
Boyce/DiPrima/Meade 11th ed, Ch 8.1: Numerical Methods:The 

Euler or Tangent Line Method 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• The methods we have discussed for solving differential 

equations have emphasized analytical techniques, such as 

integration or series solutions, to find exact solutions. 

• However, there are many important problems in engineering 

and science, especially nonlinear ones, to which these 

methods either do not apply or are complicated to use. 

• In this chapter we discuss the use of numerical methods to 

approximate the solution of an initial value problem.   

• We study these methods as applied to single first order 

equations, the simplest context to learn the methods.   

• These procedures extend to systems of first order equations, 

and this is outlined in Chapter 8.5.  



Euler’s Method 

• We will concentrate on the first order initial value problem 

 
 

• Recall that if f and fy are continuous, then this IVP has a 

unique solution y =    (t) in some interval about t0.   

• In Chapter 2.7, Euler’s method was formulated as 

 

 where fn = f (tn, yn).  For a uniform step size h = tn – tn-1, 

Euler’s method becomes 
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Euler’s Method: Programming Outline 

• A computer program for Euler’s method with a uniform step 

size will have the following structure. 

– Step 1.  Define f (t,y) 

– Step 2.  Input initial values t0 and y0 

– Step 3.  Input step size h and number of steps n 

– Step 4.  Output t0 and y0 

– Step 5.  For j from 1 to n do 

– Step 6.      k1 = f (t,y) 

   y = y + h*k1 

   t = t + h 

– Step 7.  Output t and y 

– Step 8.  End 



Initial Value Problem & Exact Solution   (1 of 2) 

• Throughout this chapter, we will use the initial value problem 

below to illustrate and compare different numerical methods. 

 

• Using the methods of Chapter 2.1, it can be shown that the 

general solution to the differential equation is  

  
 

 while the solution to the initial value problem is 
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Exact Solution and Integral Curves    (2 of 2) 

• Thus the exact solution of 

 

 is given by 

 

 

• In the graph above, the direction field for the differential 
equation is given, along with the solution curve for the initial 
value problem (black) and several integral curves (blue) for 
the general solution of the differential equation.  

• The integral curves diverge rapidly from each other, and thus 
it may be difficult for our numerical methods to approximate 
the solution accurately. However, it will be relatively easy to 
observe the benefits of the more accurate methods. 
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Example 1: Euler’s Method   (1 of 3) 

• The table below compares the results of Euler’s method, with 

step sizes h = 0.05, 0.025, 0.01, 0.001, and the exact solution 

values, on the interval 0 ≤ t ≤ 2. We have used the formula    
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t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

Rel Error 

h = 0.05

Rel Error 

h = 0.025

Rel Error 

h = 0.01

Rel Error 

h = 0.001

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00

0.10 1.5475 1.5761 1.5953 1.6076 1.6090 3.82 2.04 0.85 0.09

0.20 2.3249 2.4080 2.4646 2.5011 2.5053 7.20 3.88 1.63 0.17

0.30 3.4334 3.6144 3.7390 3.8207 3.8301 10.36 5.63 2.38 0.25

0.40 5.0185 5.3690 5.6137 5.7755 5.7942 13.39 7.34 3.12 0.32

0.50 7.2902 7.9264 8.3767 8.6771 8.7120 16.32 9.02 3.85 0.40

1.00 45.5884 53.8079 60.0371 64.3826 64.8978 29.75 17.09 7.49 0.79

1.50 282.0719 361.7595 426.4082 473.5598 479.2592 41.14 24.52 11.03 1.19

2.00 1745.6662 2432.7878 3029.3279 3484.1608 3540.2001 50.69 31.28 14.43 1.58



Example 1: Discussion of Accuracy    (2 of 3) 

• The errors are reasonably small when h = 0.001. However, 

2000 steps are required to traverse interval from t = 0 to t = 2.  

Thus considerable computation is needed to obtain reasonably 

good accuracy for Euler’s method.   

• We will see later in this chapter that with other numerical 

approximations it is possible to obtain comparable or better 

accuracy with larger step sizes and fewer computational steps.  

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

Rel Error 

h = 0.05

Rel Error 

h = 0.025

Rel Error 

h = 0.01

Rel Error 

h = 0.001

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00

0.10 1.5475 1.5761 1.5953 1.6076 1.6090 3.82 2.04 0.85 0.09

0.20 2.3249 2.4080 2.4646 2.5011 2.5053 7.20 3.88 1.63 0.17

0.30 3.4334 3.6144 3.7390 3.8207 3.8301 10.36 5.63 2.38 0.25

0.40 5.0185 5.3690 5.6137 5.7755 5.7942 13.39 7.34 3.12 0.32

0.50 7.2902 7.9264 8.3767 8.6771 8.7120 16.32 9.02 3.85 0.40

1.00 45.5884 53.8079 60.0371 64.3826 64.8978 29.75 17.09 7.49 0.79

1.50 282.0719 361.7595 426.4082 473.5598 479.2592 41.14 24.52 11.03 1.19

2.00 1745.6662 2432.7878 3029.3279 3484.1608 3540.2001 50.69 31.28 14.43 1.58



Example 1: Table and Graph   (3 of 3) 

• The table of numerical results along with the graphs of 

several integral curves are given below for comparison.   

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

0.00 1.0000 1.0000 1.0000 1.0000 1.0000

0.10 1.5475 1.5761 1.5953 1.6076 1.6090

0.20 2.3249 2.4080 2.4646 2.5011 2.5053

0.30 3.4334 3.6144 3.7390 3.8207 3.8301

0.40 5.0185 5.3690 5.6137 5.7755 5.7942

0.50 7.2902 7.9264 8.3767 8.6771 8.7120

1.00 45.5884 53.8079 60.0371 64.3826 64.8978

1.50 282.0719 361.7595 426.4082 473.5598 479.2592

2.00 1745.6662 2432.7878 3029.3279 3484.1608 3540.2001



Alternative 1: Forward Difference Quotient 

• To begin to investigate errors in numerical approximations, 

and to suggest ways to construct more accurate algorithms, 

we examine some alternative ways to look at Euler’s method.   

• Let y =    (t) be the solution of y' = f (t, y).  At t = tn, we have 

 

• Using a forward difference quotient for    ', it follows that 

 

 

• Replacing     (tn+1) and     (tn) by their approximate values yn+1 

and yn, and then solving for yn+1, we obtain Euler’s formula: 
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Alternative 2: Integral Equation 

• We could write problem as an integral equation.  That is, 

since y =    (t) is a solution of y' = f (t, y), y(t0) = y0, we have 

 

 or 

 

• Approximating the above integral  

 (see figure on right), we obtain 

 

• Replacing    (tn+1) and     (tn) by their approximate values yn+1 

and yn, we obtain Euler’s formula: 
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Alternative 3: Taylor Series 

• A third approach is to assume the solution y =    (t) has a 

Taylor series about t = tn. Then  

 
  

• Since h = tn+1 – tn and    ' = f (t,    ), it follows that 

 
 

• If the series is terminated after the first two terms, and if we 

replace     (tn+1) and     (tn) by their approximations yn+1 and yn, 

then once again we obtain Euler’s formula: 

 

• Further, using a Taylor series with remainder, we can estimate 

the magnitude of error in this formula (later in this section).  
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Backward Euler Formula 

• The backward Euler formula is derived as follows. Let y =       

          (t) be the solution of y' = f (t, y). At t = tn, we have 

 

• Using a backward difference quotient for     ', it follows that 

 

 

• Replacing     (tn) and     (tn -1) by their approximations yn and 

yn-1, and solving for yn, we obtain the backward Euler formula 

 

• Note that this equation implicitly defines yn+1, and must be 

solved in order to determine the value of yn+1.  
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Example 2: Backward Euler Formula  (1 of 4) 

• For our initial value problem  

 

 the backward Euler formula 

 

 becomes 

 

• For h = 0.05 on the interval 0 ≤ t ≤ 2, our first two steps are:  

 

 

• The results of these first two steps of the backward Euler 

method are graphed above. 
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Example 2: Numerical Results   (2 of 4) 

• The table below compares the results of the backward Euler 

method, with step sizes h = 0.05, 0.025, 0.01, 0.001, and the 

exact solution values, on the interval 0 ≤ t ≤ 2.   

