear differential equation in the standard form (3).

| EXAMPLE 2

Find the general solution of the differential equation

Q + ly = lef/3.

9
dt 2 2 ©

Draw some representative integral curves; that is, plot solutions corresponding to several values of
the arbitrary constant c. Also find the particular solution whose graph contains the point (0, 1).

Solution:

The first step is to multiply equation (9) by a function x(#), as yet undetermined; thus
dy 1 1 t/3
— 4+ —u(t)y = zu(t . 10
w(t) - +suy = zu(t)e 10
The question now is whether we can choose 4 (#) so that the left-hand side of equation (10) is the

derivative of the product () y. For any differentiable function z(#) we have

dp(1)
dt

Thus the left-hand side of equation (10) and the right-hand side of equation (11) are identical,
provided that we choose /() to satisfy

d _ dy
‘1 E(M(I))’) —M([)E_i_ 11

du(t) 1
== 12
T 2#(0. (12)

<Dm;;—;w_.
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-
As in Example 3, this is another instance where there is a critical initial value, namely, y, = 1, that

. . \ 4 The main purpose of this example is to illustrate that sometimes the solution must be left in terms
separates solutions that behave in one way from others that behave quite differently. i .

of an integral. This is usually at most a slight inconvenience, rather than a serious obstacle. For a given
value of ¢, the integral in equation (47) is a definite integral and can be approximated to any desired
degree of accuracy by using readily available numerical integrators. By repeating this process for
many values of # and plotting the results, you can obtain a graph of a solution. Alternatively, you can
use a numerical approximation method, such as those discussed in Chapter 8, that proceed directly
from the differential equation and need no expression for the solution. Software packages such as
Maple, Mathematica, MATLAB and Sage readily execute such procedures and produce graphs of
solutions of differential equations.

Figure 2.1.4 displays graphs of the solution (47) for several values of c. The particular solution
satisfying the initial condition y(0) = 1 is shown in black. From the figure it may be plausible to
conjecture that all solutions approach a limit as # — oo. The limit can also be found analytically (see
Problem 22).

' Integral curves of the differential equation ty’ 4 2y = 4¢2;

the green curve is the particular solution with y(1) = 2. The red curve is the
particular solution with y(1) = 1.

EXAMPLE 5

g
A
| E
A

Solve the initial value problem
2y +ty =2, (41)
y(0) = 1. (42)

Solution:

]

!  Integral curves of 2y’ +ty = 2; the green curve is the particular
satisfying the initial condition y(0) = 1.

To convert the differential equation (41) to the standard form (3), we must divide equation (41) by
2, obtaining

1
v+ sr=1 (43)

Ihus p(l) / ’ g 1 g f S .
[ 2 and the ntegratin, actor 1 H (t) e:;p(l‘ 1 I
( ) / ) IheIl mu tlp y equatlon ( 3) b‘&

2 1
e /4y/+ Eer2/4y _ er2/4. (44)

The left-hand side of equation (44) is the derivative of ¢'>/ 4y, so by

: integrating b i
equation (44), we obtain B otk Hiteg i

0
1= eo/ e_'fz/“ds +cé
0

=0+c,

soc = 1.

6. ty—y=1t%"t, t>0

7. y 4+ y=>5sin(21)

8. 2y +y=3t
In each of Problems 9 through 12, find the solution of the given initial
value problem.

13.

14.

2 2
ety = /e' 1 dt + c. (45) In each of Problems 1 through 8: 9, y—y=2e¥, y0)=1
. . ; . @ a. Draw a direction field for the given differential equation. 0. v — =2 _
;llléiléfrllttegfaﬁ on the right-hand side of equation (45) cannot be evaluated in terms of the usual b. Based on an inspection of the direction field, describe how ekl 22y “ . HO=E
clemer n?;yalm(l)c.tl:)?s, s(c; we leave the integral unevaluated. By choosing the lower limit of integration solutions behave for large . 11, ¥ty coz L () =0, >0
mtz7z = 1
p , We can replace equation (45) by c. Find the general solution of the given differential equation, ” / t 1 t ~ ey .
e’2/4 _ ! s2/4 and use it to determine how solutions behave as t — oo. 2. ty'+(@+Dy=1, y(n2)=1, t>
Y= A e Mds +c, (46) 1. v ady—t4e? In each of Problems 13 and 14:
o — bi F & , = )5 @ a. Draw a direction field for the given differential equation.
¢ cisanarbitrary constant. It then follows that the general solution y of equation (41) is given by 2. y-2y=r'e” How do solutions appear to behave as ¢ becomes large? Does the
_ 24 " /4 /4 3. Y+y=te"+1 behavior depend on the choice of the initial value a? Let ay be
H= “ e Mds +ce g 47) o1 the value of a for which the transition from one type of behavior
T dotermitte 8 parfienlar solution 4. Y+ = 3cos(2t), >0 to another occurs. Estimate the value of aj.
icular solution that satisfi iti - 1 = . "
equation (47): satisfies the initial condition (42), set # = 0 and y=1in 5. y —2y=3e¢ b. Solve the initial value problem and find the critical value aq

exactly.
¢. Describe the behavior of the solution corresponding to the
initial value ag.

1
y - 3Y =2cost, y(0)=a

3y —2y=e"/%, y(0)=a
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In each of Problems 15 and 16:
@ 2. Draw a direction field for the given differential equation.
How do solutions appear to behave as # — 0? Does the beh'fl\fior
depend on the choice of the initial value a? Let ay be the critical
value of a, that is, the initial value such that the solutions for
a < ay and the solutions for a > ao have different behaviors as

t — oo. Estimate the value of ag.
b. Solve the initial value problem and find the critical value q

exactly.
c. Describe the behavior of the solution corresponding to the

initial value ay.
15. 1y +(t+1Dy=2te™, y(1)=a, t>0
16. (sint)y’'+ (cost)y =e', y(1) =a, O0<t<m
@ 17. Consider the initial value problem

1
y + zy =2cost, y(0)=-—1.

Find the coordinates of the first local maximum point of the solution
fort > 0.

D 18. Consider the initial value problem

2 1
"+ oy=1— =1, 0) = yp.
y+3y 3 y(0) =y

Find the value of y, for which the solution touches, but does not Cross,
the z-axis.

19.  Consider the initial value problem
1
y + 7F= 3+2cos(2t), y(0)=0.

a. Find the solution of this initial value problem and describe its
behavior for large .

() b. Determine the value of ¢ for which the solution first
intersects the line y = 12.

20.  Find the value of y, for which the solution of the initial value
problem
Y —y=1+3sint, »(0) =y,
remains finite as t — o0o.
21.  Consider the initial value problem

3
y - Sy=3+ 2¢',  y(0) = y,.

Find the value of y, that separates solutions that grow positively as

t — oo from those that grow negatively. How does the solution that
corresponds to this critical value of y, behave as r — 00?

22.  Show that all solutions of 2y’ + ry = 2 [equation (41) of the
text] approach a limit as # — 0o, and find the limiting value.
Hint: Consider the general solution, equation (47). Show that the first

D e e

term in the solution (47) is indeterminate with form 0 - co. Then, use
I’Hopital’s rule to compute the limit as t — 00.

23. Show that if ¢ and )\ are positive constants, and b is any real
number, then every solution of the equation

-\t

Y +ay = be
has the property that y — 0 ast — oo.
Hint: Consider the cases a = \ and a # ) separately.

In each of Problems 24 through 27, construct a first-order linear
differential equation whose solutions have the required behavior as
t — oo. Then solve your equation and confirm that the solutions do
indeed have the specified property.

24.  All solutions have the limit 3 as t — oo.
25.  All solutions are asymptotic to the line y = 3 — ¢ as t — oo.

26.  All solutions are asymptotic to the line y = 2f — 5 as  — oo.
27.  All solutions approach the curve y =4 — 2 as t — oo.
)

28. Variation of Parameters. Consider the following method of
solving the general linear equation of first order:

Y+ p()y=g(). (48)

a. If g(¢) = 0 for all ¢, show that the solution is

y = Aexp <—/p(t) dt), (49)

where A is a constant.

b. If g(r) is not everywhere zero, assume that the solution of
equation (48) is of the form

y = A1) exp(—/p(l) d;), (50)

where A is now a function of ¢. By substituting for y in the given
differential equation, show that A(#) must satisfy the condition

A(1) = g(1) exp(/ p(1) dt). (51)

¢. Find A(¢) from equation (51). Then substitute for A(?) in
equation (50) and determine y. Verify that the solution obtained
in this manner agrees with that of equation (33) in the text. This
technique is known as the method of variation of parameters;
itis discussed in detail in Section 3.6 in connection with second-
order linear equations.

In each of Problems 29 and 30, use the method of Problem 2% to solve
the given differential equation.

29,y =2y =%

1
30. y’+?y=cos(2t), r>0

2.2 Separable Differential Equations

22 Separable Differential Equations

In Section 1.2 we used a process of direct integration to solve first-order linear differential
equations of the form
dy
— =ay+b, )
ar ~

where a and b are constants. We will now show that this process is actually applicable to a
much larger class of nonlinear differential equations. o .

We will use x, rather than ¢, to denote the independent variable in this section for tv.vo
reasons. In the first place, different letters are frequently used for the variables in a d1fferent1al
equation, and you should not become too accustomed to using a single pair. In particular, x
often occurs as the independent variable. Further, we want to reserve ¢ for another purpose
later in the section. o

The general first-order differential equation is

2 f(x,9). @
dx
Linear differential equations were considered in the preceding section, but if eguation (2) is
nonlinear, then there is no universally applicable method for solving the equation. Here, we
consider a subclass of first-order equations that can be solved by direct integration.

To identify this class of equations, we first rewrite equation (2) in the form

i
M(x,y) + N(x,y) % =, 3)

It is always possible to do this by setting M(x,y) = —f(x,y) and N(x,.y) = 1, but there
may be other ways as well. When M is a function of x only and N is a function of y only, then

equation (3) becomes
dy
— =0. )
M(x) + N(y) o

Such an equation is said to be separable, because if it is written in the differential form
M(x)dx + N(y)dy =0, ®)

then, if you wish, terms involving each variable may be placed on opposite sid'es‘of j[he
equation. The differential form (5) is also more symmetric and tends to suppress the distinction

between independent and dependent variables. ‘ '
A separable equation can be solved by integrating the functions M and N. We illustrate

the process by an example and then discuss it in general for equation (4).

EXAMPLE 1
Show that the equation
2
v ©)
dx 1—y?
is separable, and then find an equation for its integral curves.
Solution:
If we write equation (6) as
dy
~2 (1= y?) = =0 ™
4+ (1 =y 7= =0,

then it has the form (4) and is therefore separable. Recall from calculus that if y is a function of x,
then by the chain rule,

d d dy _ D
SO =IO o =rOZ

33
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2. y' 4+ y?sinx =0
3. y= cosz(x) cosZ(Zy)
4. xy' =(1 —yH1/2
5, D _x-e

dx y+er
i B ¥

dx 1+y?
7. D 2

dx x
g %y _—*

dx y

In each of Problems 9 through 16:
a. Find the solution of the given initial value problem in explicit
form.
@ b. Plot the graph of the solution.
¢. Determine (at least approximately) the interval in which the
solution is defined.
9. ¥y =(1-2x)y% y(0)=-1/6
10. y'=(1-2x)/y, y(1)=-2
11. xdx+ye™dy=0, y(0)=1
12. dr/df =v?/0, r(1) =2
13. ¥y =xy3(14+x»)"12, y0) =1
14, y'=2x/(1+2y), y(2)=0
15. y=03Bx2-¢%/2y=95), y(0) =1
16. sin(2x) dx +cos(3y)dy =0, y(n/2) =n/3
Some of the results requested in Problems 17 through 22 can be
obtained either by solving the given equations analytically or by
plotting numerically generated approximations to the solutions. Try
to form an opinion about the advantages and disadvantages of each
approach.

@ 17. Solve the initial value problem

. 143x2
= — 0) =1
Y =326 y(0)
and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

@ 18. Solve the initial value problem

o3 (1) =0

V=3z-g Y=

and determine the interval in which the solution is valid.

Hing: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

@ 19. Solve the initial value problem

Y =2y"+xy% »0 =1
and determine where the solution attains its minimum value.
@ 20. Solve the initial value problem
, 2=

=353, YO =0

Y

and determine where the solution attains its maximum value.
© 21. Consider the initial value problem
R IC)
3 b
a. Determine how the behavior of the solution as ¢ increases
depends on the initial value yj.

b. Suppose that yo = 0.5. Find the time 7" at which the solution
first reaches the value 3.98.

@ 22. Consider the initial value problem

1+t

¥(0) = yo.

, y(0) =y > 0.

a. Determine how the solution behaves as t — oo.

b. If yo = 2, find the time T at which the solution first reaches
the value 3.99.

¢. Find the range of initial values for which the solution lies in
the interval 3.99 < y < 4.01 by the time ¢ = 2.

23. Solve the equation
fdl _ay+b
dx ~ cy+d’

where a, b, ¢, and d are constants.

24.  Use separation of variables to solve the differential equation

dQ
ke r(a+bQ), Q(0) = Qy,
where a, b, r, and Q, are constants. Determine how the solution

behaves as t — oo

Homogeneous Equations. If the right-hand side of the equation
dy/dx = f(x,y) can be expressed as a function of the ratio y/x
only, then the equation is said to be homogeneous.! Such equations
can always be- transformed into separable equations by a change of
the dependent variable. Problem 25 illustrates how to solve first-order
homogeneous equations.

!The word “homogeneous” has different meanings in different mathematical
contexts. The homogeneous equations considered here have nothing to do with
the homogeneous equations that will occur in Chapter 3 and elsewhere.

