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• A system of simultaneous first order ordinary differential 

equations has the general form   

 

 

 

 

 where each xk is a function of t. If each Fk is a linear 

function of x1, x2, …, xn, then the system of equations is said 

to be linear, otherwise it is nonlinear.  

• Systems of higher order differential equations can similarly 

be defined.   
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Example 1 

• The motion of a certain spring-mass system from Section 3.7 

was described by the differential equation 

 
 

• This second order equation can be converted into a system of 

first order equations by letting x1 = u  and x2 = u'. Thus  

 

 

 or  

¢¢u (t)+
1

8
¢u (t)+ u(t) = 0

¢x1 = x2

¢x2 +
1

8
x2 + x1 = 0

¢x1 = x2

¢x2 = -x1 -
1

8
x2



Nth Order ODEs and Linear 1st Order 

Systems 

• The method illustrated in the previous example can be used 

to transform an arbitrary nth order equation 

 

 into a system of n first order equations, first by defining 

 

 Then 
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Solutions of First Order Systems 

• A system of simultaneous first order ordinary differential 

equations has the general form 

 

  

 

 It has a solution on                        if there exists n functions  

 

 that are differentiable on I and satisfy the system of 

equations at all points t in I.    

• Initial conditions may also be prescribed to give an IVP: 
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Theorem 7.1.1 

• Suppose F1,…, Fn and  

 

    are continuous in the region R of t x1 x2…xn-space defined by           

                                                                                 and let the point 

                               be contained in R. Then in some interval  

     (t0 – h, t0 + h) there exists a unique solution  

 

 that satisfies the IVP. 
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Linear Systems 

• If each Fk is a linear function of x1, x2, …, xn, then the 

system of equations has the general form 

 

 

 

 
 

• If each of the gk(t) is zero on I, then the system is 

homogeneous, otherwise it is nonhomogeneous.  
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Theorem 7.1.2 

• Suppose p11, p12,…, pnn, g1,…, gn are continuous on an 

interval                       with t0 in I, and let 

 

 prescribe the initial conditions. Then there exists a unique 

solution 

 

 that satisfies the IVP, and exists throughout I.   
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Review of Matrices 
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• For theoretical and computational reasons, we review results 

of matrix theory in this section and the next.  

• A matrix A is an m x n rectangular array of elements, 

arranged in m rows and n columns, denoted 

 

 

 

 
 

• Some examples of 2 x 2 matrices are given below: 
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Transpose 

• The transpose of A = (aij) is AT = (aji).   

 

 

 

 

 

• For example,  
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Conjugate 

• The conjugate of A = (aij) is A = (aij).  

 

 

 

 

 

• For example,  
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Adjoint 

• The adjoint of A is AT , and is denoted by A* 

 

 

 

 

 

• For example,  
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Square Matrices 

• A square matrix A has the same number of rows and 

columns. That is, A is n x n. In this case, A is said to have 

order n.   

 

 

 

 

 

• For example,  
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Vectors 

• A column vector x is an n x 1 matrix. For example, 

 

 

 

• A row vector x is a 1 x n matrix. For example,  

 

 

• Note here that y = xT, and that in general, if x is a column 

vector x, then xT is a row vector.   
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The Zero Matrix 

• The zero matrix is defined to be 0 = (0), whose dimensions 

depend on the context. For example,  

,

00

00

00

,
000

000
,

00

00


































 000



Matrix Equality 

• Two matrices A = (aij) and B = (bij) are equal if  aij = bij for 

all i and j. For example,  
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Matrix – Scalar Multiplication 

• The product of a matrix A = (aij) and a constant k is defined 

to be kA = (kaij). For example,  
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Matrix Addition and Subtraction 

• The sum of two m x n matrices A = (aij) and B = (bij) is 

defined to be A + B = (aij + bij). For example,  

 

 

 

• The difference of two m x n matrices A = (aij) and B = (bij) 

is defined to be A - B = (aij - bij). For example, 
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Matrix Multiplication 

• The product of an m x n matrix A = (aij) and an n x r matrix 

B = (bij) is defined to be the matrix C = (cij), where  

 

 

• Examples (note AB does not necessarily equal BA): 
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Example 1: Matrix Multiplication 

• To illustrate matrix multiplication and show that it is not 

commutative, consider the following matrices: 

 

 
 

• From the definition of matrix multiplication we have: 
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Vector Multiplication 

• The dot product of two n x 1 vectors x & y is defined as  

 

 

• The inner product of two n x 1 vectors x & y is defined as 

 

 

• Example: 
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Vector Length 

• The length of an n x 1 vector x is defined as  

 

 

• Note here that we have used the fact that if x = a + bi, then  
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Orthogonality 

• Two n x 1 vectors x & y are orthogonal if (x,y) = 0.    