1)0(,41  yyty

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

Rel Error 

h = 0.05

Rel Error 

h = 0.025

Rel Error 

h = 0.01

Rel Error 

h = 0.001

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00

0.10 1.6930 1.6474 1.6237 1.6104 1.6090 5.22 2.39 0.91 0.09

0.20 2.7617 2.6211 2.5491 2.5096 2.5053 10.23 4.62 1.75 0.17

0.30 4.4175 4.0921 3.9286 3.8396 3.8301 15.34 6.84 2.57 0.25

0.40 6.9906 6.3210 5.9908 5.8131 5.7942 20.65 9.09 3.39 0.33

0.50 10.9970 9.7050 9.0801 8.7473 8.7120 26.23 11.40 4.23 0.41

1.00 103.0617 80.4028 70.4524 65.4200 64.8978 58.81 23.89 8.56 0.80

1.50 959.4424 661.0073 542.1243 485.0583 479.2592 100.19 37.92 13.12 1.21

2.00 8934.0696 5435.7294 4172.7228 3597.4478 3540.2001 152.36 53.54 17.87 1.62



Example 2: Discussion of Accuracy    (3 of 4) 

• The errors here are larger than for regular Euler method, 

although for small values of h the differences are small.   

• The approximations consistently overestimate exact values, 

while Euler method approximations underestimated them.  

• We will see later in this chapter that the backward Euler 

method is the simplest example of backward differentiation 

methods, which are useful for certain types of equations. 

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

Rel Error 

h = 0.05

Rel Error 

h = 0.025

Rel Error 

h = 0.01

Rel Error 

h = 0.001

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00

0.10 1.6930 1.6474 1.6237 1.6104 1.6090 5.22 2.39 0.91 0.09

0.20 2.7617 2.6211 2.5491 2.5096 2.5053 10.23 4.62 1.75 0.17

0.30 4.4175 4.0921 3.9286 3.8396 3.8301 15.34 6.84 2.57 0.25

0.40 6.9906 6.3210 5.9908 5.8131 5.7942 20.65 9.09 3.39 0.33

0.50 10.9970 9.7050 9.0801 8.7473 8.7120 26.23 11.40 4.23 0.41

1.00 103.0617 80.4028 70.4524 65.4200 64.8978 58.81 23.89 8.56 0.80

1.50 959.4424 661.0073 542.1243 485.0583 479.2592 100.19 37.92 13.12 1.21

2.00 8934.0696 5435.7294 4172.7228 3597.4478 3540.2001 152.36 53.54 17.87 1.62



Example 2: Table and Graph   (4 of 4) 

• The table of numerical results along with the graphs of 

several integral curves are given below for comparison.   

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

0.00 1.0000 1.0000 1.0000 1.0000 1.0000

0.10 1.6930 1.6474 1.6237 1.6104 1.6090

0.20 2.7617 2.6211 2.5491 2.5096 2.5053

0.30 4.4175 4.0921 3.9286 3.8396 3.8301

0.40 6.9906 6.3210 5.9908 5.8131 5.7942

0.50 10.9970 9.7050 9.0801 8.7473 8.7120

1.00 103.0617 80.4028 70.4524 65.4200 64.8978

1.50 959.4424 661.0073 542.1243 485.0583 479.2592

2.00 8934.0696 5435.7294 4172.7228 3597.4478 3540.2001



Errors in Numerical Approximations 

• The use of a numerical procedure, such as Euler’s formula, to 

solve an initial value problem raises questions that must be 

answered before the approximate numerical solution can be 

accepted as satisfactory.  

• For example, as the step size h tends to zero, do the values y1, 

y2, …, yn, … converge to the values of the actual solution? 

• Also, an estimation of error in computing yn is important. Two 

fundamental sources of error are the following. 

– Global truncation error, due to approximate formulas used to determine 

the values of yn, and approximate data input into these formulas. 

– Round-off error, due to finite precision arithmetic.  



Convergence 

• As the step size h tends to zero, do the values y1, y2, …, yn, … 

converge to the values of the actual solution, for each t ? 

• If the approximations converge to the solution, how small a 

step size is needed to guarantee a given level of accuracy? 

– We want to use a step size that is small enough to ensure the required 

accuracy, but not too small. 

– An unnecessarily small step size slows down calculations, makes them 

more expensive, and in some cases may even cause a loss of accuracy.  

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

Rel Error 

h = 0.05

Rel Error 

h = 0.025

Rel Error 

h = 0.01

Rel Error 

h = 0.001

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00

0.10 1.5475 1.5761 1.5953 1.6076 1.6090 3.82 2.04 0.85 0.09

0.20 2.3249 2.4080 2.4646 2.5011 2.5053 7.20 3.88 1.63 0.17

0.30 3.4334 3.6144 3.7390 3.8207 3.8301 10.36 5.63 2.38 0.25

0.40 5.0185 5.3690 5.6137 5.7755 5.7942 13.39 7.34 3.12 0.32

0.50 7.2902 7.9264 8.3767 8.6771 8.7120 16.32 9.02 3.85 0.40

1.00 45.5884 53.8079 60.0371 64.3826 64.8978 29.75 17.09 7.49 0.79

1.50 282.0719 361.7595 426.4082 473.5598 479.2592 41.14 24.52 11.03 1.19

2.00 1745.6662 2432.7878 3029.3279 3484.1608 3540.2001 50.69 31.28 14.43 1.58



Global and Local Truncation Error 

• Assume here that we can carry out all computations with 
complete accuracy. That is, we can retain an infinite number of 
decimal places with no round-off error. 

• At each step in a numerical method, the solution value     (tn) is 
approximated by the value yn .   

• The global truncation error is defined as  

   En =     (tn) – yn   

• This error arises from two causes:  

1.  At each step we use an approximate formula to determine yn+1.   

2.  The input data at each step are only approximately correct, since    (tn)   
in general does not equal yn . 

• If we assume that yn =     (tn) at step n, then the only error at 
step n +1 is due to the use of an approximate formula. This 
error is known as the local truncation error en.  
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Round-Off Error 

• Round-off error occurs from carrying out computations in 

arithmetic with only a finite number of digits. 

• As a result, the value of yn, derived from an approximation 

formula, is in turn approximated by its computed value Yn.  

• Thus round-off error is defined as  

   Rn = yn – Yn. 

• Round-off error is somewhat random in nature. It depends on 

type of computer used, the sequence in which computations 

are carried out, the method of rounding off, etc. Therefore, an 

analysis of round-off error is beyond the scope of this course. 



Total Error 

• From the discussion on the previous slides, we see that at each 

step the solution value     (tn) is approximated by the value yn, 

which in turn is approximated by its computed value Yn.  

• The total error can therefore be taken as Tn =     (tn) – Yn. 

• From the triangle inequality, |a + b| ≤ |a| + |b|, it follows that 

 

 

 

• Thus the total error is bounded by the sum of the absolute 

values of the truncation and round-off errors.    

• We will limit our discussion primarily to local truncation error.  

f(tn )-Yn = f(tn )- yn + yn -Yn

£ f(tn )- yn + yn -Yn

£ En + Rn
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Local Truncation Error for Euler Method  (1 of 2) 

• Assume that y =    (t) is a solution to    ' = f (t,    ), y(t0) = y0 and 

that f,  ft  and fy are continuous. Then    '' is continuous, where 

 

• Using a Taylor polynomial with a remainder to expand    (t) 

about t = tn, we have  

 

 where    n  is some point in the interval tn <    n  < tn+1.   