D 25. Consider the equation

d -4 .
A s (29)
dx x—y

a. Show that equation (29) can be rewritten as
dy -4
dy _ (/%) -4, 30)
dx 1—(y/x)

thus equation (29) is homogeneous.
b. Introduce a new dependent variable v so that v = y/x, or
y = xv(x). Express dy/dx in terms of x, v, and dv /dx.
c. Replace y and dy/dx in equation (30) by the expressions
from part b that involve v and dv/dx. Show that the resulting
differential equation is

dv  v—4

x— = 5
v dx 1—v

or

dv  vi—4

=T 31)
Observe that equation (31) is separable.
d. Solve equation (31), obtaining v implicitly in terms of x.
e. Find the solution of equation (29) by replacing v by y/x in
the solution in part d.
f. Draw a direction field and some integral curves for
equation (29). Recall that the right-hand side of equation (29)
actually depends only on the ratio y/x. This means that integral
curves have the same slope at all points on any given straight line

2.3 Modeling with First-Order Differential Equations 39

through the origin, although the slope changes from one line to
another. Therefore, the direction field and the integral curves are
symmetric with respect to the origin. Is this symmetry property
evident from your plot?

The method outlined in Problem 25 can be used for any
homogeneous equation. That is, the substitution y = xv(x) transforms
a homogeneous equation into a separable equation. The latter equation
can be solved by direct integration, and then replacing v by y/x
gives the solution to the original equation. In each of Problems 26
through 31:

a. Show that the given equation is homogeneous.

b. Solve the differential equation.

@ c. Draw a direction field and some integral curves. Are they

symmetric with respect to the origin?

_d_y x2+xy+y2

2(). = )
dx x°
2 2
27. d_y = uﬁ_
dx 2xy
g B _4y—3x
dx 2x —y
9, By _ _4xt3y
dx 2x+y
)
30, X_*¥-3
dx 2xy

2_ .2
3, DX

dx 2xy

23 Modeling with First-Order Differential

Equations

Differential equations are of interest to nonmathematicians primarily because of the possibility
of using them to investigate a wide variety of problems in the physical, biological, and social
sciences. One reason for this is that mathematical models and their solutions lead to equations
relating the variables and parameters in the problem. These equations often enable you to make
predictions about how the natural process will behave in various circumstances. It is often easy
to vary parameters in the mathematical model over wide ranges, whereas this may be very
time-consuming or expensive, if not impossible, in an experimental setting. Nevertheless,
mathematical modeling and experiment or observation are both critically important and
have somewhat complementary roles in scientific investigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other hand,
mathematical analyses may suggest the most promising directions to explore experimentally,
and they may indicate fairly precisely what experimental data will be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathematical models.
We begin by recapitulating and expanding on some of the conclusions reached in those
sections. Regardless of the specific field of application, there are three identifiable steps that

are always present in the process of mathematical modeling.

St nstruction of ti In this step the physical situation is translated into
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most critical
at this stage is to state clearly the physical principle(s) that are believed to govern the process.
For example, it has been observed that in some circumstances heat passes from a warmer to
a cooler body at a rate proportional to the temperature difference, that objects move about
in accordance with Newton’s laws of motion, and that isolated insect populations grow at
a rate proportional to the current population. Each of these statements involves a rate of
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EXAMPLE 4 | EscapeVelocity

A body of constant mass m is projected away from the earth in a direction perpendicular to the earth’s
surface with an initial velocity vo. Assuming that there is no air resistance, but taking into account
the variation of the earth’s gravitational field with distance, find an expression for the velocity during
the ensuing motion. Also find the initial velocity that is required to lift the body to a given maximum
altitude Ap.x above the surface of the earth, and find the least initial velocity for which the body will
not return to the earth; the latter is the escape velocity.

| FIGURE 2. A body in the earth’s gravitational field is pulled
towards the center of the earth.

Solution:

Let the positive x-axis point away from the center of the earth along the line of motion with
x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn horizontally to remind
you that gravity is directed toward the center of the earth, which is not necessarily downward from
a perspective away from the earth’s surface. The gravitational force acting on the body (that is, its
weight) is inversely proportional to the square of the distance from the center of the earth and is given
by w(x) = —k/(x + R)?, where k is a constant, R is the radius of the earth, and the minus sign
signifies that w(x) is directed in the negative x direction. We know that on the earth’s surface w(0)
is given by —mg, where g is the acceleration due to gravity at sea level. Therefore, k = mgR? and

2
w(x) = — % . 25)
Since there are no other forces acting on the body, the equation of motion is
L e T 26)
dt (R+x)?
and the initial condition is
v(0) = vy. 27

Unfo?tunately, equation (26) involves too many variables since it depends on ¢, x, and v. To
?emedy this situation, we can eliminate ¢ from equation (26) by thinking of x, rather than 7, as the
independent variable. Then we can express dv /dt in terms of dv /dx by using the chain rule; hence

dv  dvdx dv

ar " dxar Vdx’
and equation (26) is replaced by
e g (28)
dx (R+x)2
Equation (28) is separable but not linear, so by separating the variables and integrating, we obtain

vZ _ gRZ

el

(29)

Since x = 0 when 7 = 0, the initial condition (27) at ¢ = 0 can be replaced by the condition that
v = vo when x = 0. Hence ¢ = (v§/2) — gR and

2 2gR?
v=d=®4/v, —2gR ;

\/ Y gR+ R+x 30)
Note that equation (30) gives the velocity as a function of altitude rather than as a function of time.

The plus sign must be chosen if the body is rising, and the minus sign must be chosen if it is falling
back to earth.

2.3 Modeling with First-Order Differential Equations

W To determine the maximum altitude Ap,, that the body reaches, we set v = 0 and x = Apy in

equation (30) and then solve for A, obtaining

2

vOR

@31

Amax ==

2gR—v(2) .

Solving equation (31) for vy, we find the initial velocity required to lift the body to the altitude Amaxs
namely,

A max

Vo= 4[28R——m.
=N B Rt A

(32)

The escape velocity v, is then found by letting Ay, — oo. Consequently,

Ve = 1/ 2gR. (33)

The numerical value of v, is approximately 6.9 mi/s, or 11.1 km/s.

The preceding calculation of the escape velocity neglects the effect of air resistance, so the
actual escape velocity (including the effect of air resistance) is somewhat higher. On the other hand,
the effective escape velocity can be significantly reduced if the body is transported a considerable
distance above sea level before being launched. Both gravitational and frictional forces are thereby
reduced; air resistance, in particular, diminishes quite rapidly with increasing altitude. You should
keep in mind also that it may well be impractical to impart too large an initial velocity instantaneously;
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space vehicles, for instance, receive their initial acceleration during a period of a few minutes.

p TN My R
Problems

1. Consider a tank used in certain hydrodynamic experiments.
After one experiment the tank contains 200 L of a dye solution with
a concentration of 1 g/L. To prepare for the next experiment, the tank
is to be rinsed with fresh water flowing in at a rate of 2 L/min, the
well-stirred solution flowing out at the same rate. Find the time that
will elapse before the concentration of dye in the tank reaches 1% of
its original value.

2. A tank initially contains 120 L of pure water. A mixture
containing a concentration of v g/L of salt enters the tank at a rate
of 2 L/min, and the well-stirred mixture leaves the tank at the same
rate. Find an expression in terms of + for the amount of salt in the
tank at any time ¢. Also find the limiting amount of salt in the tank as
t— 0.

3. A tank contains 100 gal of water and 50 oz of salt. Water
1 1
containing a salt concentration of I (1 + 5 sint | oz/gal flows into

the tank at a rate of 2 gal/min, and the mixture in the tank flows out at
the same rate.
a. Find the amount of salt in the tank at any time.
@ b. Plot the solution for a time period long enough so that you
see the ultimate behavior of the graph.
¢. The long-time behavior of the solution is an oscillation about
a certain constant level. What is this level? What is the amplitude
of the oscillation?

4. Suppose that a tank containing a certain liquid has an outlet near
the bottom. Let 4(¢) be the height of the liquid surface above the outlet
at time ¢. Torricelli’s® principle states that the outflow velocity v at the
outlet is equal to the velocity of a particle falling freely (with no drag)
from the height h.

2Evangelista Torricelli (1608-1647), successor to Galileo as court
mathematician in Florence, published this result in 1644. In addition to this
work in fluid dynamics, he is also known for constructing the first mercury
barometer and for making important contributions to geometry.

a. Show that v = +/2gh, where g is the acceleration due to
gravity.

b. By equating the rate of outflow to the rate of change of liquid
in the tank, show that 4(¢) satisfies the equation

A(h)Z—]: = —aav/2gh, (34)

where A(4) is the area of the cross section of the tank at height A
and a is the area of the outlet. The constant « is a contraction
coefficient that accounts for the observed fact that the cross
section of the (smooth) outflow stream is smaller than a. The
value of o for water is about 0.6.

c. Consider a water tank in the form of a right circular cylinder
that is 3m high above the outlet. The radius of the tank is 1m,
and the radius of the circular outlet is 0.1 m. If the tank is initially
full of water, determine how long it takes to drain the tank down
to the level of the outlet.

5. Suppose that a sum S is invested at an annual rate of return r
compounded continuously.
a. Find the time T required for the original sum to double in
value as a function of .
b. Determine 7T if r = 7%.
c. Find the return rate that must be achieved if the initial
investment is to double in 8 years.

6. A young person with no initial capital invests k dollars per
year at an annual rate of return . Assume that investments are made
continuously and that the return is compounded continuously.

a. Determine the sum S(¢) accumulated at any time 7.

b. Ifr = 7.5%, determine k so that $1 million will be available
for retirement in 40 years.

¢. If k = $2000/year, determine the return rate r that must be
obtained to have $1 million available in 40 years.
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7. A certain college graduate borrows $8000 to buy a car. The
lender charges interest at an annual rate of 10%. Assuming that interest
is compounded continuously and that the borrower makes payments
continuously at a constant annual rate k, determine the payment rate
k that is required to pay off the loan in 3 years. Also determine how
much interest is paid during the 3-year period.

@ 8. A recent college graduate borrows $150,000 at an interest
rate of 6% to purchase a condominium. Anticipating steady salary
increases, the buyer expects to make payments at a monthly rate of
800 + 10¢, where ¢ is the number of months since the loan was made.
a. Assuming that this payment schedule can be maintained,
when will the loan be fully paid?
b. Assuming the same payment schedule, how large a loan could
be paid off in exactly 20 years?

9. An important tool in archeological research is radiocarbon
dating, developed by the American chemist Willard F, Libby.? This
is a means of determining the age of certain wood and plant remains,
and hence of animal or human bones or artifacts found buried at the
same levels. Radiocarbon dating is based on the fact that some wood
or plant remains contain residual amounts of carbon-14, a radioactive
isotope of carbon. This isotope is accumulated during the lifetime
of the plant and begins to decay at its death. Since the half-life of
carbon-14 is long (approximately 5730 years),* measurable amounts
of carbon-14 remain after many thousands of years. If even a tiny
fraction of the original amount of carbon-14 is still present, then by
appropriate laboratory measurements the proportion of the original
amount of carbon-14 that remains can be accurately determined. In
other words, if Q() is the amount of carbon-14 at time ¢ and Qp is
the original amount, then the ratio Q(r) / Qo can be determined, as
long as this quantity is not too small. Present measurement techniques
permit the use of this method for time periods of 50,000 years or more.

a. Assuming that (Q satisfies the differential equation
Q' = —rQ, determine the decay constant » for carbon-14.

b. Find an expression for Q(¢) at any time ¢, if Q(0) = Q.

€. Suppose that certain remains are discovered in which the
current residual amount of carbon-14 is 20% of the original
amount. Determine the age of these remains.

o 10. Suppose that a certain population has a growth rate that
varies with time and that this population satisfies the differential
equation

dy N
— = (0.5 4 sin¢) =.
dt (03 )5
a. If y(0) = 1, find (or estimate) the time 7 at which the

population has doubled. Choose other initial conditions and

determine whether the doubling time 7 depends on the initial

population.

b. Suppose that the growth rate is replaced by its average value

1/10. Determine the doubling time 7 in this case.

€. Suppose that the term sinz in the differential equation is

replaced by sin 27 ¢; that is, the variation in the growth rate has a

substantially higher frequency. What effect does this have on the

doubling time 7?

d. Plot the solutions obtained in parts 2, b, and ¢ on a single set
= of axes.

education at the University of California at Berkeley. He developed the method
of radiocarbon dating beginning in 1947 while he was at the University of
Chicago. For this work he was awarded the Nobel Prize in Chemistry in 1960.

“McGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York:
McGraw-Hill, 1997), Vol. 5, p. 48.

@ 11. Suppose that a certain population satisfies the initial value
problem

dy/dt =r(t)y —k, y(0) = Yos

where the growth rate () is given by 7(¢) = (1 + sint)/5, and k
represents the rate of predation.
© a. Suppose that k = 1 /5. Plot y versus ¢ for several values
of y, between 1/2 and 1.
b. Estimate the critical initial population Ye below which the
population will become extinct.
¢. Choose other values of k and find the corresponding y, for
each one.
© d. Use the data you have found in parts b and ¢ to plot y,
versus k.

12, Newton’s law of cooling states that the temperature of an object
changes at a rate proportional to the difference between its temperature
and that of its surroundings. Suppose that the temperature of a cup of
coffee obeys Newton’s law of cooling. If the coffee has a temperature
of 200°F when freshly poured, and 1 min later has cooled to 190°F in
a room at 70°F, determine when the coffee reaches a temperature of
150°F.