• Example: 
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Identity Matrix 

• The multiplicative identity matrix I is an n x n matrix 

given by   

 

 

 

 

• For any square matrix A, it follows that AI = IA = A.  

• The dimensions of I depend on the context. For example,  
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Inverse Matrix 

• A square matrix A is nonsingular, or invertible, if there 

exists a matrix B such that that AB = BA = I. Otherwise A 

is singular.   

• The matrix B, if it exists, is unique and is denoted by A–1 

and is called the inverse of A.    

• It turns out that A–1 exists iff detA ≠ 0, and A–1 can be found 

using row reduction (also called Gaussian elimination) on 

the augmented matrix (A|I), see example on next slide.  

• The three elementary row operations: 

– Interchange two rows. 

– Multiply a row by a nonzero scalar. 

– Add a multiple of one row to another row.    



Example 2:  Finding the Inverse of a Matrix  (1 of 2) 

• Use row reduction to find the inverse of the matrix A below, 

if it exists.  

 

 

• Solution: If possible, use elementary row operations to 

reduce (A|I),  

 

 

 
 

 such that the left side is the identity matrix, for then the 

right side will be A–1. (See next slide.)    
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Example 2:  Finding the Inverse of a Matrix  (2 of 2) 

 

 

 

 

 

 

 

 

 

• Thus    
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Matrix Functions 

• The elements of a matrix can be functions of a real variable. 

In this case, we write 

 

 

 

 

• Such a matrix is continuous at a point, or on an interval 

 (a, b), if each element is continuous there. Similarly with 

differentiation and integration: 
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Example & Differentiation Rules 

• Example: 

 

 

 

 

• Many of the rules from calculus apply in this setting. For 

example: 
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• A system of n linear equations in n variables, 

 

 
 

 

 

 

 can be expressed as a matrix equation Ax = b: 

 

 

 

 

 

• If b = 0, then system is homogeneous; otherwise it is 
nonhomogeneous.  
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Nonsingular Case 

• If the coefficient matrix A is nonsingular, then it is 

invertible and we can solve Ax = b as follows: 

 
 

• This solution is therefore unique.  Also, if b = 0, it follows 

that the unique solution to Ax = 0 is x = A–10 = 0.  
 

• Thus if A is nonsingular, then the only solution to Ax = 0 is 

the trivial solution x = 0.  
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Example 1: Nonsingular Case (1 of 3) 

• From a previous example, we know that the matrix A below 

is nonsingular with inverse as given. 

 

 

 

• Using the definition of matrix multiplication, it follows that 

the only solution of Ax = 0 is x = 0: 
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Example 1: Nonsingular Case (2 of 3) 

• Now let’s solve the nonhomogeneous linear system Ax = b 

below using A–1: 

 

 
 

• This system of equations can be written as Ax = b, where 

 

 
 

• Then 
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Example 1: Nonsingular Case (3 of 3) 

• Alternatively, we could solve the nonhomogeneous linear 

system Ax = b below using row reduction. 

 

 
 

• To do so, form the augmented matrix (A|b) and reduce, 

using elementary row operations.  
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Singular Case 

• If the coefficient matrix A is singular, then A-1 does not 

exist, and either a solution to Ax = b does not exist, or there 

is more than one solution (not unique).  

• Further, the homogeneous system Ax = 0 has more than one 

solution. That is, in addition to the trivial solution x = 0, 

there are infinitely many nontrivial solutions. 

• The nonhomogeneous case Ax = b has no solution unless 

(b, y) = 0, for all vectors y satisfying A*y = 0, where A* is 

the adjoint of A.   

• In this case, Ax = b has solutions (infinitely many), each of 

the form x = x(0) +    , where x(0) is a particular solution of  

 Ax = b, and    is any solution of Ax = 0.   

x

x



Example 2: Singular Case (1 of 2) 

• Solve the nonhomogeneous linear system Ax = b below using row 

reduction. Observe that the coefficients are nearly the same as in the 

previous example 

 

 

 

• We will form the augmented matrix (A|b) and use some of the steps in 

Example 1 to transform the matrix more quickly 
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 Example 2: Singular Case (2 of 2) 

• From the previous slide, if            , there is no solution 

to the system of equations 

• Requiring that      , assume, for example, that 

 

• Then the reduced augmented matrix (A|b) becomes:  

 

 

 

• It can be shown that the second term in x is a solution of the 

nonhomogeneous equation and that the first term is the most 

general solution of the homogeneous equation, letting   , 

where α is arbitrary 
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Linear Dependence and Independence 

• A set of vectors x(1), x(2),…, x(n) is linearly dependent if 

there exists scalars c1, c2,…, cn, not all zero, such that 

 

 

• If the only solution of 

 

 is c1= c2 = …= cn = 0, then x(1), x(2),…, x(n) is linearly 

independent.  
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Example 3: Linear Dependence (1 of 2) 

• Determine whether the following vectors are linear 

dependent or linearly independent.  