• Since h = tn+1 – tn and    ' = f (t,    ), it follows that 
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Local Truncation Error for Euler Method  (2 of 2) 

• From the previous slide, we have 

 
 

• Recalling the Euler formula  

 

 it follows that 

 
 

• To compute the local truncation error en+1 , we take yn =    (tn) 

and hence 
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Uniform Bound for Local Truncation Error 

• Thus the local truncation error is proportional to the square of 

the step size h, and the proportionality constant depends on     

        ''. 

 
 

• Thus en+1  depends on n, and hence is typically different for 

each step. A uniform bound, valid on an interval [a, b], is 

 
 

• This bound represents the worst possible case, and may well 

be a considerable overestimate of the actual truncation error in 

some parts of the interval [a, b]. 
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Step Size and Local Truncation Error Bound 

• From the previous slide we have 

 
 

• One use of this bound is to choose a step size h that will result 

in a local truncation error no greater than some given tolerance 

level    . That is, we choose h such that 

 

 

• It can be difficult estimating |    ''(t)| or M.  However, the 

central fact is that en  is proportional to h2. Thus if h is reduced 

by a factor of ½, then the error is reduced by ¼, and so on.  
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Estimating Global Truncation Error 

• Using the local truncation error en , we can make an intuitive 

estimate for the global truncation error En at a fixed T > t0. 

• Taking n steps, from t0 to T = t0 + nh, the error at each step is 

at most Mh2/2, and hence error in n steps is at most nMh2/2.   

• Thus the global truncation error En for the Euler method is 

 
 

• This argument is not complete since it does not consider the 

effect an error at one step will have in succeeding steps.   

• Nevertheless, it can be shown that for a finite interval, En is 

bounded by a constant times h, and hence Euler’s method is a 

first order method.   
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Example 2 Extension: 

Local Truncation Error    (1 of 4) 

• Consider again our initial value problem  

 

• Using the solution    (t), we have  

 

• Thus the local truncation error en+1  at step n + 1 is given by 

 

 

• The presence of the factor 19 and the rapid growth of e4t 

explains why the numerical approximations in this section 

with h = 0.05 were not very accurate.  

en+1 =
¢¢j (tn )

2
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19e4 tn

2
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Example 2 Extension:  

Error in First Step  (2 of 4) 

• For h = 0.05, the error in the first step is  

 
 

• Since 1 < e4  0 < e4(0.05) = e 0.02, it follows that 

 

 

• It can be shown that the actual error is 0.02542.  

• Similar computations give the following bounds:   
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Example 2 Extension:  

Error Bounds & Step Size   (3 of 4) 

• We have the following error bounds en  for h = 0.05: 

 

 

• Note that the error near t = 2 is close to 2500 times larger than 

it is near t = 0.   

• To reduce local truncation error throughout 0 ≤ t ≤ 2, we must 

choose a step size based on an analysis near t = 2.   

• For example, to achieve en  < 0.01 throughout 0 ≤ t ≤ 2,  note 

that M = 19e4(2), and hence the required step size h is 
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Example 2 Extension:  

Error Tolerance & Uniform Step Size   (4 of 4) 

• Thus, in order to achieve en  < 0.01 throughout 0 ≤ t ≤ 2, the 

required step size h = 0.00059. Comparing this with a similar 

calculation over 0 ≤ t ≤ 0.05, we obtain h = 0.02936.   

• Some disadvantages in using a uniform step size is that h is 

much smaller than necessary over much of the interval, and the 

numerical method will then require more time and calculations 

than necessary. Also, as a result, there is a possibility of more 

unacceptable round-off errors.  

• Another to approach to keeping within error tolerance is to 

gradually decrease h as t increases. Such a procedure is called 

an adaptive method, and is discussed in Chapter 8.2. 
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Euler Method 
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• Consider the initial value problem y' = f (t, y), y(t0) = y0, with 

solution    (t). 

• For many problems, Euler’s method requires a very small step 

size to produce sufficiently accurate results. In the next three 

sections, we will discuss several more efficient methods.  

• In this section, we examine the Improved Euler Formula, or 

Heun formula. This method better approximates the integral 

introduced in Chapter 8.1, where we had 
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Improved Euler Method 

• Consider again the integral equation  

 
 

• Approximating the integrand f (tn,   (tn)) with the average of 

its values at the two endpoints (see graph below), we obtain  

 

 

• Replacing    (tn+1) and    (tn) by yn+1 and yn, we obtain 
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Improved Euler Method 

• Our formula defines yn+1 implicitly, instead of explicitly:  

 

 

• Replacing yn+1 by its value from the Euler formula 

 

 we obtain the improved Euler formula 

 

 

 where fn = f (tn, yn) and tn+1 = tn + h.    

yn+1 = yn +
f tn ,yn( )+ f tn+1,yn+1( )
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Error Estimates 

• The improved Euler formula is 

 

 

• It can be shown that the local truncation error is proportional 
to h3. This is an improvement over the Euler method, where 

the local truncation error is proportional to h2.  

• For a finite interval, it can be shown that the global truncation 
error is bounded by a constant times h2. Thus the improved 
Euler method is a second order method, whereas Euler’s 
method is a first order method. 

• This greater accuracy comes at expense of more computational 
work, as it is now necessary to evaluate f (t, y) twice in order to 
go from tn to tn+1. 
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Comparison of Euler and Improved Euler 

Computations 

• The Euler and improved Euler formulas are given by, 
respectively, 

 

 

• The improved Euler method requires two evaluations of f at 
each step, whereas the Euler method requires only one.   

• This is significant because typically most of the computing 
time in each step is spent evaluating f.  

• Thus, for a given step size h, the improved Euler method 
requires twice as many evaluations of f as the Euler method. 

• Alternatively, the improved Euler method for step size h 
requires the same number of evaluations of f as the Euler 
method with step size h/2.     
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Trapezoid Rule 

• The improved Euler formula is 

 

 

• If f (t, y) depends only on t and not on y, then we have 

 
 

 which is the trapezoid rule for numerical integration. 
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Example 1: Improved Euler Method  (1 of 3) 

• For our initial value problem  

 

 we have 

 

  

• Further,  

 

• For h = 0.025, it follows that 

 

• Thus 
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Example 1: Second Step  (2 of 3) 

• For the second step, we have  

 

  

• Also, 

 

 and 

 

• Therefore  
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Example 1: Numerical Results   (3 of 3) 

• Recall that for a given step size h, the improved Euler formula 

requires the same number of evaluations of f as the Euler 

method with step size h/2. 

• From the table below, we see that the improved Euler method 

is more efficient, and yields substantially better results or 

requiring much less total computing effort, or both.  
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Programming Outline 

• A computer program for the improved Euler’s method with 

a uniform step size will have the following structure. 

– Step 1.  Define f (t,y) 

– Step 2.  Input initial values t0 and y0 

– Step 3.  Input step size h and number of steps n 

– Step 4.  Output t0 and y0 

– Step 5.  For j from 1 to n do 

– Step 6.      k1 = f (t, y) 

   k2 = f (t + h, y + h*k1)  

   y = y + (h/2)*(k1 + k2)  

   t = t + h 

– Step 7.  Output t and y 

– Step 8.  End 



Variation of Step Size (1 of 2) 

• In Chapter 8.1 we mentioned that adaptive methods adjust the 

step size as calculations proceed, so as to maintain the local 

truncation error at roughly a constant level. We outline such a 

method here. 

• Suppose that after n steps, we have reached the point (tn, yn).   

• We next choose an h and then calculate yn+1.   

• To estimate the error in calculating yn+1, we can use a more 

accurate method to calculate yn+1 starting from (tn, yn). For 

example, if we used the Euler method for original calculation, 

then we might repeat it with the improved Euler method.  

• The difference of the two calculated values for yn+1 is an 

estimate dn+1 of the error in the original method.  



Variation of Step Size (2 of 2) 

• If dn+1 is different than the error tolerance    , then we adjust 
the step size and repeat the calculation of yn+1.  

• The key to making this adjustment efficiently is knowing how 
the local truncation error en+1 depends on the step size h.  