13. Heat transfer from a body to its surroundings by radiation,
based on the Stefan—Boltzmann’ law, is described by the differential
equation

Z—‘t‘ =—a(u*-T7%, (35)

where u(t) is the absolute temperature of the body at time ¢, T is
the absolute temperature of the surroundings, and « is a constant
depending on the physical parameters of the body. However, if u
is much larger than T, then solutions of equation (35) are well
approximated by solutions of the simpler equation
du 4
5= Qu’. (36)
Suppose that a body with initial temperature 2000 K is surrounded by
a medium with temperature 300 K and that o = 2.0 x 10~12 K—3/s.
a. Determine the temperature of the body at any time by solving
equation (36).
© b. Plot the graph of  versus 7.
O c. Find the time 7 at which u(r) = 600—that is, twice
the ambient temperature. Up to this time the error in using
equation (36) to approximate the solutions of equation (35) is
no more than 1%.

@ 14. Consider an insulated box (a building, perhaps) with
internal temperature u(¢). According to Newton’s law of cooling, u
satisfies the differential equation

du
— =—k(u—T(1)), 37
7 (u—T(1)) (37
where T(z) is the ambient (external) temperature. Suppose that
T (¢) varies sinusoidally; for example, assume that

T(t) = Ty+ T, cos(wt).

law on empirical grounds in 1879. His student Ludwig Boltzmann (1844-1906)
derived it theoretically from the principles of thermodynamics in 1884.
Boltzmann is best known for his pioneering work in statistical mechanics.

a. Solve equation (37) and express u(t) in terms of ¢, k, Ty, 1,
and w. Observe that part of your solution approaches zero as ¢
becomes large; this is called the transient part. The remainder of
the solution is called the steady state; denote it by S(¢).

@b Suppose that 7 is measured in hours and that @ — /12,
corresponding to a period of 24 h for T(t). Further, let
Ty = 60°F, Ty = 15°F, and k = 0.2/h. Draw graphs of S(z)
and 7'(¢) versus ¢ on the same axes. From your graph estimate
the amplitude R of the oscillatory part of S(z). Also estimate
the time lag 7 between corresponding maxima of 7'(¢) and S( 1).
c. Letk, Ty, T, and w now be unspecified. Write the oscillatory
part of S(¢) in the form R cos(w (¢ — 7)). Use trigonometric
identities to find expressions for R and 7. Let 77 and w have
the values given in part b, and plot graphs of R and 7 versus k.

15. Consider a lake of constant volume V containing at time ¢
an amount Q(¢) of pollutant, evenly distributed throughout the lake
with a concentration ¢(z), where (1) = Q(t)/ V. Assume that
water containing a concentration & of pollutant enters the lake at a
rate 7, and that water leaves the lake at the same rate. Suppose that
pollutants are also added directly to the lake at a constant rate P.
Note that the given assumptions neglect a number of factors that may,
in some cases, be important— for example, the water added or lost
by precipitation, absorption, and evaporation; the stratifying effect of
temperature differences in a deep lake; the tendency of irregularities
in the coastline to produce sheltered bays; and the fact that pollutants
are deposited unevenly throughout the lake but (usually) at isolated
points around its periphery. The results below must be interpreted in
light of the neglect of such factors as these.
a. If at time ¢+ = O the concentration of pollutant is ¢y, find an
expression for the concentration ¢(¢) at any time. What is the
limiting concentration as t — 00?
b. If the addition of pollutants to the lake is terminated (k = 0
and P = 0 forz > 0), determine the time interval T that must
elapse before the concentration of pollutants is reduced to 50%
of its original value; to 10% of its original value.
C. Table 2.3.2 contains data® for several of the Great Lakes.
Using these data, determine from part b the time 7' that is needed
to reduce the contamination of each of these lakes to 10% of the
original value.

Volume and Flow Data for the Great

TABLE 2.3.2
s Lakes

=

Superior 12.2 65.2

Michigan 4.9 158
Erie 0.46 175

Ontario 1.6 209

O 16. A ban with mass 0.15 kg is thrown upward with initial
velocity 20 m/s from the roof of a building 30 m high. Neglect air
resistance.
4. Find the maximum height above the ground that the ball
reaches.
b. Assuming that the ball misses the building on the way down,
find the time that it hits the ground.
@ c. Plot the graphs of velocity and position versus time.

st
This problem is based on R. H. Rainey, “Natural Displacement of Pollution

from the Great Lakes,” Science 155 (1967), pp. 1242-1243; the information in
the table wag taken from that source.
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@ 17. Assume that the conditions are as in Problem 16 except
that there is a force due to air resistance of magnitude |v|/30 directed
opposite to the velocity, where the velocity v is measured in m/s.
4. Find the maximum height above the ground that the ball
reaches.
b. Find the time that the ball hits the ground.
@ c. Plot the graphs of velocity and position versus time.
Compare these graphs with the corresponding ones in Problem
16.
O 18. Assume that the conditions are as in Problem 16 except that
there is a force due to air resistance of magnitude v2/1325 directed
opposite to the velocity, where the velocity v is measured in m/s.
a. Find the maximum height above the ground that the ball
reaches.
b. Find the time that the ball hits the ground.
© c. Plot the graphs of velocity and position versus time.
Compare these graphs with the corresponding ones in Problems
16 and 17.
19. A body of constant mass  is projected vertically upward with
an initial velocity v, in a medium offering a resistance k|v|, where k
is a constant. Neglect changes in the gravitational force.

a. Find the maximum height x,, attained by the body and the
time #,, at which this maximum height is reached.

b. Show that if kvo/mg < 1, then t,, and Xm can be expressed

as
v 1 kv 1 kvg\?
£ = 0 fov o g 2 f200Y ,
g 2 mg 3\ mg
v 2 kv 1 [kvo\?
Am=— (1220, 2%
2g 3mg 2\ mg

¢. Show that the quantity kv,/mg is dimensionless.

20. A body of mass m is projected vertically upward with an
initial velocity v, in a medium offering a resistance k|v|, where k
is a constant. Assume that the gravitational attraction of the earth is
constant.

a. Find the velocity v(#) of the body at any time.

b. Use the result of part a to calculate the limit of v(t) as
k — O—that is, as the resistance approaches zero. Does this
result agree with the velocity of a mass m projected upward with
an initial velocity v, in a vacuum?

¢. Use the result of part a to calculate the limit of v(t) as
m — O—that is, as the mass approaches zero.

21. A body falling in a relatively dense fluid, oil for example, is
acted on by three forces (see Figure 2.3.5): a resistive force R, a
buoyant force B, and its weight w due to gravity. The buoyant force
is equal to the weight of the fluid displaced by the object. For a slowly
moving spherical body of radius a, the resistive force is given by
Stokes’s law, R = 6 pa|v|, where v is the velocity of the body, and
f is the coefficient of viscosity of the surrounding fluid.”

7Sir George Gabriel Stokes (1 819-1903) was born in Ireland but spent most of
his life at Cambridge University, first as a student and later as a professor.
Stokes was one of the foremost applied mathematicians of the nineteenth
century, best known for his work in fluid dynamics and the wave theory of
light. The basic equations of fluid mechanics (the Navier— Stokes equations)
are named partly in his honor, and one of the fundamental theorems of vector
calculus bears his name. He was also one of the pioneers in the use of divergent
(asymptotic) series.
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a. Find the limiting velocity of a solid sphere of radius a and
density p falling freely in a medium of density p' and coefficient
of viscosity y.

b. In1910R. A. Millikan® studied the motion of tiny droplets of
oil falling in an electric field. A field of strength E exerts a force
Ee on a droplet with charge e. Assume that E has been adjusted
so the droplet is held stationary (v = 0) and that w and B are
as given above. Find an expression for e. Millikan repeated this
experiment many times, and from the data that he gathered he
was able to deduce the charge on an electron.

RAAB

P

w

A body falling in a dense fluid (see

i’roblem 21).

22. Let v(r) and w(r) be the horizontal and vertical components,
respectively, of the velocity of a batted (or thrown) baseball. In the
absence of air resistance, v and w satisfy the equations

dv dw
a0 a ¥
a. Show that
v =ucosA, w=—gt+usinA,

where u is the initial speed of the ball and A is its initial angle of
elevation.

b. Let x(z) and y(t) be the horizontal and vertical coordinates,
respectively, of the ball at time ¢. If x(0) = 0 and y(0) = &, find
x(t) and y(t) at any time ¢.

©c. Letg = 32 ft/s>, u = 125 ft/s, and h = 3 ft. Plot the
trajectory of the ball for several values of the angle A; that is,
plot x(#) and y(#) parametrically.

d. Suppose the outfield wall is at a distance L and has height H.
Find a relation between u and A that must be satisfied if the ball
is to clear the wall.

e. Suppose that L = 350 ft and H = 10 ft. Using the relation
in part (d), find (or estimate from a plot) the range of values of A
that correspond to an initial velocity of u = 110 ft/s.

f. For L =350 and H = 10, find the minimum initial velocity
u and the corresponding optimal angle A for which the ball will
clear the wall.

@ 23. A more realistic model (than that in Problem 22) of a
baseball in flight includes the effect of air resistance. In this case the
equations of motion are

. dy ) dw

2Ly, 22
dt Todt
where r is the coefficient of resistance.

=—8—rw,

8Robert A. Millikan (1868-1953) was educated at Oberlin College and
Columbia University. Later he was a professor at the University of Chicago
and California Institute of Technology. His determination of the charge on an
electron was published in 1910. For this work, and for other studies of the
photoelectric effect, he was awarded the Nobel Prize for Physics in 1923.

a. Determine v(¢) and w(¢) interms of initial speed « and initial
angle of elevation A.

b. Find x(¢) and y(¢) if x(0) = 0 and y(0) = A.

© c. Plot the trajectory of the ball forr = 1/5,u = 125,h = 3,
and for several values of A. How do the trajectories differ from
those in Problem 22 with » = 07

d. Assuming that » = 1/5 and 4 = 3, find the minimum initial
velocity u and the optimal angle A for which the ball will clear a
wall that is 350 ft distant and 10 ft high. Compare this result with
that in Problem 22f.

24. Brachistochrone Problem. One of the famous problems in
the history of mathematics is the brachistochrone® problem: to find
the curve along which a particle will slide without friction in the
minimum time from one given point P to another Q, the second
point being lower than the first but not directly beneath it (see Figure
2.3.6). This problem was posed by Johann Bernoulli in 1696 as a
challenge problem to the mathematicians of his day. Correct solutions
were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottfried Leibniz, and the Marquis de L’Hopital.
The brachistochrone problem is important in the development of
mathematics as one of the forerunners of the calculus of variations.
In solving this problem, it is convenient to take the origin as the
upper point P and to orient the axes as shown in Figure 2.3.6. The
lower point Q has coordinates (xg, yo). It is then possible to show
that the curve of minimum time is given by a function y = ¢ (x) that
satisfies the differential equation
(1+yHy=#, (38)
where &2 is a certain positive constant to be determined later.
a. Solve equation (38) for y’. Why is it necessary to choose the

positive square root?
b. Introduce the new variable ¢ by the relation

y = k?sint. (39)
Show that the equation found in part a then takes the form
2k? sin® t dt = dx. (40)

c. Letting § = 2¢, show that the solution of equation (40) for
which x = 0 when y = 0 is given by
x =k*0 —sin)/2, y=£k*(1—cosf)/2. (41)

Equations (41) are parametric equations of the solution of
equation (38) that passes through (0, 0). The graph of equations
(41) is called a cycloid.
d. If we make a proper choice of the constant k, then the cycloid
also passes through the point (xp, yo) and is the solution of the
brachistochrone problem. Find & if xo = 1 and yy = 2.

P x

Q(xOv yO)

The brachistochrone

°The word “brachistochrone” comes from the Greek words brachistos,
meaning shortest, and chronos, meaning time.
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24 Differences Between Linear and
Nonlinear Differential Equations

Up to now, we have been primarily concerned with showing that first-order differential
equations can be used to investigate many different kinds of problems in the natural sciences,
and with presenting methods of solving such equations if they are either linear or separable.
Now it is time to turn our attention to some more general questions about differential equations
and to explore in more detail some important ways in which nonlinear equations differ from
linear ones.

xistence and Uniqueness of Solutions.  So far, we have discussed a number of initial
value problems, each of which had a solution and apparently only one solution. That raises the
question of whether this is true of all initial value problems for first-order equations. In other
words, does every initial value problem have exactly one solution? This may be an important
question even for nonmathematicians. If you encounter an initial value problem in the course
of investigating some physical problem, you might want to know that it has a solution before
spending very much time and effort in trying to find it. Further, if you are successful in
finding one solution, you might be interested in knowing whether you should continue a
search for other possible solutions or whether you can be sure that there are no other solutions.
For linear equations, the answers to these questions are given by the following fundamental
theorem.

Theorem2.4.1 | Existence and Uniqueness Theorem for
First-Order Linear Equations

If the functions p and g are continuous on an open interval I: o < ¢ < B containing the point ¢ = ¢,
then there exists a unique function y = ¢ () that satisfies the differential equation

Y+ p()y =g(1) €8]
for each ¢ in 7, and that also satisfies the initial condition
y(to) = yo, )]

where y, is an arbitrary prescribed initial value.

Observe that Theorem 2.4.1 states that the given initial value problem 4as a solution and
also that the problem has only one solution. In other words, the theorem asserts both the
existence and the unigueness of the solution of the initial value problem (1). In addition, it
states that the solution exists throughout any interval 7 containing the initial point #, in which
the coefficients p and g are continuous. That is, the solution can be discontinuous or fail to
exist only at points where at least one of p and g is discontinuous. Such points can often be
identified at a glance.