• For the Euler method, en+1 is proportional to h2, so to bring the 
estimated error dn+1 down (or up) to the tolerance level    , we 
must multiply the original step size h by the factor            . 

• Modern adaptive codes for solving differential equations 
adjust the step size in very much this way as they proceed, 
although more accurate formulas than the Euler and improved 
Euler formulas are used. Consequently, efficiency and 
accuracy are achieved by using very small steps only where 
really needed.  

e
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Extension of Example 1: Adaptive Euler 

Method  (1 of 3) 

• Consider our initial value problem  

 

• To prepare for the Euler and improved Euler methods,  

 

• Thus after one step of the Euler method for h = 0.1, we have 

 

 while for the improved Euler method,  

 

 and hence 

 

• Thus d1 = 1.595 – 1.5 = 0.095. 
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Extension of Example 1: Adaptive Euler 

Method  (2 of 3) 

• Thus d1 = 0.095. If our error tolerance is     = 0.05, then we 

adjust the step size h = 0.1 downward by the factor  

 

• To be safe, we round downward and take h = 0.07. Then from 

the Euler formula, we obtain 

 

 while for the improved Euler method,  

 

 and hence 
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Extension of Example 1: Adaptive Euler 

Method  (3 of 3) 

• We can follow this same procedure at each step, and thereby 

keep the local truncation error roughly constant throughout the 

entire numerical process. 

• Note d1 = 0.04655 is an estimate of the error in computing y1, 

which in our case can be computed using the exact solution 

 

• Since t0 = 0 and h = 0.07, it follows that t1 = 0.07. We then 

compute    (0.07) ≤ 1.4012, and hence the actual error is 
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The Runge-Kutta Method 
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• Consider the initial value problem y' = f (t, y), y(t0) = y0, with 

solution    (t). 

• We have seen that the local truncation errors for the Euler, 

backward Euler, and improved Euler methods are proportional 

to h2, h2, and h3, respectively.  

• In this section, we examine the Runge-Kutta method, whose 

local truncation error is proportional to h5.    

• As with the improved Euler approach, this method better 

approximates the integral introduced in Ch 8.1, where we had 
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Runge-Kutta Method 

• The Runge-Kutta formula approximates the integrand  

  f (tn,    (tn)) with a weighted average of its values at the two 

endpoints and at the midpoint. It is given by 

 
  

 where 

 

 

 

 

• Global truncation error is bounded by a constant times h4 for a 

finite interval, with local truncation error proportional to h5.  
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Simpson’s Rule 

• The Runge-Kutta formula is 

 

 where 

 

 

 

 

• If f (t, y) depends only on t and not on y, then we have 

 
 

 which is Simpson’s rule for numerical integration. 
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Programming Outline: Runge-Kutta Method 

• Step 1.  Define f (t,y) 

• Step 2.  Input initial values t0 and y0 

• Step 3.  Input step size h and number of steps n 

• Step 4.  Output t0 and y0 

• Step 5.  For j from 1 to n do 

• Step 6.      k1 = f (t, y) 

   k2 = f (t + 0.5*h, y + 0.5*h*k1) 

   k3 = f (t + 0.5*h, y + 0.5*h*k2) 

   k4 = f (t + h, y + h*k3)  

   y = y + (h/6)*(k1 + 2*k2 + 2*k3 + k4)  

   t = t + h 

• Step 7.  Output t and y 

• Step 8.  End 



Example 1: Runge-Kutta Method  (1 of 2) 

• Recall our initial value problem  

 

• To calculate y1 in the first step of the Runge-Kutta method for 

h = 0.2, we start with 

 

  

 
 

• Thus 

k01 = f (0,1) = 5;
1

2
hk01 = 0.5,

k02 = f (0 + 0.1,1+ 0.5) = 6.9;
1

2
hk02 = 0.69,

k03 = f (0 + 0.1,1+ 0.69) = 7.66; hk03 = 1.532,

k04 = f (0 + 0.2,1+1.532) = 10.928.
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Example 1: Numerical Results   (2 of 2) 

• The Runge-Kutta method (h = 0.05) and the improved Euler 

method (h = 0.025) both require a total of 160 evaluations of 

f. However, we see that the Runge-Kutta is far more accurate. 

• The Runge-Kutta method (h = 0.2) requires 40 evaluations of 

f and the improved Euler method requires 160 evaluations of 

f, and yet the accuracy at t = 2 is similar.  
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Adaptive Runge-Kutta Methods 

• The Runge-Kutta method with a fixed step size can suffer 

from widely varying local truncation errors.   

• That is, a step size small enough to achieve satisfactory 

accuracy in some parts of the interval of interest may be 

smaller than necessary in other parts of the interval.  

• Adaptive Runge-Kutta methods have been developed, 

resulting in a substantial gain in efficiency.   

• Adaptive Runge-Kutta methods are a very powerful and 

efficient means of approximating numerically the solutions of 

a large class of initial value problems, and are widely available 

in commercial software packages.  
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Multistep Methods 
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• Consider the initial value problem y' = f (t, y), y(t0) = y0, with 

solution    (t). 

• So far we have studied numerical methods in which data at 

the point tn is used to approximate    (tn+1).  Such methods are 

called one-step methods.   

• Multistep methods use previously obtained approximations 

of     (t) to find the next approximation of    (t). That is, the 

approximations y1, …, yn at t1, …, tn, respectively, may be 

used to find yn+1 at tn+1.  

• In this section we discuss two types of multistep methods: 

Adams methods and backward differentiation formulas. 

• For simplicity, we will assume the step size h is constant.  
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Adams Methods 

• Recall that 

 
 

• The basic idea of an Adams method is to approximate     '(t) in 

the above integral by a polynomial Pk(t) of degree k.   

• The coefficients of Pk(t) are determined by using the k +1 

previously calculated data points.  

• For example, for P1(t) = At + B, we use (tn-1, yn-1) and (tn, yn), 

with P1(tn-1) = f (tn-1, yn-1) = fn-1 and P1(tn) = f (tn, yn) = fn.   

• Then 

tdttt
n

n

t

t
nn 





1

)()()( 1 

   111

11 1
,

1












nnnnnn

nn

nn
tftf

h
Bff

h
A

fBAt

fBAt

f



Second Order Adams-Bashforth Formula 

• From the discussion on the previous slide, it follows that 

 
 

 evaluates to 

 

• After simplifying, we obtain  

 

• This equation is the second order Adams-Bashforth formula. 
It is an explicit formula for yn+1 in terms of yn and yn-1, and has 
local truncation error proportional to h3.   

• We note that when a constant polynomial P0(t) = A is used, the 
first order Adams-Bashforth formula is just Euler’s formula 
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Fourth Order Adams-Bashforth Formula 

• More accurate Adams formulas can be obtained by using a 

higher degree polynomial Pk(t) and more data points.  

• For example, the coefficients of a 3rd degree polynomial P3(t) 

are found using (tn, yn), (tn-1, yn-1), (tn-2, yn-2), (tn-3, yn-3).   

• As before, P3(t) then replaces     '(t) in the integral equation 

  
 to obtain the fourth order Adams-Bashforth formula  

 

• The local truncation error of this method is proportional to h5.   
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Second Order Adams-Moulton Formula 

• A variation on the Adams-Bashforth formulas gives another set 

of formulas called the Adams-Moulton formulas. 

• We begin with the second order case, and use a first degree  

polynomial Q1(t) =                to approximate     '(t).   

• To determine                 , we now use (tn, yn) and (tn+1, yn+1):  

 

 

• As before, Q1(t) replaces     '(t) in the integral equation to 

obtain the second order Adams-Moulton formula  

 

• Note that this equation implicitly defines yn+1. The local 

truncation error of this method is proportional to h3. 
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Fourth Order Adams-Moulton Formula 

• The first order Adams-Moulton formula is just the backwards 

Euler formula. 

• More accurate higher order formulas can be obtained using a 

polynomial of higher degree.   

• For example, the fourth order Adams-Moulton formula is 

 

 

• The local truncation error of this method is proportional to h5. 

yn+1 = yn +
h

24
9 fn+1 +19 fn - 5 fn-1 + fn-2( )



Comparison of Methods 

• The Adams-Bashforth and Adams-Moulton formulas both have 
local truncation errors proportional to the same power of h, but 
moderate order Adams-Moulton formulas are more accurate.   

• For example, for the fourth order methods, the proportionality 
constant on h5 for the Adams-Moulton formula is less than 1/10 
that of the Adams-Bashforth formula. 

• The Adams-Bashforth formula explicitly defines yn+1 and thus 
is faster than the more accurate Adams-Moulton formula, 
which implicitly defines yn+1. 

• Which method to use depends on whether, by using the more 
accurate method, the step size can be increased to reduce the 
number of computations required.  

• A predictor-corrector method combines both approaches. 



Predictor-Corrector Method 

• Consider the fourth order Adams-Bashforth and Adams-

Moulton formulas, respectively:  

 

 

• Once yn-3, yn-2, yn-1, yn are known, we compute fn–3, fn–2, fn–1, fn 

and use Adams-Bashforth formula (predictor) to obtain yn+1.   

• We then compute fn+1, and use the Adams-Bashforth formula 

(corrector) to obtain an improved value of yn+1.   

• We can continue to use corrector formula if the change in yn+1 

is too large. However, if it is necessary to use the corrector 

formula more than once or perhaps twice, the step size h is 

likely too large and should be reduced.  
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Starting Values for Multistep Methods 

• In order to use any of the multistep methods, it is necessary to 

first to calculate a few yk by some other method.   

• For example, the fourth order Adams-Moulton method requires 

values for y1 and y2, while the fourth order Adams-Bashforth 

method also requires a value for y3.  

• One way to proceed is to use a one-step method of comparable 

order to calculate the necessary starting values.   

• For example, for a fourth order multistep method, use a fourth 

order Runge-Kutta method to calculate the starting values.  

• Another approach is to use a low order method with a very 

small h to calculate y1, and then to increase gradually both the 

order and step size until enough starting values are obtained. 



Example 1: Initial Value Problem    (1 of 6) 

• Recall our initial value problem  

 

• With a step size of h = 0.1, we will use the methods of this 

section to approximate the solution solution     (t) at t = 0.4.  

• We use the Runge-Kutta method to find y1, y2 and y3. These 

values are given in Table 8.3.1. The corresponding values for f 

(t, y) = 1 – t – 4y  can then be computed, with results below. 
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Example 1: Adams-Bashforth Method   (2 of 6) 

• The values of fk from the previous page are 

 

• Using the fourth order Adams-Bashforth formula, we have 

 

• The exact value of     (0.4) can be found using the solution, 

 

 and hence the error in this case is -0.0105955, with a relative 

error of 0.183%.   
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Example 1: Adams-Moulton Method   (3 of 6) 

• Recall the fourth order Adams-Moulton formula: 

 

• Using the previously calculated values of fk 

 

 the fourth order Adams-Moulton formula reduces to 

 

• Solving this linear implicit equation for y4, we obtain  

 

• Recall that the exact value to seven decimal places is  

 

• The error in this case is therefore 0.0000416, with a relative 
error of 0.0072%.   
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Example 1: Predictor-Corrector Method  (4 of 6) 

• Recall our fourth order equations: 

 

 

• Using the first equation, we predict y4 = 5.7836305, as before.  

• Then f4 = 1 – 0.4 + 4(5.7836305) = 23.734522. 

• Using the second equation as a corrector, we obtain  

 

• The error is –0.0015539, with a relative error of 0.02682%.   

• The error for the corrected y4 has been reduced by a factor of 

approximately 7 when compared to the error of predicted y4. 
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Example 1: Summary of Results (5 of 6) 

• The Adams-Bashforth method is the simplest and fastest of 

these methods, but is also the least accurate. 

• Using the Adams-Moulton formula as a corrector increases 

the amount of calculation required, but still is explicit in y4.   

• For this problem, the error in corrected value of y4 is reduced 

by a factor of 7 when compared to the error in predicted y4. 

• The Adams-Moulton method yields the best result, with an 

error that is about 1/40 the error of predictor-corrector result.  

• The Adams-Moulton method is implicit in y4, and hence an 

equation must be solved at each step. For this problem, the 

equation was linear with y4 easily found. In other problems, 

this part of the procedure may be more time consuming.  



Example 1:  

Comparison with Runge-Kutta Method (6 of 6) 

• The Runge-Kutta method for h = 0.1 gives y4 = 5.7927853, as 

seen in Table 8.3.1.  

• The corresponding error is –0.0014407, with a relative error 

of 0.02686%.  

• Thus the Runge-Kutta method is comparable in accuracy to 

the predictor-corrector method for this example.  



Backward Differentiation Formulas 

• Another type of multistep method uses a polynomial Pk(t) to 

approximate the solution     (t) instead of its derivative     '(t).   

• We then differentiate Pk(t) and set Pk'(tn+1) = f(tn+ 1, yn+1)  to 

obtain an implicit formula for yn+1.  

• These are called backward differentiation formulas. 

• The simplest case uses a first degree P1(t) = At + B.   

• The values of A and B are chosen to match the computed 

solution values yn and yn+1: 

 

 

 

• Also, we set Pk'(tn+1) = A = f(tn+ 1, yn+1), as mentioned above.  
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Backward Differentiation: First Order Formula 

• We thus have A = f (tn+ 1, yn+1) and  
 

 

 
 

• From these two equations for A, it follows that 

 
 

• Note that this is the backward Euler formula.  
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Higher Order Formulas 

• By using higher order polynomials and correspondingly more 

data points, backward differentiation formulas of any order 

can be obtained.   

• The second order formula is 

 
 

• The local truncation error of this method is proportional to h3.  

• The fourth order formula is 

 
 

• The local truncation error of this method is proportional to h5. 
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Example 2: Fourth Order  

Backward Differentiation Method    (1 of 2) 

• Recall our initial value problem  

 

• Use the fourth order backward differentiation formula with    

h = 0.1 to approximate the solution solution    (t) at t = 0.4.  

• From Example 1, we have the following data: 

 

• Thus 

 

 

 and hence 
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Example 2: Results    (2 of 2) 

• Our fourth order backward differentiation approximation is  

 

• Recall that the exact value to seven decimal places is  

 

• The error in this case is therefore 0.0025366, with a relative 

error of 0.0438%.   

• These results are somewhat better than the Adams-Bashforth 

method, but not as good as using the predictor-corrector 

method, and not nearly as good as the result using the Adams-

Moulton method.  
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Comparison of  

One-Step and Multistep Methods    (1 of 2) 

• In comparing methods, we first consider the number of 

evaluations of f at each step:  

– The fourth order Runge-Kutta method requires four calculations of f. 

– The fourth order Adams-Bashforth method, once past the starting 

values, requires only one evaluation of f. 

– The predictor-corrector method requires two evaluations of f. 

• Thus, for a given step size h, the latter two methods may be 

faster than Runge-Kutta. However, if Runge-Kutta is more 

accurate and can therefore use fewer steps, then the difference 

in speed will be reduced and perhaps eliminated.  

• The Adams-Moulton and backward differentiation formulas 

also require that the difficulty in solving the implicit equation 

at each step be taken into account.   



Comparison of  

One-Step and Multistep Methods    (2 of 2) 

• All multistep methods have the possible disadvantage that 

errors in earlier steps can feed back into later calculations. 

• On the other hand, the underlying polynomial approximations 

in multistep methods make it easy to approximate the solution 

at points between the mesh points, if desirable.  

• Multistep methods have become popular largely because it is 

relatively easy to estimate the error at each step and adjust the 

order or the step size to control it.    
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Systems of First Order Equations 
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• Recall from Section 7.1 that a higher order equation can 

always be reduced to a system of first order equations. 