The proof of this theorem is partly contained in the discussion in Section 2.1 leading to
the formula (see equation (32) in Section 2.1)

u(t)y = /u(t)g(t) dt +c, 3)

where [equation (30) in Section 2.1]
p(t) = eXp/p(t) dt. 4

The derivation in Section 2.1 shows that if equation (1) has a solution, then it must be given by
€quation (3). By looking slightly more closely at that derivation, we can also conclude that the
differential equation (1) must indeed have a solution. Since p is continuous for o < t < (3,
it follows that on the interval o < t < B, 1 is defined, is a differentiable function, and is

5

1




n
=J

2.4 Differences Between Linear and Nonlinear Differential Equations
56 CHAPTER2 First-Order Differential Equations

Y is the solution of the initial value problem with the initial condition (24). Observe that the solution

I (25)becomesunbounded ast — 1 / Yo, so the interval of existence of the solutionis —oo < # < 1 /Yo
& if yo > 0,andis 1/yy < t < o0 if yy < 0. This example illustrates another feature of initial value
| problems for nonlinear equations: the singularities of the solution may depend in an essential way
on the initial conditions as well as on the differential equation.

General Another way in which linear and nonlinear equations differ concerns
the concept of a general solution. For a first-order linear differential equation it is possible to
obtain a solution containing one arbitrary constant, from which all possible solutions follow
by specifying values for this constant. For nonlinear equations this may not be the case; even
though a solution containing an arbitrary constant may be found, there may be other solutions
that cannot be obtained by giving values to this constant. For instance, for the differential
equation y’ = y? in Example 4, the expression in equation (22) contains an arbitrary constant
but does not include all solutions of the differential equation. To show this, observe that the
function y = 0 for all 7 is certainly a solution of the differential equation, but it cannot be
obtained from equation (22) by assigning a value to c. In this example we might anticipate
that something of this sort might happen, because to rewrite the original differential equation
in the form (21), we must require that Yy is not zero. However, the existence of “additional”
solutions is not uncommon for nonlinear equations; a less obvious example is given in Problem
18. Thus we will use the term “general solution” only when discussing linear equations.

Implicit Solu Recall again that for an initial value problem for a first-order linear
differential equation, equation (8) provides an explicit formula for the solution y = ¢ (7). As
long as the necessary antiderivatives can be found, the value of the solution at any point can be
determined merely by substituting the appropriate value of ¢ into the equation. The situation
for nonlinear equations is much less satisfactory. Usually, the best that we can hope for is to
find an equation

F(t,y) =0 (26)

involving ¢ and y that is satisfied by the solution y = ¢(t). Even this can be done only for
differential equations of certain particular types, of which separable equations are the most
important. The equation (26) is called an integral, or first integral, of the differential equation,
and (as we have already noted) its graph is an integral curve, or perhaps a family of integral
curves. Equation (26), assuming it can be found, defines the solution implicitly; that is, for each
value of ¢ we must solve equation (26) to find the corresponding value of y. If equation (26)
is simple enough, it may be possible to solve it for y by analytical means and thereby obtain
an explicit formula for the solution. However, more frequently this will not be possible, and
you will have to resort to a numerical calculation to determine (approximately) the value of
y for a given value of 7. Once several pairs of values of ¢ and y have been calculated, it is
often helpful to plot them and then to sketch the integral curve that passes through them. You
should take advantage of the wide range of computational and graphical utilities available to
carry out these calculations and to create the graph of one or more integral curves.

Examples 2, 3, and 4 involve nonlinear problems in which it is easy to solve for an explicit
formula for the solution y = ¢ (#). On the other hand, Examples 1 and 3 in Section 2.2 are
cases in which it is better to leave the solution in implicit form and to use numerical means to
evaluate it for particular values of the independent variable. The latter situation is more typical;
unless the implicit relation is quadratic in y or has some other particularly simple form, it is
unlikely that it can be solved exactly by analytical methods. Indeed, more often than not, it
is impossible even to find an implicit expression for the solution of a first-order nonlinear
equation.

phical Numel : Because of the difficulty in
obtaining exact analytical solutions of nonlinear differential equations, methods that yield
approximate solutions or other qualitative information about solutions are of correspondingly
greater importance. We have already described, in Section 1.1, how the direction field of a
differential equation can be constructed. The direction field can often show the qualitative
form of solutions and can also be helpful in identifying regions of the ¢y-plane where solutions
exhibit interesting features that merit more detailed analytical or numerical investigation.
Graphical methods for first-order differential equations are discussed further in Section 2.5.

An introduction to numerical methods for first-order equations is given in Section 2.7, and a
systematic discussion of numerical methods appears in Chapter 8. However, it is not necessary
to study the numerical algorithms themselves in order to use effectively one of the many
software packages that generate and plot numerical approximations to solutions of initial value
problems.

The linear equation y" + p(¢)y = g(t) has several nice properties that can be
summarized in the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, containing an

arbitrary constant, that includes all solutions of the differential equation. A particular

solution that satisfies a given initial condition can be picked out by choosing the proper
value for the arbitrary constant.

There is an expression for the solution, namely, equation (7) or equation (8). Moreover,

although it involves two integrations, the expression is an explicit one for the solution

y = ¢ (1) rather than an equation that defines ¢ implicitly.

3. The possible points of discontinuity, or singularities, of the solution can be identified
(without solving the problem) merely by finding the points of discontinuity of the
coefficients. Thus, if the coefficients are continuous for all ¢, then the solution also exists
and is differentiable for all 7.

[ ]

None of these statements are true, in general, of nonlinear equations. Although a nonlinear
equation may well have a solution involving an arbitrary constant, there may also be other
solutions. There is no general formula for solutions of nonlinear equations. If you are able
to integrate a nonlinear equation, you are likely to obtain an equation defining solutions
implicitly rather than explicitly. Finally, the singularities of solutions of nonlinear equations
can usually be found only by solving the equation and examining the solution. It is likely that

the singularities will depend on the initial condition as well as on the differential equation.

In each of Problems | through 4, determine (without solving the
problem) an interval in which the solution of the given initial value
problem is certain to exist.

1. (t=3)y +(lnH)y=2¢, y(1)=2
2. y'+(tant)y =sint, y(w) =0
3.0 A=)y +2uy=32 y-3) =1
(Int)y' 4+ y =cott, y(2)=3

In each of Problems 5 through 8, state where in the ty-plane the
hypotheses of Theorem 2.4.2 are satisfied.

5. y1=(1_t2_y2)1/2

&

6 oo _ iyl
YT T ey
7 y/ — (t2+y2)3/2
1412
8, yy=——
Y 3y —y?

Ineach of Problems 9 through 12, solve the given initial value problem
and determine how the interval in which the solution exists depends
on the initial value yj.

9. ¥y =—4t/y, y(0) =y
10. y' =2ty%,  y(0) =y
1. y+3y3=0, y(0) =y,

2

r
12, y' = -—_)%(1-1—13)’ y(0) =

In each of Problems 13 through 16, draw a direction field and plot (or
sketch) several solutions of the given differential equation. Describe
how solutions appear to behave as ¢ increases and how their behavior
depends on the initial value y, when ¢ = 0.

O 13 y=n3-))

O 14 y=y3-1y

0O 15 y=—y3-1ty

O 16. y=r-1-y2

17.  Consider the initial value problem y’ = y'/3, y(0) = 0 from

Example 3 in the text.
a. Is there a solution that passes through the point (1, 1) ? If so,
find it.
b. Is there a solution that passes through the point (2, 1) ? If so,
find it.
¢. Consider all possible solutions of the given initial value
problem. Determine the set of values that these solutions have
att = 2.

18. a. Verify that both y;(#) = 1 —r and y,(f) = —t2/4 are
solutions of the initial value problem

,_ —t+ /1244y

— —, 2:—'1
y 5 ¥(2)

Where are these solutions valid?
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b. Explain why the existence of two solutions of the
given problem does not contradict the uniqueness part of
Theorem 2.4.2.

c. Show that y = cf + c?, where c is an arbitrary constant,
satisfies the differential equation in part afort > —2¢.Ifc = —1,
the initial condition is also satisfied, and the solution y = y;(¢) is
obtained. Show that there is no choice of ¢ that gives the second
solution y = y, (7).

19. a. Show that ¢ (z) = ¥ is a solution of y’ — 2y = 0 and that

y = c¢ (1) is also a solution of this equation for any value of the
constant c.
b. Show that ¢ () = 1/ is asolution of y’ +y? = 0 forz > 0,
but that y = c¢ () is not a solution of this equation unless ¢ = 0
or ¢ = 1. Note that the equation of part b is nonlinear, while that
of part a is linear.

20. Show that if y = ¢ (¢) is a solution of y' + p(#)y = 0, then
y = c¢ (1) is also a solution for any value of the constant c.

21. Lety = y;(1) be a solution of

Y +p(®y=0, @7
and let y = y,(7) be a solution of
Yy +p()y=g(). (28)

Show that y = y;(t) + y,(?) is also a solution of equation (28).

22. a. Show that the solution (7) of the general linear equation (1)
can be written in the form

y =cyi(1) + »n (D), (29)

where c¢ is an arbitrary constant.
b. Show that y; is a solution of the differential equation

Y +p(1)y=0, (30)

corresponding to g(z) = 0.

¢. Show that y, is a solution of the full linear equation (1). We
see later (for example, in Section 3.5) that solutions of higher-
order linear equations have a pattern similar to equation (29).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear
equation by making a change of the dependent variable that converts
it into a linear equation. The most important such equation has the
form

Y +p()y=q()y",

and is called a Bernoulli equation after Jakob Bernoulli. Problems 23
and 25 deal with equations of this type.

23. a. Solve Bernoulli’s equation when n = 0; whenn = 1.
b. Show thatifn = 0, 1, then the substitution v = y! =" reduces
Bernoulli’s equation to a linear equation. This method of solution
was formulated by Leibniz in 1696.

In each of Problems 24 through 25, the given equation is a Bernoulli
equation. In each case solve it by using the substitution mentioned in
Problem 23b.

24. y =ry—ky* r> 0and k > 0. This equation is important in
population dynamics and is discussed in detail in Section 2.5.

25. y'=ey—o0y* e > 0and o > 0. This equation occurs in the
study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes
occur in which one or both of the functions p and g have jump
discontinuities. If 7, is such a point of discontinuity, then it is necessary
to solve the equation separately for ¢ < #, and ¢ > fy. Afterward,
the two solutions are matched so that y is continuous at #y; this
is accomplished by a proper choice of the arbitrary constants. The
following two problems illustrate this situation. Note in each case that
it is impossible also to make y’ continuous at f.

26. Solve the initial value problem

Yy +2y=g(t), y(0) =0,

where

—_

1, 0<t<
g(t) =
0, t >

27. Solve the initial value problem

Y4+ p)y=0 y0) =1,

where

o 2, 0<t<l,
1) =
# 1, t> L.

25 Autonomous Differential Equations
and Population Dynamics

An important class of first-order equations consists of those in which the independent variable
does not appear explicitly. Such equations are called autonomous and have the form

dy/dt = f(¥). (1)

We will discuss these equations in the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to global
economics. A number of other applications are mentioned in some of the problems. Recall that
in Sections 1.1 and 1.2 we considered the special case of equation (1) in which f(y) = ay+b.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but the main
purpose of this section is to show how geometric methods can be used to obtain important
qualitative information directly from the differential equation without solving the equation. Of
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fundamental importance in this effort are the concepts of stability and instability of solutions
of differential equations. These ideas were introduced informally in Chapter 1, but without
using this terminology. They are discussed further here and will be examined in greater depth
and in a more general setting in Chapter 9.

onenti Let y = ¢ (#) be the population of the given species at time ¢. The
snnplest hypothesis concerning the variation of population is that the rate of change of y is
proportional' to the current value of y; that is,

dy

3 T @

where the constant of proportionality 7 is called the rate of growth or decline, depending on
whether r is positive or negative. Here, we assume that the population is growing, so » > 0.
Solving equation (2) subject to the initial condition'!

y(0) = yo, (3
we obtain
y = yoe". “

Thus the mathematical model consisting of the initial value problem (1), (2) with » > 0
predicts that the population will grow exponentially for all time, as shown in Figure 2.5.1 for
several values of y,. Under ideal conditions, equation (4) has been observed to be reasonably
accurate for many populations, at least for limited periods of time. However, it is clear that such
ideal conditions cannot continue indefinitely; eventually, limitations on space, food supply, or
other resources will reduce the growth rate and bring an end to uninhibited exponential growth.

Y

| | |
1/r 2/Ir 3ir 4/rt

| Exponential growth: y versus ¢ for
dy/dt =ry(r > 0).

To take account of the fact that the growth rate actually depends on the
populatlon we replace the constant 7 in equation (2) by a function /4(y) and thereby obtain
the modified equation

dy
=h
= =h(¥y. ©)
We now want to choose 4(y) so that 2(y) = r > 0 when y is small, 4(y) decreases
as y grows larger, and 4(y) < 0 when y is sufficiently large. The simplest function that has
these properties is 2(y) = r — ay, where a is also a positive constant. Using this function in
equation (5), we obtain
dy

) =(r—ay)y. (6)

101t was apparently the British economist Thomas Malthus (1766—1834) who first observed that many biological
populations increase at a rate proportional to the population. His first paper on populations appeared in 1798.

n this section, because the unknown function is a population, we assume y; > 0.
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f(y) versus y fordy/dt = —r(1 —y/T)(1 — y/K)y.