• In this section, we examine how the numerical methods of this 

chapter can be applied to systems of first order equations. 

• For simplicity, we consider the system below. 

 

• The functions f and g are assumed to satisfy the conditions of 

Theorem 7.1.1, so that the initial value problem above has a 

unique solution in some interval of the t-axis containing t0. 

• We seek approximate values xn and yn of the solution x =    (t), 

y =     (t), at the points tn = t0 + nh, for n ≥ 1. 
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Vector Notation 

• In vector notation, the initial value problem 

 

 can be written as  

 

 where 

 

 

• The numerical methods of the previous sections can be readily 

generalized to handle systems of two or more equations.  

• To accomplish this, we simply replace x and f in the numerical 

formulas with x and f, as illustrated in the following slides.  
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Euler Method 

• Recall the Euler method for a uniform step size h:  

 

• In vector notation, this can be written as  

 

 or 

 

 

• The initial conditions are used to determine f0, the tangent 
vector to the graph of the solution x =     (t) in the xy-plane. 

• We move in the direction of this tangent vector f0 for a time 
step h in order to find x1, then find a new tangent vector f1, 
move along it for a time step h in order to find x2, and so on. 
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Runge-Kutta Method 

• In a similar way, the Runge-Kutta method can be extended to a 

system of equations. The vector formula is given by 

 
  

 where 

 

 

• To help better understand the notation here, observe that 
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Example 1: Exact Solution  (1 of 4) 

• Consider the initial value problem  

 
 

• We will use Euler’s method with h = 0.1 and the Runge-Kutta 

method with h = 0.2 to approximate the solution at t = 0.2, 

and then compare results with the exact solution: 

 

 

• For this problem, note that fn = xn - 4 yn and gn = - xn + yn, and 

that f and g are independent of t, with   
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Example 1: Euler Method  (2 of 4) 

• We have x0 = 1, y0 = 0, and  

   

  

• Using the Euler formulas with h = 0.1, 

 

 

• The values of the exact solution, correct to eight digits, are 

 

• Thus the Euler method approximation errors are 0.0704 and 

0.0308, respectively, with corresponding relative errors of 

about 5.3% and 12.3%.  
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Example 1: Runge-Kutta Method  (3 of 4) 

• Using the Runge-Kutta formulas for kni ,  

 

 

 and recalling that x0 = 1, y0 = 0, we obtain, for h = 0.2, 

 

 

 

 

 
• The errors for x1 and y1 are 0.000358 and 0.000180, respectively, 

with relative errors of about 0.0271% and 0.072%.  
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Example 1: Summary  (4 of 4) 

• This example again illustrates the great gains in accuracy that 

are possible by using a more accurate approximation method, 

such as the Runge-Kutta method. 

• In the calculations for this example, the Runge-Kutta method 

requires only twice as many function evaluations as the Euler 

method, but the error in the Runge-Kutta method is about 200 

times less than in the Euler method. 
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More on Errors; Stability 
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• In Section 8.1 we discussed some ideas related to the errors 

that can occur in a numerical approximation to the solution of  

the initial value problem y' = f (t, y), y(t0) = y0. 

• In this section we continue that discussion and also point out 

some other difficulties that can arise.  

• Some of the points are difficult to treat in detail, so we will 

illustrate them by means of examples.  



Truncation and Round-off Errors 

• Recall that for the Euler method, the local truncation error is 
proportional to h2, and that for a finite interval the global 
truncation error is at most a constant times h.   

• In general, for a method of order p, the local truncation error 
is proportional to h 

p+1, and the global truncation error on a 
finite interval is bounded by a constant times h 

p.  

• To achieve a high accuracy we normally use a numerical 
procedure for which p is fairly large, perhaps 4 or higher.  

• As p increases, the formula used in computing yn+1 normally 
becomes more complicated, and more calculations are 
required at each step. This is usually not a serious problem 
unless f (t, y) is complicated, or if the calculation must be 
repeated many times.   



Truncation and Round-off Errors 

• If the step size h is decreased, the global truncation error is 

decreased by the same factor raised to the power p.  

• However, if h is very small, then many steps will be required 

to cover a fixed interval, and the global round-off error may 

be larger than the global truncation error.   

• This situation is shown schematically below, where Rn is the 

round-off error, and En the truncation error, at step n.   

• See next slide for more discussion. 



Truncation and Round-off Errors 

• We assume Rn is proportional to the number of computations, 

and thus is inversely proportional to h.  

• We also assume En is proportional to a positive power of h. 

• From Section 8.1, the total error is bounded by |Rn| + |En|.  

Thus we want to choose h so as to minimize this quantity. 

• This optimum value of h occurs when the rate of increase of 

En (as h increases) is balanced by the rate of decrease of Rn.    



Example 1: Euler Method Results    (1 of 4) 

• Consider the initial value problem 

 

• In the table below, the values yN/2 and yN  are Euler method 

approximations to    (0.5) = 8.712,    (1) = 64.90, respectively, 

for different step sizes h.  

• The number of steps N required to traverse [0, 1] are given, as 

are the errors between approximations and exact values.  
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h N y[N/2] Error y[N] Error

0.010000 100 8.39 –0.322 60.12 –4.78

0.005000 200 8.551 –0.161 62.51 –2.39

0.002000 500 8.633 –0.079 63.75 –1.15

0.001000 1000 8.656 –0.056 63.94 –0.96

0.000800 1250 8.636 –0.076 63.78 –1.12

0.000625 1600 8.616 –0.096 64.35 –0.55

0.000500 2000 8.772 0.060 64.00 –0.9

0.000400 2500 8.507 0.205 63.40 –1.5

0.000250 4000 8.231 0.481 56.77 –8.13
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Example 1: Error and Step Size    (2 of 4) 

• For relatively large step sizes, round-off error Rn is much less 

than global truncation error En. Thus total error ≤ En, which for 

Euler’s method is bounded by a constant times h.  

• Thus as step size is reduced, error is reduced proportionately.  

The first three lines of the table show this behavior.  

• For h = 0.001, error is reduced, but less than proportionally, 

and hence round-off error is becoming important. 

h N y[N/2] Error y[N] Error

0.010000 100 8.39 –0.322 60.12 –4.78

0.005000 200 8.551 –0.161 62.51 –2.39

0.002000 500 8.633 –0.079 63.75 –1.15

0.001000 1000 8.656 –0.056 63.94 –0.96

0.000800 1250 8.636 –0.076 63.78 –1.12

0.000625 1600 8.616 –0.096 64.35 –0.55

0.000500 2000 8.772 0.060 64.00 –0.9

0.000400 2500 8.507 0.205 63.40 –1.5

0.000250 4000 8.231 0.481 56.77 –8.13



Example 1: Optimal Step Size    (3 of 4) 

• As h is reduced further, the error begins to fluctuate.  

• For values of h < 0.0005 the error increases, and hence the 

round-off error is now the dominant part of the error.  

• For this problem it is best to use an N  between 1000 and 2000.  

In the table, the best result at t = 0.5 occurs for N = 1000, 

while at t = 1 the best result is for N = 1600. 

h N y[N/2] Error y[N] Error

0.010000 100 8.39 –0.322 60.12 –4.78

0.005000 200 8.551 –0.161 62.51 –2.39

0.002000 500 8.633 –0.079 63.75 –1.15

0.001000 1000 8.656 –0.056 63.94 –0.96

0.000800 1250 8.636 –0.076 63.78 –1.12

0.000625 1600 8.616 –0.096 64.35 –0.55

0.000500 2000 8.772 0.060 64.00 –0.9

0.000400 2500 8.507 0.205 63.40 –1.5

0.000250 4000 8.231 0.481 56.77 –8.13



Example 1: Truncation and Round-Off Error 

Discussion    (4 of 4) 

• Optimal ranges for h and N depend on differential equation, 

numerical method, and number of digits retained. 

• It is generally true that if too many steps are required, then 

eventually round-off error is likely to accumulate to the point 

where it seriously degrades accuracy of the procedure.  