The phase line for equation (17) is shown in Figure 2.5.8a, and the graphs of some
solutions are sketched in Figure 2.5.8b. You should make sure that you understand the relation
between these two figures, as well as the relation between Figures 2.5.7 and 2.5.8a. From
Figure 2.5.8b we see that if y starts below the threshold 7', then y declines to ultimate
extinction. On the other hand, if y starts above T, then y eventually approaches the carrying
capacity K. The inflection points on the graphs of y versus ¢ in Figure 2.5.8b correspond
to the maximum and minimum points, y; and y,, respectively, on the graph of f(y) versus
y in Figure 2.5.7. These values can be obtained by differentiating the right-hand side of
equation (17) with respect to y, setting the result equal to zero, and solving for y. We obtain

y2=(K+T+VK2—KT +T?/3, (18)

where the plus sign yields y; and the minus sign y,.

y y
K
T
0 t
)]
Logistic growth with a threshold: dy/dt = —r(1 — y/T)(1 — y/K)y;

and y = ¢3(¢) = K are asymptotically stable equilibriaand y = ¢,(¢) =T
is an asymptotically unstable equilibrium. (a) The phase line. (b) Plots of y versus 7.

A model of this general sort apparently describes the population of the passenger pigeon,'

which was present in the United States in vast numbers until the late nineteenth century. It was
heavily hunted for food and for sport, and consequently its numbers were drastically reduced
by the 1880s. Unfortunately, the passenger pigeon could apparently breed successfully only
when present in a large concentration, corresponding to a relatively high threshold 7'. Although
a reasonably large number of individual birds remained alive in the late 1880s, there were not
enough in any one place to permit successful breeding, and the population rapidly declined to
extinction. The last passenger pigeon died in 1914. The precipitous decline in the passenger
pigeon population from huge numbers to extinction in a few decades was one of the early
factors contributing to a concern for conservation in this country.

14See, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-145.

Problems | through 4 involve equations of the formdy /dt = f(y).In
each problem sketch the graph of f(y) versus y, determine the critical
(equilibrium) points, and classify each one as asymptotically stable or
unstable. Draw the phase line, and sketch several graphs of solutions
in the ty-plane.
© 1. dy/dt=ay+by*>, a>0, b>0, —00< yy< 00
O 2 dy/dt=y(y-1D(y-2), y»%=0
O 3 dy/dt=e"—1, —-00< y<
O 4. dyjdt=e? -1, —c0< y,< 0

5. Semistable Equilibrium Solutions. Sometimes a constant
equilibrium solution has the property that solutions lying on one side
of the equilibrium solution tend to approach it, whereas solutions lying
on the other side depart from it (see Figure 2.5.9). In this case the
equilibrium solution is said to be semistable.

a. Consider the equation

dy/dt = k(1 —y)?, (19)

where k is a positive constant. Show that y = 1 is the only critical
point, with the corresponding equilibrium solution ¢ () = 1.
@ b. Sketch f(y) versus y. Show that y is increasing as a
function of 7 for y < 1 and also for y > 1. The phase line
has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it, and those
above it grow farther away. Therefore, ¢ () = 1 is semistable.
€. Solve equation (19) subject to the initial condition y(0) = y,
and confirm the conclusions reached in part b.

y ¥

| FIGU ‘ In both cases the equilibrium solution ¢ (1) = k
is semistable. () dy/dt < 0;(b)dy/dt > 0.

Problems 6 through 9 involve equations of the form dy/dt = f(y).
In each problem sketch the graph of f(y) versus y, determine the
critical (equilibrium) points, and classify each one as asymptotically
stable, unstable, or semistable (see Problem 5). Draw the phase line,
and sketch several graphs of solutions in the #y-plane.

6. dy/dt=y*(y*—1), —o0< yy< 00
7. dy/dt=y(1-y?), —0o0< yj< o0
8. dy/dt=y*(4—-3y?), —00< y < o0

9. dy/dt =y*(1-y)% —00< y< o0
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10.  Complete the derivation of the explicit formula for the solution
(11) of the logistic model by solving equation (10) for y.

11. In Example 1, complete the manipulations needed to arrive at
equation (13). That is, solve the solution (11) for z.

12. Complete the derivation of the location of the vertical asymptote
in the solution (15) when y, > T. That is, derive formula (16) by
finding the value of ¢ when the denominator of the right-hand side of
equation (15) is zero.

13.  Complete the derivation of formula (18) for the locations of the
inflection points of the solution of the logistic growth model with a
threshold (17). Hint: Follow the steps outlined on p. 66.

14.  Consider the equation dy/dt = f(y) and suppose that y; is a
critical point—that is, f(y;) = 0. Show that the constant equilibrium
solution ¢ (¢) =y, is asymptotically stable if f'(y;) < 0 and unstable
if f'(y1) > 0.
15.  Suppose that a certain population obeys the logistic equation
dy/dt =ry(1—(y/K)).
a. If yp = K /3, find the time 7 at which the initial population
has doubled. Find the value of 7 corresponding to » = 0.025 per
year.
b. If yo/K = o, find the time T at which y(T)/K = 8,
where 0 < «, 8 < 1. Observe that T — oo as o — 0 or
as # — 1. Find the value of T for r = 0.025 per year, o = 0.1,
and 8 = 0.9.

© 16. Another equation that has been used to model population
growth is the Gompertz'> equation

where r and K are positive constants.

a. Sketch the graph of f(y) versus y, find the critical points,
and determine whether each is asymptotically stable or unstable.
b. For 0 <y < K, determine where the graph of y versus ¢ is
concave up and where it is concave down.

c. Foreach yin0 < y < K, show that dy/dt as given by
the Gompertz equation is never less than dy/dt as given by the
logistic equation.

17. a. Solve the Gompertz equation

subject to the initial condition y(0) = y.

Hint: You may wish toletu = In(y/K).

b. For the data given in Example 1 in the text (* = 0.71 per
year, K = 80.5 x 10° kg, yo/K = 0.25), use the Gompertz
model to find the predicted value of y(2).

¢. For the same data as in part b, use the Gompertz model to find
the time 7 at which y(7) = 0.75K.

SBenjamin Gompertz (1779-1865) was an English actuary. He developed his
model for population growth, published in 1825, in the course of constructing
mortality tables for his insurance company.




ER 2 First-Order Differential Equations

18. A pond forms as water collects in a conical depression of radius
a and depth /. Suppose that water flows in at a constant rate k and is
lost through evaporation at a rate proportional to the surface area.
a. Show that the volume V(f) of water in the pond at time ¢
satisfies the differential equation

L4 =k —ar(3a/mh)Y>V?*3,

dt
where « is the coefficient of evaporation.
b. Find the equilibrium depth of water in the pond. Is the
equilibrium asymptotically stable?
¢. Find a condition that must be satisfied if the pond is not to
overflow.

Harvesting a Renewable Resource. Suppose that the population y of
a certain species of fish (for example, tuna or halibut) in a given area
of the ocean is described by the logistic equation

d_y:r(1_1>v
dt K/

Although it is desirable to utilize this source of food, it is intuitively
clear that if too many fish are caught, then the fish population may be
reduced below a useful level and possibly even driven to extinction.
Problems 19 and 20 explore some of the questions involved in
formulating a rational strategy for managing the fishery.!®

19.  Ata given level of effort, it is reasonable to assume that the rate
at which fish are caught depends on the population y: the more fish
there are, the easier it is to catch them. Thus we assume that the rate at
which fish are caught is given by Ey, where E is a positive constant,
with units of 1/time, that measures the total effort made to harvest the
given species of fish. To include this effect, the logistic equation is
replaced by

ay _ _1> _
dt__r(l X y—Ey. (20)

This equation is known as the Schaefer model after the biologist
M. B. Schaefer, who applied it to fish populations.
a. Show that if E < r, then there are two equilibrium points,
yy=0andy, =K(1—-E/r) > 0.
b. Show that y = y; is unstable and y = y, is asymptotically
stable.
¢. A sustainable yield Y of the fishery is a rate at which fish can
be caught indefinitely. It is the product of the effort £ and the
asymptotically stable population y,. Find ¥ as a function of the
effort E; the graph of this function is known as the yield-effort
curve.
d. Determine E so as to maximize Y and thereby find the
maximum sustainable yield Y,,,.

20. 1In this problem we assume that fish are caught at a constant rate
h independent of the size of the fish population. Then y satisfies

dy y
7 __r(l K)y h. 21
The assumption of a constant catch rate 2 may be reasonable when y
is large but becomes less so when y is small.

a. If h < rK/4, show that equation (21) has two equilibrium

points y; and y, with y; < y,; determine these points.

b. Show that y; is unstable and y, is asymptotically stable.

c. From a plot of f(y) versus y, show that if the initial

population y, > yi, then y — y, ast — oo, but that if

16 An excellent treatment of this kind of problem, which goes far beyond what
is outlined here, may be found in the book by Clark mentioned previously,
especially in the first two chapters. Numerous additional references are given
there.

Yo < yi,then y decreases as ¢ increases. Note that y = 0is notan
equilibrium point, so if yg < y;, then extinction will be reached
in a finite time.

d. Ifh > rK/4, show that y decreases to zero as ¢ increases,
regardless of the value of yy.

e. If h = rK /4, show that there is a single equilibrium point
y = K /2 and that this point is semistable (see Problem 5). Thus
the maximum sustainable yield is h, = rK /4, corresponding
to the equilibrium value y = K /2. Observe that 4,, has the
same value as Y, in Problem 19d. The fishery is considered to
be overexploited if y is reduced to a level below K /2.

Epidemics. The use of mathematical methods-to study the spread of
contagious diseases goes back at least to some work by Daniel
Bernoulli in 1760 on smallpox. In more recent years many
mathematical models have been proposed and studied for many
different diseases.!” Problems 21 through 23 deal with a few of the
simpler models and the conclusions that can be drawn from them.
Similar models have also been used to describe the spread of rumors
and of consumer products.

21. Suppose that a given population can be divided into two parts:
those who have a given disease and can infect others, and those
who do not have it but are susceptible. Let x be the proportion of
susceptible individuals and y the proportion of infectious individuals;
then x + y = 1. Assume that the disease spreads by contact between
sick and well members of the population and that the rate of spread
dy/dt is proportional to the number of such contacts. Further, assume
that members of both groups move about freely among each other, so
the number of contacts is proportional to the product of x and y. Since
x =1 —y, we obtain the initial value problem

i—}; =ay(l—=y), y(0) =y, (22)
where o is a positive proportionality factor, and y, is the initial
proportion of infectious individuals.
a. Find the equilibrium points for the differential equation (22)
and determine whether each is asymptotically stable, semistable,
or unstable.
b. Solve the initial value problem 22 and verify that the
conclusions you reached in part a are correct. Show that y(#) —
1 as t — oo, which means that ultimately the disease spreads
through the entire population.

22. Some diseases (such as typhoid fever) are spread largely by
carriers, individuals who can transmit the disease but who exhibit no
overt symptoms. Let x and y denote the proportions of susceptibles
and carriers, respectively, in the population. Suppose that carriers are
identified and removed from the population at a rate 3, so

dy

2 = By (23)

Suppose also that the disease spreads at a rate proportional to the
product of x and y; thus

dx
dt
a. Determine y at any time ¢ by solving equation (23) subject to
the initial condition y(0) = y.
b. Use the result of part a to find x at any time ¢ by solving
equation (24) subject to the initial condition x(0) = xg.
¢. Find the proportion of the population that escapes the
epidemic by finding the limiting value of x as t — oo.

= —axy. (24)

17 A standard source is the book by Bailey listed in the references. The models
in Problems 21, 22, and 23 are discussed by Bailey in Chapters 5, 10, and 20,
respectively.

23. Daniel Bernoulli’s work in 1760 had the goal of appraising the
effectiveness of a controversial inoculation program against smallpox,
which at that time was a major threat to public health. His model
applies equally well to any other disease that, once contracted and
survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (¢t = 0),
and let n(¢) be the number of these individuals surviving r years later.
Let x(t) be the number of members of this cohort who have not had
smallpox by year ¢ and who are therefore still susceptible. Let 3 be
the rate at which susceptibles contract smallpox, and let v be the rate
at which people who contract smallpox die from the disease. Finally,
let 11 () be the death rate from all causes other than smallpox. Then
dx/dt, the rate at which the number of susceptibles declines, is given
by

ax =—(B+p@®)x. (25)

dt
The first term on the right-hand side of equation (25) is the rate at
which susceptibles contract smallpox, and the second term is the rate
at which they die from all other causes. Also

dn

= = vBx — u(t)n, (26)
where dn/dt is the death rate of the entire cohort, and the two terms
on the right-hand side are the death rates due to smallpox and to all
other causes, respectively.

a. Let z = x/n, and show that z satisfies the initial value
problem

d

== —pa(1-v), «O=1. @7
Observe that the initial value problem (27) does not depend on
w().
b. Find z(¢) by solving equation (27).
c. Bernoulli estimated that v = [ = 1/8. Using these
values, determine the proportion of 20-year-olds who have not
had smallpox.

Note: On the basis of the model just described and the best mortality
data available at the time, Bernoulli calculated that if deaths due to
smallpox could be eliminated (v =0), then approximately 3 years
could be added to the average life expectancy (in 1760) of 26 years, 7
months. He therefore supported the inoculation program.

Bifurcation Points. For an equation of the form

dy

’n = f(a,y), (28)
where a is a real parameter, the critical points (equilibrium solutions)
usually depend on the value of a. As a steadily increases or decreases,
it often happens that at a certain value of @, called a bifurcation point,
critical points come together, or separate, and equilibrium solutions
may be either lost or gained. Bifurcation points are of great interest in
many applications, because near them the nature of the solution of the
underlying differential equation is undergoing an abrupt change. For
example, in fluid mechanics a smooth (laminar) flow may break up and
become turbulent. Or an axially loaded column may suddenly buckle
and exhibit a large lateral displacement. Or, as the amount of one of
the chemicals in a certain mixture is increased, spiral wave patterns of
varying color may suddenly emerge in an originally quiescent fluid.
Problems 24 through 26 describe three types of bifurcations that can
occur in simple equations of the form (28).

24.  Consider the equation

%:a—y. (29)
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a. Find all of the critical points for equation (29). Observe that
there are no critical points if a < 0, one critical point if a = 0,
and two critical points if a > 0.

@ b. Draw the phase line in each case and determine whether
each critical point is asymptotically stable, semistable, or
unstable.

@ c. In each case sketch several solutions of equation (29) in
the ty-plane.

Note: If we plot the location of the critical points as a function of a in
the ay-plane, we obtain Figure 2.5.10. This is called the bifurcation
diagram for equation (29). The bifurcation at @ = 0 is called a
saddle — node bifurcation. This name is more natural in the context
of second-order systems, which are discussed in Chapter 9.

Asymptotically stable

| | 1 | | |
= = a
2 1 % 1 2 3 4
~
~
1 Sso Unstable
=P - T~

Bifurcation diagram for y’ = a — y*.
25. Consider the equation

dy 3 2

— =ay—y =y(a—y). 30
S =y =y@-y) (30)
0O a. Again consider the casesa < 0,a = 0,anda > 0.Ineach
case find the critical points, draw the phase line, and determine
whether each critical point is asymptotically stable, semistable,
or unstable.

@ b. In each case sketch several solutions of equation (30) in
the ty-plane.
@ c. Draw the bifurcation diagram for equation (30)—that is,
plot the location of the critical points versus a.
Note: For equation (30) the bifurcation point at @ = 0 is called a
pitchfork bifurcation. Your diagram may suggest why this name is
appropriate.

26. Consider the equation

g%=ay—y2=y(a—y)- 3D
a. Again consider the casesa < 0,a = 0, and a > 0. In each
case find the critical points, draw the phase line, and determine
whether each critical point is asymptotically stable, semistable,
or unstable.
b. In each case sketch several solutions of equation (31) in the
ty-plane.
¢. Draw the bifurcation diagram for equation (31).
Note: Observe that for equation (31) there are the same number of
critical points fora < 0anda > 0 but that their stability has changed.
For a < 0 the equilibrium solution y = 0 is asymptotically stable
and y = a is unstable, while for @ > 0 the situation is reversed.
Thus there has been an exchange of stability as a passes through
the bifurcation point ¢ = 0. This type of bifurcation is called a
transcritical bifurcation.




70 CHAPTER?2 First-Order Differential Equations 2.6 Exact Differential Equations and Integrating Factors 71

27. Chemical Reactions. A second-order chemical reaction a. If x(0) = 0, determine the limiting value of x(#) as ¢ — oo be given. Suppose that we can identify a function ¢ (x, y) such that
involves the interaction (collision) of one molecule of a substance without solving the differential equation. Then solve the initial 9 99
P with one molecule of a substance Q to produce one molecule of value problem and find x(#) for any ¢. _8__( xX,y) =M(x,y), 8_( x,y) = N(x,y), )
a new substance X; this is denoted by P + Q — X. Suppose that b. If the substances P and Q are the same, then p = ¢ and X y
p and g, where p # g, are the initial concentrations of P and O, equation (32) is replaced by and such that ¢ (x, y) = ¢ defines y = ¢ (x) implicitly as a differentiable function of x.!8
respectively, and let x(7) be the concentration of X at time t..Then dx _ alp — x)? 33 When there is a function v (x, y) such that 1, = M and ¢, = N, we can write
p — x(t) and g — x(¢) are the concentrations of P and Q at time 7, Frkale ity x)”. (33) ; . dy
and the rate at which the reaction occurs is given by the equation ¢ %(0) = 0, determine the limiting value of x(f) & ¢ - 00 M(x,y) + N(x, )y = a_"p _éﬁ d_y =2 u(x, ()
d_x =a(p—x)(g—x), (32) without solving the differential equation. Then solve the initial * yoax da
d value problem and determine x(z) for any z. and the differential equation (6) becomes

where o is a positive constant.

d
:i;¢(x,¢(x)) =0. ®

In this case equation (6) is said to be an exact differential equation because it can be expressed
exactly as the derivative of a specific function. Solutions of equation (6), or the equivalent
equation (8), are given implicitly by

26 Exact Differential Equations and i3 = ©)

I n teg I’atl n g Fa CtO rs where c is an arbitrary constant.

In Example 1 it was relatively easy to see that the differential equation was exact and,
in fact, easy to find its solution, at least implicitly, by recognizing the required function ).
For more complicated equations it may not be possible to do this so easily. How can we tell
whether a given equation is exact, and if it is, how can we find the function 9 (x, y)? The
following theorem answers the first question, and its proof provides a way of answering the
second.

For first-order differential equations there are a number of integration methods that are
applicable to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a class of
equations known as exact differential equations for which there is also a well-defined method
of solution. Keep in mind, however, that the first-order differential equations that can be solved
by elementary integration methods are rather special; most first-order equations cannot be
solved in this way. Theorem 2.6.1

Let the functions M, N, M, and N, where subscripts denote partial derivatives, be continuous in
EXAMPLE 1 the rectangular'® region R: v < x < 3,7 < y < 6. Then equation (6)

M(x,y) +N(x,y)y =0

Solve the differential equation :
is an exact differential equation in R if and only if

My(x,y) = Nx(x,y) (10)

2x + y* 4+ 2xyy’ = 0. ey

Solution:

.. . ; . at each point of R. That is, there exists a function v satisfying equations (7),
The equation is neither linear nor separable, so the methods suitable for those types of equations are P v HIEE @

not applicable here. However, observe that the function ¢ (x, y) = x2 + xy? has the property that Yx(x,y) = M(x,y), y(x,y) =N(x,y),
2% +y? = %, 2xy = g_f ) if and only if M and N satisfy equation (10).

Therefore, the differential equation can be written as ; i . . ;
7 The proof of this theorem has two parts. First, we show that if there is a function ¥ such

9 9 dy = 3) that equations (7) are true, then it follows that equation (10) is satisfied. Computing M, and
Ox ~ dydx N, from equations (7), we obtain
Assuming that y is a function of x, we can use the chain rule to write the left-hand side of equation (3) My(x,y) = hry(x,9),  Ni(x,y) = (X, y) 11
¥ ’ — Y Xy\Ao s X 3 = Wyx s .

as dv(x, y) /dx. Then equation (3) has the form
dy d , 5, Since M), and N; are continuous, it follows that v, and 1, are also continuous. This
E(x’ ) = E(X tay) =0 @) guarantees their equality, and equation (10) is valid.
We now show that if M and N satisfy equation (10), then equation (6) is exact. The proof
involves the construction of a function v satisfying equations (7)

Yr(x, ) = M(x,y), ¥y(x,y) =N(x,Y).

Integrating equation (4) we obtain
. P(x,y) =x*+xy* =¢, )

where c is an arbitrary constant. The level curves of ¥ (x, y) are the integral curves of equation (1).
Solutions of equation (1) are defined implicitly by equation (5).

18While a complete discussion of when v (x, y) = c defines y = ¢ (x) implicitly as a differentiable function of x is
beyond the scope and focus of this course, in general terms this condition is satisfied, locally, at points (x, y), where
09 /dy(x,y) # 0. More details can be found in most books on advanced calculus.

19Tt is not essential that the region be rectangular, only that it be simply connected. In two dimensions this means that
M(x,y) + N(x,y) y’ =0 (6) the region h.as 1o holes in its 1nte.r10r. Thus, for ef(ample, rectangular or circular regions are simply connected, but an
annular region is not. More details can be found in most books on advanced calculus.

In solving equation (1) the key step was the recognition that there is a function 9 that
satisfies equations (2). More generally, let the differential equation
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Since M and N are given functions, equation (25) states that the integrating factor x must
satisfy the first-order partial differential equation

Mpy—Npy +(My — Ny)p =0. (26)

If a function p satisfying equation (26) can be found, then equation (24) will be exact. The
solution of equation (24) can then be obtained by the method described in the first part of this
section. The solution found in this way also satisfies equation (23), since the integrating factor
1 can be canceled out of equation (24).

A partial differential equation of the form (26) may have more than one solution; if this is
the case, any such solution may be used as an integrating factor of equation (23). This possible
nonuniqueness of the integrating factor is illustrated in Example 4.

Unfortunately, equation (26), which determines the integrating factor u, is ordinarily at
least as hard to solve as the original equation (23). Therefore, although in principle integrating
factors are powerful tools for solving differential equations, in practice they can be found only
in special cases. The most important situations in which simple integrating factors can be found
occur when g is a function of only one of the variables x or y, instead of both.

Let us determine conditions on M and N so that equation (23) has an integrating factor u
that depends on x only. If we assume that y is a function of x only, then the partial derivative
x reduces to the ordinary derivative dy/dx and p, = 0. Making these substitutions in
equation (26), we find that

d,u‘ M y Nx
dx N
If (My — Ny) /N is a function of x only, then there is an integrating factor 4 that also depends
only on x; further, (x) can be found by solving differential equation (27), which is both
linear and separable.

A similar procedure can be used to determine a condition under which equation (23) has

an integrating factor depending only on y; see Problem 17.

@7

EXAMPLE 4

I SR T S T R R RS R TS s

ctor for the equation

Gxy+y) + (x> +xy)y =0 (19)
and then solve the equation.
Solution:

J: In Example 3 we showed that this equation is not exact. Let us determine whether it has an integrating
factor that depends on x only. On computing the quantity (M, — N,) /N, we find that

My(x,y) = Na(x,y) _ 3x+2y—(2x+y) 1

= ; 28

i N(x,y) x2 4+ xy x (28)
L Thus there is an integrating factor y that is a function of x only, and it satisfies the differential
| equation
dp _p

pad PE 29

dx X 29)
i Hence (see Problem 7 in Section 2.2)
|
| p(x) = x. (30)
' Multiplying equation (19) by this integrating factor, we obtain
5 (3x2y + 1)) + (x* + x%y)y = 0. 31)
‘1 Equation (31) is exact, since
i
x‘ 0 2 2 2 0 3 2
! —OBx"y+xy°) =3x"+2xy = —(x° + x7y).
‘: Oy Ox
j‘ Thus there is a function ¢ such that
R Px(x,9) =32y +x3%,  py(x,y) =x* +x%y. (32)

B A

7 Integrating the first of equations (32) with respect to x, we obtain

1
P(x,y) =x"y + Exzyz +h(y).

P22y +H(y) =2 +x%y,

are given implicitly by

1
x3y + Ex2y2 =g

1

ETe )

is used (see Problem 22).
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Substituting this expression for ¥ (x, y) in the second of equations (32), we find that

so /() = 0and A(y) is a constant. Thus the solutions of equation (31), and hence of equation (19),

(33)

Solutions may also be found in explicit form since equation (33) is quadratic in y.
You may also verify that a second integrating factor for equation (19) is

and that the same solution is obtained, though with much greater difficulty, if this integrating factor

Determine whether each of the equations in Problems 1 through 8 is
exact. If it is exact, find the solution.

1. 2x+3)+2y—-2)y'=0
2. 2x+4y)+(2x—2y)y' =0

3. (Bx?—2xy+2) +(6y* —x*+3)y' =0
4 ﬂ__ax—i—by
" dx bx+cy
B Qz_ax—by
T odx bx —cy

(ve*Y cos(2x) —2e*V sin(2x) +2x) +(xe™ cos(2x) —=3)y' =0
7. (y/x+6x) +(lnx—2)y' =0, x>0
X,y dy_
(x2+y2)3/2 (x2+y2)3/2 dx
In each of Problems 9 and 10, solve the given initial value problem
and determine at least approximately where the solution is valid.
9. x—=y+R2y—x)y' =0, y(1)=3
10. (9x*+y—-1)—(4y—-x)y =0, y(1)=0
In each of Problems 11 and 12, find the value of b for which the given
equation is exact, and then solve it using that value of b.

11. (xy*+bx2%y) + (x +y)x%y' =0

12. (ye® +x) +bxe*¥y' =0

13. Assume that equation (6) meets the requirements of Theorem
2.6.1 in a rectangle R and is therefore exact. Show that a possible
function ¥ (x, y) is

x y
P(x,y) =/ M(s, yo) ds+/ N(x,t)dt,
Xq ¥

0

where (xg, yo) is a point in R.

14. Show that any separable equation
M(x) +N(y)y' =0

is also exact.

In each of Problems 15 and 16, show that the given equation is not
exact but becomes exact when multiplied by the given integrating
factor. Then solve the equation.

15. 229 +x(1+yH)y' =0, p(x,y) =1/(xy%)
16. (x+2)siny+(xcosy)y =0, pu(x,y) =xe

17. Show that if (N, — My)/M = Q, where Q is a function of y
only, then the differential equation

M+ Ny =0

has an integrating factor of the form
p(y) = eXP/ Q(y)dy.

In each of Problems 18 through 21, find an integrating factor and solve
the given equation.

18, (Bx%y+2xy+y) + (x*+yH)y =0
19. yy=e*+y-—1
20. 1+ (x/y—siny)y'=0
21. y+(2xy—e )y =0
22. Solve the differential equation
Bxy+y) + (x> +xy)y =0

using the integrating factor u(x, y) = (xy(2x + ¥)) -1, Ver.ify that
the solution is the same as that obtained in Example 4 with a different
integrating factor.
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The Euler method.

In Example 2 the general solution of the differential equation is

y =14 — 4t 4 ce™'/? an

and the solution of the initial value problem (9) corresponds to ¢ = —13. The family
of solutions (17) is a converging family since the term involving the arbitrary constant ¢
approaches zero as t — c0. It does not matter very much which solutions we are approximating
by tangent lines in the implementation of Euler’s method, since all the solutions are getting
closer and closer to each other as ¢ increases.