• For many problems this is not a concern, as the fourth order 

methods discussed in Sections 8.3 and 8.4 will produce good 

results with a number of steps far less than the level at which 

round-off error becomes important.  

• For some problems round-off error becomes vitally important, 

and the choice of method may become crucial, and adaptive 

methods advantageous.  



Example (Vertical Asymptote): 

Euler’s Method    (1 of 5) 

• Consider the initial value problem 

 

• Since this differential equation is nonlinear, the existence and 

uniqueness theorem (Theorem 2.4.2) guarantees only that there 

is a solution     (t) in some interval about t = 0.  

• Using the Euler method, we obtain the approximate values of 

the solution at t = 1 shown in the table below.   

• The large differences among the computed values suggest we 

use a more accurate method, such as the Runge-Kutta method. 
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h t = 1

0.10 7.189548

0.05 12.320930

0.01 90.755510



Example (Vertical Asymptote):  

Runge-Kutta Method    (2 of 5) 

• Using the Runge-Kutta method, we obtain the approximate 

solution values at t = 0.90 and t = 1 shown in the table below.   

• It may be reasonable to conclude that     (0.9)    14.305, but it 

is not clear what is happening between t = 0.90 and t = 1.   

• To help clarify this, we examine analytical approximations to 

the solution     (t). This will illustrate how information can be 

obtained by a combination of analytical and numerical work. 

h t = 0.90 t = 1

0.100 14.02182 735.09910

0.050 14.27117 1.75863 x 10^5

0.010 14.30478 2.0913 x 10^2893

0.001 14.30486
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Example (Vertical Asymptote):  

Analytical Bounds  (3 of 5) 

• Recall our initial value problem 

 

 and its solution     (t). Note that 

 

• It follows that the solution    1(t) of 

 

 is an upper bound for    (t), and the solution    2(t) of 

 

 is an lower bound for    (t). That is,  

 

 as long as the solutions exist. 
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Example (Vertical Asymptote):  

Analytical Results  (4 of 5) 

• Using separation of variables, we can solve for     1(t) and       

         2(t): 

 

 

• Note that 

 

• Recall from previous slide that                               as long as 
the solutions exist. It follows that 

(1)     (t) exists for at least 0 ≤ t <     /4 ≤ 0.785, and at most for 0 ≤ t < 1.   

(2)     (t) has a vertical asymptote for some t in     /4 ≤ t ≤ 1.  

• Our numerical results suggest that we can go beyond t =    /4, 
and probably beyond t = 0.9.  
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Example: Vertical Asymptote  (5 of 5) 

• Assuming that the solution y =    (t) of our initial value 
problem  

 

 exists at t = 0.9, with     (0.9) = 14.305, we can obtain a more 
accurate appraisal of what happens for larger t by solving  

 

 

• Note that  

 
 where 0.96980          /2 – 0.60100.   

• We conclude that the vertical asymptote of     (t) lies between     
t = 0.96980 and t = 0.96991. 
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Stability        (1 of 2) 

• Stability refers to the possibility that small errors introduced 
in a procedure die out as the procedure continues. Instability 
occurs if small errors tend to increase. 

• In Section 2.5 we identified equilibrium solutions as 
(asymptotically) stable or unstable, depending on whether 
solutions that were initially near the equilibrium solution 
tended to approach it or depart from it as t increased.   

• More generally, the solution of an initial value problem is 
asymptotically stable if initially nearby solutions tend to 
approach the solution, and unstable if they depart from it.   

• Visually, in an asymptotically stable problem, the graphs of 
solutions will come together, while in an unstable problem 
they will separate.  



Stability        (2 of 2) 

• When solving an initial value problem numerically, it will at 

best mimic the actual solution behavior.  We cannot make an 

unstable problem a stable one by solving it numerically. 

• However, a numerical procedure can introduce instabilities 

that are not part of the original problem.  This can cause 

trouble in approximating the solution.  

• Avoidance of such instabilities may require restrictions on the 

step size h.  



Example: Stability & Euler Methods   (1 of 5) 

• Consider the equation and its general solution, 

 

• Suppose that in solving this equation we have reached the 

point (tn, yn).  The exact solution passing through this point is 

 

• With f (t, y) = ry, the numerical approximations obtained from 

the Euler and backward Euler methods are, respectively,  

 

 

• From the backward Euler and geometric series formulas,  
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Example (Stability): Order of Error   (2 of 5) 

• The exact solution at tn+1 is 

 

 

• From the previous slide, the Euler and backward Euler 

approximations are, respectively,   

 

 

• Thus the errors for Euler and backward Euler approximations 

are of order h2, as the theory predicts.  
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Example (Stability): Error Propagation  

and Stability of Problem  (3 of 5) 

• Now suppose that we change yn to yn +    , where we think of       

        as the error that has accumulated by the time we reach t = tn.  

• The question is then whether this error increases or decreases 

in going one more step to tn+1.  

• From the exact solution, the change in y(tn+1) due to the 

change in yn is     erh, as seen below. 

 

• Note that |   erh| < |    | if erh < 1, which occurs for r < 0.   

• This confirms our conclusion from Chapter 2 that the equation 

 

 is asymptotically stable if r < 0, and is unstable if r > 0.   
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Example:  

Stability of Backward Euler Method   (4 of 5) 

• For the backward Euler method, the change in yn+1 due to the 

change in yn is     /(1 – rh), as seen below. 

 

 

• Note that 0 < |    /(1 – rh)|  < |    | for r  < 0.   

• Thus if the differential equation 

 

 is stable, then so is the backwards Euler method. 
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Example: Stability of Euler Method   (5 of 5) 

• For the Euler method, the change in yn+1 due to the change in yn 

is     (1 + rh), as seen below. 

 

• Note that 0 < |     (1+ rh)|  < |    |  for r  < 0 and |1 + rh | < 1. 

• From this it follows that h must satisfy h < 2/|r|, as follows: 

 

 

• Thus Euler’s method is not stable unless h is sufficiently small.  

• Note: Requiring h < 2/|r| is relatively mild, unless r is large.  
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Stiff Problems 

• The previous example illustrates that it may be necessary to 

restrict h in order to achieve stability in the numerical method, 

even though the problem itself is stable for all values of h.   

• Problems for which a much smaller step size is needed for 

stability than for accuracy are called stiff.   

• The backward differentiation formulas of Section 8.4 are 

popular methods for solving stiff problems, and the backward 

Euler method is the lowest order example of such methods.  



Example 2: A Stiff Problem   (1 of 4) 

• Consider the initial value problem 

 

• Since the equation is linear, with solution     (t) = e–100t
  + t.   

• The graph of this solution is given below. There is a thin layer 

(boundary layer) to the right of t = 0 in which the exponential 

term is significant and the values of the solution vary rapidly. 

Once past this layer,    (t)     t and the graph is essentially a 

line. 

• The width of the boundary layer 

 is somewhat arbitrary, but it is 

 certainly small. For example,  

 at t = 0.1, e-100t 
     0.000045. 
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Example 2: Error Analysis   (2 of 4) 

• Numerically, we might expect that a small step size will be 

needed only in the boundary layer. To make this more precise, 

consider the following.  

• The local truncation errors for the Euler and backward Euler 

methods are proportional to    ''(t). Here,    ''(t) = 10,000e–100t, 

which varies from 10,000 at t = 0 to nearly zero for t > 0.2.  

• Thus a very small step size is needed for accuracy near t = 0, 

but a much larger step size is adequate once t is a little larger.  

f f



Example 2: Stability Analysis   (3 of 4) 

• Recall our initial value problem:  

 

• Comparing this equation with the stability analysis equations, 

we take r = –100 here.   

• It follows that for Euler’s method, we require h < 2/|r| = 0.02.   

• There is no corresponding restriction on h for the backward 

Euler method.  
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Example 2: Numerical Results   (4 of 4) 

• The Euler results for h = 0.025 are worthless from instability, 

while results for h = 1/60 = 0.0166… are reasonably accurate 

for t ≥ 0.2. Comparable accuracy is obtained for h = 0.1 using 

backward Euler method. 