On the other hand, in Example 3 the general solution of the differential equation is

7 1 o
y:—-4—+5t+ce 3 (18)

and, because the term involving the arbitrary constant ¢ grows without bound as ¢ — oo, this
is a diverging family. Note that solutions corresponding to two nearby values of ¢ become
arbitrarily far apart as ¢ increases. In Example 3 we are trying approximate the solution for
¢ = 11/4, but in the use of Euler’s method we are actually at each step following another
solution that separates from the desired one faster and faster as ¢ increases. This explains why
the errors in Example 3 are so much larger than those in Example 2.

In using a numerical procedure such as the Euler method, you must always keep in mind
the question of whether the results are accurate enough to be useful. In the preceding examples,
the accuracy of the numerical results could be determined directly by a comparison with the
solution obtained analytically. Of course, usually the analytical solution is not available if a
numerical procedure is to be employed, so what we usually need are bounds for, or at least
estimates of, the error that do not require a knowledge of the exact solution. You should also
keep in mind that the best that we can expect, or hope for, from a numerical approximation
is that it reflects the behavior of the actual solution. Thus a member of a diverging family of
solutions will always be harder to approximate than a member of a converging family.

If you wish to read more about numerical approximations to solutions of initial value
problems, you may go directly to Chapter 8 at this point. There, we present some information
on the analysis of errors and also discuss several algorithms that are computationally much
more efficient than the Euler method.

Note about Variations of Computed Results. Most of the problems
in this section call for fairly extensive numerical computations. To
handle these problems you need suitable computing hardware and
software. Keep in mind that numerical results may vary somewhat,
depending on how your program is constructed and on how your
computer executes arithmetic steps, rounds off, and so forth. Minor
variations in the last decimal place may be due to such causes and do
not necessarily indicate that something is amiss. Answers in the back

of the book are recorded to six digits in most cases, although more
digits were retained in the intermediate calculations.

In each of Problems | through 4:
@ a. Find approximate values of the solution of the given initial
value problem at ¢+ = 0.1, 0.2, 0.3, and 0.4 using the Euler
method with 2 = 0.1.
@ b. Repeat part (a) with 4~ = 0.05. Compare the results with
those found in a.

r

D c. Repeat part a with 7 = 0.025. Compare the results with
those found in a and b.

@ d. Find the solution y = ¢ () of the given problem and
evaluate ¢ (¢) att = 0.1,0.2,0.3, and 0.4. Compare these values
with the results of a, b, and c.

L. y=34+t-y, y0)=1
2. y=2y—1, y0)=1

3. y¥=05-t+2y, y(0) =1
4. y' =3cost—2y, y(0)=0

In each of Problems 5 through &, draw a direction field for the given
differential equation and state whether you think that the solutions are
converging or diverging.

O 5 y=5-3,

O 6 y=y3-1ty

O 7. y=-ty+0.1y

e 8. y/ - t2 + y2

In each of Problems 9 and 10, use Euler’s method to find approximate
values of the solution of the given initial value problem at + = 0.5,
1, 1.5, 2,2.5, and 3: (a) With & = 0.1, (b) With 2 = 0.05, (c) With
h = 0.025, (d) With # = 0.01.

O 9 y=5-3,5 y0=2

0O 10. y=y3-1ty), y0)=05

11. Consider the initial value problem

3
T 3y2-4

4

y » y(1) =0.

@ a. Use Euler’s method with 2 = 0.1 to obtain approximate
values of the solution at = 1.2, 1.4, 1.6, and 1.8.

@ b. Repeat part a with & = 0.05.

¢. Compare the results of parts a and b. Note that they are
reasonably close for # = 1.2, 1.4, and 1.6 but are quite different
for t+ = 1.8. Also note (from the differential equation) that
the line tangent to the solution is parallel to the y-axis when
y = +2/ \/5 = +1.155. Explain how this might cause such
a difference in the calculated values.

@ 12. Consider the initial value problem
Y =24y, y0) =1

Use Euler’s method with 2 = 0.1, 0.05, 0.025, and 0.01 to explore the
solution of this problem for 0 < ¢ < 1. What is your best estimate
of the value of the solution at ¢+ = 0.87 At ¢ = 1? Are your results
consistent with the direction field in Problem ?

13.  Consider the initial value problem
Y =-ty+0.1y°, y(0) =a,

where « is a given number.
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@ a. Draw a direction field for the differential equation (or
reexamine the one from Problem 7). Observe that there is a
critical value of « in the interval 2 < « < 3 that separates
converging solutions from diverging ones. Call this critical
value ag.

@ b. Use Buler’s method with 4 = 0.01 to estimate c. Do this
by restricting o to an interval [a, b], where b — a = 0.01.

14. Consider the initial value problem
Y=y=1 »0=a

where « is a given number.
@ 2. Draw a direction field for the differential equation. Note
that there is a critical value of o in the interval 0 < o < 1
that separates converging solutions from diverging ones. Call this
critical value a.
@ b. Use Euler’s method with # = 0.01 to estimate co. Do this
by restricting g to an interval [a, b], where b — a = 0.01.
15. Convergence of Euler’s Method. It can be shown that
under suitable conditions on f, the numerical approximation
generated by the Euler method for the initial value problem
y' = f(t,y), y(to) = yo converges to the exact solution as the step
size h decreases. This is illustrated by the following example. Consider
the initial value problem

y=1-t+y, y(t) =y

a. Show that the exact solutionis y = ¢ (1) = (yo—1p) 04,
Ob. Using the Euler formula, show that

yk=(1+h)yk_1+h—htk_1, /c=1,2,.,..

c. Noting that y; = (1 + h)(yy — o) + t;, show by induction
that

Yn=(1+ h)"(yo — 1) +t (19)

for each positive integer 7.

d. Consider a fixed point # > £, and for a given n choose

h = (t —ty) /n. Then t, = ¢ for every n. Note also that z — 0

as n — o0o. By substituting for £ in equation (19) and letting

n — 0o, show that y, — ¢ (¢) asn — oo.

Hint: lim (14+a/n)" = €°.

n—>00

In each of Problems 16 and 17, use the technique discussed in Problem
15 to show that the approximation obtained by the Euler method
converges to the exact solution at any fixed point as & — 0.

16. y=y, y0)=1
17. y'=2y—1, y»0)=1 Hint:yy=(1+2h)/2+1/2

28 The Existence and Uniqueness Theorem

In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first-order initial value problems. Recall that this theorem states that

under certain conditions on f(, y), the initial value problem

y = f(t,y), y(to) =y

has a unique solution in some interval containing the point 7.

(€3]
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4. Are there other solutions of the integral equation (3) besides y = ¢ (1) ?
To show the uniqueness of the solution y = ¢ (#), we can proceed much as in the
example. First, assume the existence of another solution y = 1) (¢). It is then possible to
show (see Problem 18) that the difference ¢ (#) — 1 () satisfies the inequality

|¢(r>—w<r)|sA/0 16(s) — B(s)|ds (30)

for 0 < ¢ < h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem (2) other than the one generated by the method of successive approximations.

In each of Problems | and 2, transform the given initial value problem
into an equivalent problem with the initial point at the origin.
1. dy/dt=1t>*+y* y(1)=2
2. dy/dt=1-y% y(-1)=3
In each of Problems 3 through 4, let ¢ o(#) = 0 and define {¢,()} by
the method of successive approximations.
a. Determine ¢,(7) for an arbitrary value of 7.
@ b. Plot$,(¢) forn =1, ..., 4. Observe whether the iterates
appear to be converging.
c. Express lim ¢,(¢) = ¢ (#) in terms of elementary

n—00
functions; th1at is, solve the given initial value problem.
@ d. Plot |¢(1) — ¢pu(2)| for n = 1, ...,4. For each of
61(1), ..., p4(1), estimate the interval in which it is a

reasonably good approximation to the actual solution.
0 3 y=20+1, »0=0
O 4 y=—y/2+1 0 =0
In each of Problems 5 and 6, let ¢o(#) = 0 and use the method of
successive approximations to solve the given initial value problem.
a. Determine ¢ ,(¢) for an arbitrary value of .
@ b. Plot¢,(¢t) forn =1, ... , 4. Observe whether the iterates
appear to be converging.
¢. Show that the sequence {¢,(#)} converges.
5 y=ty+1, y0) =0
6. ¥y=ry—t, y0)=0
In each of Problems 7 and 8, let ¢o(¢) = 0 and use the method of
successive approximations to approximate the solution of the given
initial value problem.
a. Calculate ¢ (1), ..., ¢3(1).
@ b. Plot ¢(1), ..., ¢s(t). Observe whether the iterates
appear to be converging.
7. ¥ =r+y, y(0)=0
8. y=1-y, »0)=0
In each of Problems 9 and 10, let ¢o(#) = 0 and use the method of
successive approximations to approximate the solution of the given
_ initial value problem.
a. Calculate ¢(2), ..., ¢q4(7), or (if necessary) Taylor
approximations to these iterates. Keep terms up to order six.
@ b. Plot the functions you found in part a and observe whether
they appear to be converging.

9. ¥y =—siny+1, y(0) =0
, 344142

10 ) = =
Y=g Y0 =0

11. Let¢,(x) = x" for0 < x < 1 and show that

{0, 0<x<1,

lim ¢,(x) =
I @)= 14, x=1

n—0o0
This example shows that a sequence of continuous functions may
converge to a limit function that is discontinuous.

12. Consider the sequence ¢,(x) = 2nxe‘”x2, 0<x<l1.
a. Show that lim ¢,(x) =0 for0 < x < 1; hence

n—oo

1
/ lim ¢,(x)dx =0.
0

n—oo

1
b. Show that/ 2nxe*"xzdx =1—e7"; hence
0

1
lim/ oa(x)dx = 1.
0

n—-oco

Thus, in this example,

b b
1im/ qb,,(x)dx#/ lim ¢n(x)dx,

n—00 n—0o0

even though lim ¢,(x) exists and is continuous.
n—oo

O 2%k
t
13. a. Verify that ¢ (1) = E T is a solution of the integral

5 k=1
equation (9).

b. Verify that ¢ (1) is also a solution of the initial value problem
(6).

0 sk
t
¢. Use the fact that E 2l = €' to evaluate ¢ (¢) in terms of

k=0
elementary functions.

d. Solve initial value problem (6) as a separable equation.
e. Solve initial value problem (6) as a first order linear equation.

In Problems 14 through 17, we indicate how to prove that the sequence
{¢,(1)}, defined by equations (4) through (7), converges.
X 2%

t . :
— is a solution of the integral

a. Verify that ¢ () = a

equation (9). =

b. Verify that ¢ () is also a solution of the initial value problem
(6).

[oe]
k
t .
¢. Use the fact that E ha e' to evaluate ¢ (¢) in terms of

k=0
elementary functions.
d. Solve initial value problem (6) as a separable equation.
e. Solve initial value problem (6) as a first order linear equation.

14. If 8f/0y is continuous in the rectangle D, show that there is a
positive constant K such that

|f(t,y1) — f(t, )| < Klyr — »2l, (31

where (¢, y;) and (¢, y;) are any two points in D having the same ¢
coordinate. This inequality is known as a Lipschitz?* condition.
Hint: Hold ¢ fixed and use the mean value theorem on f as a function
of y only. Choose K to be the maximum value of |0f/0y|in D.

15. If¢,_1(¢) and ¢,(r) are members of the sequence {¢, (1)}, use
the result of Problem 14 to show that

| £t 6n(0)) = £ (2, dna(D)] < K|dn(r) = daa ().

16. a. Show thatif || < A, then
[p1()| < Mzl

where M is chosen so that | (¢, y)| < M for (¢, y) in D.
b. Use the results of Problem 15 and part a of Problem 16 to
show that

MK |t?
192() — 6101 < L

¢. Show, by mathematical induction, that

MK11~I £ MKM—-]hn
6n(1) = bn-1 (D] = — Ll .

n!
17. Note that
$a() = ¢1(0) + ($2() — $1(D)) + - + ($a(1) = poa (D).

22The German mathematician Rudolf Lipschitz (1832-1903), professor at the
University of Bonn for many years, worked in several areas of mathematics.
The inequality (i) can replace the hypothesis that 0f/0y is continuous in
Theorem 2.8.1; this results in a slightly stronger theorem.
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a. Show that

[pn(D)] < 1@1(D+102(8) =P 1(D) [+ +1Pu(t) — Py (2)].

b. Use the results of Problem 16 to show that

2 n
I¢n(t)|§%<Kh+(Kh) L) >

2! * n!

¢. Show that the sum in part b converges asn — oo and, hence,
the sum in part a also converges as n — 00. Conclude therefore
that the sequence {¢,(#)} converges since it is the sequence of
partial sums of a convergent infinite series.

18. In this problem we deal with the question of uniqueness of the
solution of the integral equation (3)

@ (1) =/ f(s, (s))ds.
0

a. Suppose that ¢ and ¢/ are two solutions of equation (3). Show
that, for r > 0,

¢(1) —9(1) = /Ot(f(s,qﬁ(S)) — f(s,9(s))) ds.
b. Show that
(1) = ()] = /Ot(f(s,qb(S)) — f(s,%(s))) ds.
¢. Use the result of Problem 14 to show that
o (1) —b(D)] = K/Ot lp(s) —¥(s)|ds,

where K is an upper bound for |0f/dy| in D. This is the same
as equation (30), and the rest of the proof may be constructed as
indicated in the text.

29 First-Order Difference Equations

Although a continuous model leading to a differential equation is reasonable and attractive
for many problems, there are some cases in which a discrete model may be more natural.
For instance, the continuous model of compound interest used in Section 2.3 is only an
approximation to the actual discrete process. Similarly, sometimes population growth may
be described more accurately by a discrete model than by a continuous model. This is true, for
example, of species whose generations do not overlap and that propagate at regular intervals,
such as at particular times of the calendar year. Then the population y,; of the species in the
year n + 1 is some function of n and the population y, in the preceding year; that is,

yn—i—l:f(na))n)’ n=0,1,2, ...