• The Runge-Kutta method is unstable for h = 1/30 = 0.0333… 

in this problem, but stable for h = 0.025.    

• Note that a smaller step size is needed for the boundary layer. 

Euler Euler Runge-Kutta Runge-Kutta Backward Euler

t Exact h = 0.025 h = 0.0167 h = .0333 h = 0.025 h = 0.1

0.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.05 0.056738 2.300000 -0.246296 0.470471

0.10 0.100045 5.162500 0.187792 10.652700 0.276796 0.190909

0.20 0.200000 25.828900 0.207707 111.559000 0.231257 0.208264

0.40 0.400000 657.241000 0.400059 1.24 x 10 4̂ 0.400977 0.400068

0.60 0.600000 1.68 x 10 4̂ 0.600000 1.38 x 10 6̂ 0.600031 0.600001

0.80 0.800000 4.31 x 10 5̂ 0.800000 1.54 x 10 8̂ 0.800001 0.800000

1.00 1.000000 1.11 x 10 7̂ 1.000000 1.71 x 10 1̂0 1.000000 1.000000



Example 3 (Numerical Dependence):  

First Set of Solutions    (1 of 6) 

• Consider the second order equation 

 

• Two linearly independent solutions are 

 

 where    1(t) and    2(t) satisfy the respective initial conditions 

 

• Recall that 

 

 

• It follows that for large t,    1(t)        2(t).   
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Example 3 (Numerical Dependence):  

Numerical Dependence    (2 of 6) 

• Our two linearly independent solutions are 

 

• For large t,    1(t)       2(t), and hence these two solutions will 

look the same if only a fixed number of digits are retained.   

• For example, at t = 1 and using 8 significant figures, we have 

 

• If the calculations are performed on an eight digit machine, the 

two solutions will be identical on t ≥ 1. Thus even though the 

solutions are linearly independent, their numerical tabulation 

would be the same. 

• This phenomenon is called numerical dependence.   

   tttt  10sinh)(,10cosh)( 21 

    894.315,1010sinh10cosh  
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Example 3 (Numerical Dependence):  

Second Set of Solutions    (3 of 6) 

• We next consider two other linearly independent solutions, 

 

 where    3(t) and    4(t) satisfy the respective initial conditions 

 

• Due to truncation and round-off errors, at any point tn the data 

used in going to tn+1 are not precisely    4(tn) and    4'(tn).  

• The solution of the initial value problem with these data at tn 

involves e–sqrt(10)  t and esqrt(10)  t.   

• Because the error at tn is small, esqrt(10)  t appears with a small 

coefficient, but nevertheless will eventually dominate, and the 

calculated solution will be a multiple of    3(t). 
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Example 3 (Numerical Dependence):  

Runge-Kutta Method    (4 of 6) 

• Consider then the initial value problem 

 

• Using the Runge-Kutta method with eight digits of precision 

and h = 0.01, we obtain the following numerical results. 

• The numerical values deviate from  

 exact values as t increases due  

 to presence, in the numerical  

 approximation, of a small  

 component of the exponentially  

 growing solution    3(t).  

    0;100,10;010 2  tyyyy 

t Runge-Kutta Exact

0.00 1.0 1.0

0.25 8.3439 x 10 (̂-2) 8.3438 x 10 (̂-2)

0.50 6.9623 x 10 (̂-3) 6.9620 x 10 (̂-3)

0.75 5.8409 x 10 (̂-4) 5.8089 x 10 (̂-4)

1.00 8.6688 x 10 (̂-5) 4.8469 x 10 (̂-5)

1.50 5.4900 x 10 (̂-3) 3.3744 x 10 (̂-7)

2.00 7.8852 x 10 (̂-1) 2.3492 x 10 (̂-9)

2.50 1.1326 x 10 2̂ 1.6355 x 10 (̂-11)

3.00 1.6268 x 10 4̂ 1.1386 x 10 (̂-13)

3.50 2.3368 x 10 6̂ 7.9272 x 10 (̂-16)

4.00 3.3565 x 10 8̂ 5.5189 x 10 (̂-18)

4.50 4.8211 x 10 1̂0 3.8422 x 10 (̂-20)

5.00 6.9249 x 10 1̂2 2.6749 x 10 (̂-22)
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Example 3 (Numerical Dependence):  

Round-Off Error    (4 of 6) 

• With eight-digit arithmetic, we can expect a round-off error of 

the order 10-8 at each step. Since esqrt(10)  t grows by a factor of 

3.7 x 1021 from t = 0 to t = 5, an error of 10-8 near t = 0 can 

produce an error of order 1013 at t = 5, even if no further errors 

are introduced in the intervening calculations.  

• From the results in the table, we 

 see that this is what happens.  

t Runge-Kutta Exact

0.00 1.0 1.0

0.25 8.3439 x 10 (̂-2) 8.3438 x 10 (̂-2)

0.50 6.9623 x 10 (̂-3) 6.9620 x 10 (̂-3)

0.75 5.8409 x 10 (̂-4) 5.8089 x 10 (̂-4)

1.00 8.6688 x 10 (̂-5) 4.8469 x 10 (̂-5)

1.50 5.4900 x 10 (̂-3) 3.3744 x 10 (̂-7)

2.00 7.8852 x 10 (̂-1) 2.3492 x 10 (̂-9)

2.50 1.1326 x 10 2̂ 1.6355 x 10 (̂-11)

3.00 1.6268 x 10 4̂ 1.1386 x 10 (̂-13)

3.50 2.3368 x 10 6̂ 7.9272 x 10 (̂-16)

4.00 3.3565 x 10 8̂ 5.5189 x 10 (̂-18)

4.50 4.8211 x 10 1̂0 3.8422 x 10 (̂-20)

5.00 6.9249 x 10 1̂2 2.6749 x 10 (̂-22)
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Example 3 (Numerical Dependence):  

Unstable Problem    (6 of 6) 

• Our second order equation 

 

 is highly unstable. 

• The behavior shown in this example is typical of unstable 

problems.  

• One can track the solution accurately for a while, and the 

interval can be extended by using smaller step sizes or more 

accurate  methods.  

• However, the instability of the problem itself eventually takes 

over and leads to large errors.  
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Summary: Step Size 

• The methods we have examined in this chapter have primarily 
used a uniform step size. Most commercial software allows for 
varying the step size as the calculation proceeds.   

• Too large a step size leads to inaccurate results, while too 
small a step size will require more time and can lead to 
unacceptable levels of round-off error.   

• Normally an error tolerance is prescribed in advance, and the 
step size at each step must be consistent with this requirement. 

• The step size must also be chosen so that the method is stable.  
Otherwise small errors will grow and the results worthless.   

• Implicit methods require than an equation be solved at each 
step, and the method used to solve the equation may impose 
additional restrictions on step size.    



Summary: Choosing a Method 

• In choosing a method, one must balance accuracy and stability 

against the amount of time required to execute each step.  

• An implicit method, such as the Adams-Moulton method, 

requires more calculations for each step, but if its accuracy and 

stability permit a larger step size, then this may more than 

compensate for the additional computations.   

• The backward differentiation methods of moderate order (four, 

for example) are highly stable and are therefore suitable for 

stiff problems, for which stability is the controlling factor. 



Summary: Higher Order Methods 

• Some current software allow the order of the method to be 

varied, as well as step size, as the method proceeds. The error 

is estimated at each step, and the order and step size are chosen 

to satisfy the prescribed tolerance level.  

• In practice, Adams methods up to order twelve, and backward 

differentiation methods up to order five, are in use.  

• Higher order backward differentiation methods are unsuitable 

because of lack of stability. 

• The smoothness of f, as measured by the number of continuous 

derivatives that it possesses, is a factor in choosing the order of 

the method to be used. Higher order methods lose some of 

their accuracy if f is not smooth to a corresponding order.  