(€]

Equation (1) is called a first-order difference equation. It is first-order because the value
of y,4; depends on the value of y, but not on earlier values y,i, y,—2, and so forth. As
for differential equations, the difference equation (1) is linear if f is a linear function of yy;
otherwise, it is nonlinear. A solution of the difference equation (1) is a sequence of numbers
Y0, Y1, Y2, - - . that satisfy the equation for each n. In addition to the difference equation itself,

there may also be an initial condition

Yo =«

that prescribes the value of the first term of the solution sequence.

@

We now assume temporarily that the function f in equation (1) depends only on y,, but

not on 7. In this case

yn-\—]:f(yn), n=0,12,....

3
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y=px(l-x)

of his analysis of this equation as a model of the population of certain insect species, May
05 suggested that if the growth rate p is too large, then it will be impossible to make effective
long-range predictions about these insect populations. The occurrence of chaotic solutions

in seemingly simple problems has stimulated an enormous amount of research, but many
| questions remain unanswered. It is increasingly clear, however, that chaotic solutions are much
more common than was suspected at first and that they may be a part of the investigation of a
wide range of phenomena.

0.3828 0.8750

9. A solution of #,+; = pu,(1 —u,) for
P .5; period 4. (a) u, versus n; (b) the cobweb diagram shows

= []
the iterates are in a four-cycle. Froptems

&%

| | | g | |

10 20 30 40 50 60 n

1| A solution of u,41 = pun(1 — uy,) for
; a chaotic solution.

It is only comparatively recently that chaotic solutions of difference and differential
equations have become widely known. Equation (20) was one of the first instances of
mathematical chaos to be found and studied in detail, by Robert May?® in 1974. On the basis

23Robert M. May (1936-) was born in Sydney, Australia, and received his education at the University of Sydney with
a doctorate in theoretical physics in 1959. His interests soon turned to population dynamics and theoretical ecology;
the work cited in the text is described in two papers listed in the References at the end of this chapter. He has held
professorships at Sydney, at Princeton, at Imperial College (London), and (since 1988) at Oxford.

rate of 8%, compounded monthly, and also makes additional deposits
of $25 per month. Find the balance in the account after 3 years.

6. A certain college graduate borrows $8000 to buy a car. The
lender charges interest at an annual rate of 10%. What monthly
payment rate is required to pay off the loan in 3 years? Compare your
result with that of Problem 7 in Section 2.3.

7. A homebuyer takes out a mortgage of $100,000 with an interest
rate of 9%. What monthly payment is required to pay off the loan in
30 years? In 20 years? What is the total amount paid during the term
of the loan in each of these cases?

8. If the interest rate on a 20-year mortgage is fixed at 10% and
if a monthly payment of $1000 is the maximum that the buyer can
afford, what is the maximum mortgage loan that can be made under
these conditions?

In each of Problems | through 4, solve the given difference equation 9. A homebuyer wishes to finance the purchase with a $95,000
g'é B in terms of the initial value yo. Describe the behavior of the solution ~ mortgage with a 20-year term. What is the maximum interest rate the
4 asn — 00. buyer can afford if the monthly payment is not to exceed $900?
Lo Yup1 = =09y, The Logistic Difference Equation. Problems 10 through 15 deal with
n+3 the difference equation (21), u,11 = pus(1 —uy).
2 —
o Imn =N 10. Carry out the details in the linear stability analysis of the
3 — (=1 equilibrium solution u, = (p — 1)/p. That is, derive the difference
;' Fail = 0.5 Z” equation (26) in the text for the perturbation v,,.
« Vo1 =03y, + ’ 5 .5
5. An investor deposits $1000 in an account paying interest at a 11. @ a. For p = 3.2, plot or calculate the solution of the logistic

equation (21) for several initial conditions, say, 1y = 0.2, 0.4,
0.6, and 0.8. Observe that in each case the solution approaches a
steady oscillation between the same two values. This illustrates
that the long-term behavior of the solution is independent of the
initial conditions.

D b. Make similar calculations and verify that the nature of the
solution for large n is independent of the initial condition for
other values of p, such as 2.6, 2.8, and 3.4.

12.  Assume that p > 1 in equation (21).

@ a. Draw a qualitatively correct stairstep diagram and thereby
show that if uy < 0, then u, — —o0 asn — oo.

@ b. In a similar way, determine what happens as n — oo if
ug > 1.
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13. The solutions of equation (21) change from convergent
sequences to periodic oscillations of period 2 as the parameter p passes
through the value 3. To see more clearly how this happens, carry out
the following calculations.
@ a. Plot or calculate the solution for p = 2.9, 2.95, and
2.99, respectively, using an initial value u, of your choice in the
interval (0, 1). In each case estimate how many iterations are
required for the solution to get “very close” to the limiting value.
Use any convenient interpretation of what “very close” means in
the preceding sentence.
@ b. Plot or calculate the solution for p = 3.01, 3.05, and
3.1, respectively, using the same initial condition as in part a.
In each case estimate how many iterations are needed to reach a
steady-state oscillation. Also find or estimate the two values in
the steady-state oscillation.

D 14. By calculating or plotting the solution of equation (21) for
different values of p, estimate the value of p at which the solution
changes from an oscillation of period 2 to one of period 4. In the same
way, estimate the value of p at which the solution changes from period
4 to period 8.

D 15. Let p; be the value of p at which the solution of
equation (21) changes from period 25~ to period 2¥. Thus, as noted
in the text, p; = 3, pp = 3.449, and p; = 3.544.
a. Using these values of py, p,, and p3, or those you found in
Problem 14, calculate (py — p1)/(p3 — p2).

Miscellaneous Problems. One of the difficulties in solving first-
order differential equations is that there are several methods of
solution, each of which can be used on a certain type of equation.
It may take some time to become proficient in matching solution
methods with equations. The first 24 of the following problems are
presented to give you some practice in identifying the method or
methods applicable to a given equation. The remaining problems
involve certain types of equations that can be solved by specialized
methods.

In each of Problems | through 24, solve the given differential equation.
If an initial condition is given, also find the solution that satisfies it.

i dy_x3——2y

Todx X

5 dy 1+cosx

T dx T 2-—siny
dy 2x+y

3. =" 0)=0
dx 3+3y?2—x ¥(0)
d

4. —y=3—6x+y—2xy
dx

. dy  2xy+y’+1

Todx x% 4+ 2xy

6. x2 fry=1-y, 1) =0
dx ’

s x?'_y+2y:§i_l}_x_,
dx X

dy  2xy+1

dx ~ x2+2y

¥y(2) =1

d
9. (2Zy+xy—y) + (x%y —2x?) ﬁ =0

b. Let6, = (pn — pu_1)/(pns1— pn). It can be shown that 6,
approaches a limit 6 as n — oo, where § = 4.6692 is known as
the Feigenbaum?* number. Determine the percentage difference
between the limiting value 6 and 65, as calculated in part a.

c. Assume that §3 = & and use this relation to estimate py4, the
value of p at which solutions of period 16 appear.

@ d. By plotting or calculating solutions near the value of p4
found in part c, try to detect the appearance of a period 16
solution.

e. Observe that

pn=p1+(p2—p1) +(p3—p2) + -+ (pn = pu-1)-

Assuming that
pa—ps=(p3—pD8~, ps—pa=(p3—p)62

and so forth, express p, as a geometric sum. Then find the limit
pn asn — oo. This is an estimate of the value of p at which the
onset of chaos occurs in the solution of the logistic equation (21).

24This result for the logistic difference equation was discovered in August
1975 by Mitchell Feigenbaum (1944-), while he was working at the Los
Alamos National Laboratory. Within a few weeks he had established that the
same limiting value also appears in a large class of period-doubling difference
equations. Feigenbaum, who has a doctorate in physics from M.L.T., is now at
Rockefeller University.

10. (x2+y)+(x+e»")d—y=0
dx
dy
1L (r+3)+Gx+2)7 =0, ¥(2) =3

d
12. (ex—|—1)-—y.:y—yex
dx

13 dy e Fcosy-— e? cos x
T dx T —e*siny +2¢ sinx
14. i =% 43y
dx
. d
15. 2oy =2 y0)=3
dx
dy 2 e W3O
16 ¥ ¥ -%-5

dx  2x + 3xy?

17. y =&

dy = 2y*+6xy—4

dx ' 3x2+4xy+3y2
dy

19. t—=+(@+Dy=¢€*
dt+( +Dy=e

20. xy' =y+xe*

d

21, Do 1 Hint Letu = 2.
dx  x2y+y3

22 22y
dx x-—Yy

23 2 2, 4y

23. (3y +2xy)—(2xy+x“)a—=0

24. xy +y—y%¥* =0, y(l)=2

25. Riccati Equations. The equation
d
21% =q1(t) + q2(1)y + g3()y?

is known as a Riccati®® equation. Suppose that some particular solution
y of this equation is known. A more general solution containing one
arbitrary constant can be obtained through the substitution

1
=y (¢ —_
y=y()+ o)
Show that v(¢) satisfies the first-order linear equation
dv
—_—=— 2 — 3.
T (g2 +293y)v — g3

Note that v(¢) will contain a single arbitrary constant.

26. Verify that the given function is a particular solution of the given
Riccati equation. Then use the method of Problem 25 to solve the
following Riccati equations:

a. y=14+2=2ty+y* ) =t

1y 1
b. y=—=—=+y% t) = =
D. Yy 2 2t+y2 n(0) =<
dy 2cos’t—sin’t +y? )
- = 5 t) =sint
dt 2cost n(0)

27. The propagation of a single action in a large population (for
example, drivers turning on headlights at sunset) often depends
partly on external circumstances (gathering darkness) and partly on
a tendency to imitate others who have already performed the action
in question. In this case the proportion y(#) of people who have
performed the action can be described®® by the equation

dy/dt = (1 —y)(x(2) +by), (28)

where x(7) measures the external stimulus and & is the imitation
coefficient.
a. Observe that equation (28) is a Riccati equation and that
y1(#) = 11is one solution. Use the transformation suggested in
Problem 25, and find the linear equation satisfied by v(#).
b. Find v(¢) in the case that x(¢) = at, where a is a constant.
Leave your answer in the form of an integral.

Z5Riccati equations are named for Jacopo Francesco Riccati (1676-1754), a
Venetian nobleman, who declined university appointments in Italy, Austria,
and Russia to pursue his mathematical studies privately at home. Riccati
studied these equations extensively; however, it was Euler (in 1760) who
discovered the result stated in this problem.

26See Anatol Rapoport, “Contribution to the Mathematical Theory of Mass
Behavior: I. The Propagation of Single Acts,” Bulletin of Mathematical
Biophysics 14 (1952), pp. 159-169, and John Z. Hearon, “Note on the Theory
of Mass Behavior,” Bulletin of Mathematical Biophysics 17 (1955), pp. 7-13.

The two books mentioned in Section 2.5 are

Bailey, N. T. J., The Mathematical Theory of Infectious Diseases
and Its Applications (2nd ed.) (New York: Hafner Press,
1975).

Clark, Colin W., Mathematical Bioeconomics (2nd ed.) (New
York: Wiley-Interscience, 1990).
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Some Special Second-Order Differential Equations. Second-order
differential equations involve the second derivative of the unknown
function and have the general form y” = f(¢,y,)’). Usually,
such equations cannot be solved by methods designed for first-order
equations. However, there are two types of second-order equations
that can be transformed into first-order equations by a suitable change
of variable. The resulting equation can sometimes be solved by the
methods presented in this chapter. Problems 28 through 37 deal with
these types of equations.

Equations with the Dependent Variable Missing. For a second-
order differential equation of the form y” = f(z, y), the substitution
v = ¥, v =y leads to a first-order differential equation of the
form v’ = f(t,v).If this equation can be solved for v, then y can be
obtained by integrating dy/dt = v. Note that one arbitrary constant
is obtained in solving the first-order equation for v, and a second is
introduced in the integration for y. In each of Problems 28 through
31, use this substitution to solve the given equation.

28. 2y 42ty —1=0, t>0

29. oy'+y' =1, t>0

30. y'+1t(y)2=0

31. 222y"+ ()3 =2ty, t>0

Equations with the Independent Variable Missing. Consider
second-order differential equations of the form y”= f(y,y’), in
which the independent variable ¢ does not appear explicitly. If
we let v=y’, then we obtain dv/dt= f(y,v). Since the right-
hand side of this equation depends on y and v, rather than on
t and v, this equation contains too many variables. However, if
we think of y as the independent variable, then by the chain
rule, dv/dt=(dv/dy)(dy/dt) =v(dv/dy). Hence the original
differential equation can be written as v(dv/dy) = f(y, v). Provided
that this first-order equation can be solved, we obtain v as a function
of y. A relation between y and ¢ results from solving dy/dt =v(y),
which is a separable equation. Again, there are two arbitrary constants
in the final result. In each of Problems 32 through 35, use this method
to solve the given differential equation.

32. yy'+()*=0

33, y'+y=0
4. yy'— () =0
35. Y+ (y)2=2e7

Hint: In Problem 35 the transformed equation is a Bernoulli equation.
See Problem 23 in Section 2.4.

In each of Problems 36 through 37, solve the given initial value
problem using the methods of Problems 28 through 35.

36. yy'=2, y0) =1 y(0)=2

37. (L+2)y' +2y +3t72=0, y(1)=2, y(1)=-1

A good introduction to population dynamics, in general, is

Frauenthal, J. C., Introduction to Population Modeling (Boston:
Birkhauser, 1980).

A fuller discussion of the proof of the fundamental existence and

uniqueness theorem can be found in many more advanced books

on differential equations. Two that are reasonably accessible to

elementary readers are