 

 
 

 

• We need to solve 

 
 

 or 






























































































































 0

0

0

1131

112

421

0

0

0

11

1

4

3

1

2

1

2

1

3

2

1

21

c

c

c

ccc

0xxx  )3(

3

)2(

2

)1(

1 ccc



























































11

1

4

,

3

1

2

,

1

2

1
)3()2()1(

xxx



Example 3: Linear Dependence (2 of 2) 

• We can reduce the augmented matrix (A|b), as before. 

 

 

 

 

 

 
 

 

• So, the vectors are linearly dependent: 

• Alternatively, we could show that the following determinant is zero: 
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Linear Independence and Invertibility 

• Consider the previous two examples: 

– The first matrix was known to be nonsingular, and its column vectors 

were linearly independent.  

– The second matrix was known to be singular, and its column vectors 

were linearly dependent. 

• This is true in general: the columns (or rows) of A are linearly 

independent iff A is nonsingular iff A-1 exists. 

• Also, A is nonsingular iff detA ≠ 0, hence columns (or rows) 

of A are linearly independent iff detA ≠ 0. 

• Further, if A = BC, then det(C) = det(A)det(B). Thus if the 

columns (or rows) of A and B are linearly independent, then 

the columns (or rows) of C are also.   



Linear Dependence & Vector Functions 

• Now consider vector functions x(1)(t), x(2)(t),…, x(n)(t),  where 

 

 

 

 
 

• As before, x(1)(t), x(2)(t),…, x(n)(t) is linearly dependent on I if 

there exists scalars c1, c2,…, cn, not all zero, such that 

 
 

• Otherwise x(1)(t), x(2)(t),…, x(n)(t) is linearly independent on I 

 See text for more discussion on this.   
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Eigenvalues and Eigenvectors 

• The eqn. Ax = y can be viewed as a linear transformation 

that maps (or transforms) x into a new vector y.   

• Nonzero vectors x that transform into multiples of 

themselves are important in many applications.   

• Thus we solve Ax =    x or equivalently, (A –   I)x = 0.   

• This equation has a nonzero solution if we choose     such 

that det(A –    I) = 0.   

• Such values of     are called eigenvalues of A, and the 

nonzero solutions x are called eigenvectors.   
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Example 4: Eigenvalues (1 of 3) 

• Find the eigenvalues and eigenvectors of the matrix A. 

 

 
 

• Solution:  Choose     such that det(A –    I) = 0, as follows. 
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Example 4: First Eigenvector (2 of 3) 

• To find the eigenvectors of the matrix A, we need to solve 

(A –    I)x = 0 for     = 2 and      = –1.  

• Eigenvector for      = 2:  Solve 

 

 
  

 and this implies that  . So 
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Example 4: Second Eigenvector (3 of 3) 

• Eigenvector for      = –1: Solve 

 

 
  

 

  and this implies that  .  So 
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Normalized Eigenvectors 

• From the previous example, we see that eigenvectors are 

determined up to a nonzero multiplicative constant.   

• If this constant is specified in some particular way, then the 

eigenvector is said to be normalized.  

• For example, eigenvectors are sometimes normalized by 

choosing the constant so that ||x|| = (x, x)½ = 1.   



Algebraic and Geometric Multiplicity 

• In finding the eigenvalues     of an n x n matrix A, we solve 

det(A –    I) = 0.   

• Since this involves finding the determinant of an n x n 

matrix, the problem reduces to finding roots of an nth 

degree polynomial.   

• Denote these roots, or eigenvalues, by     1,     2, …,     n.   

• If an eigenvalue is repeated m times, then its algebraic 

multiplicity is m.   

• Each eigenvalue has at least one eigenvector, and a 

eigenvalue of algebraic multiplicity m may have q linearly 

independent eigevectors, 1 ≤ q ≤ m, and q is called the 

geometric multiplicity of the eigenvalue.  

l
l
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Eigenvectors and Linear Independence 

• If an eigenvalue     has algebraic multiplicity 1, then it is 

said to be simple, and the geometric multiplicity is 1 also.  

• If each eigenvalue of an n x n matrix A is simple, then A 

has n distinct eigenvalues. It can be shown that the n 

eigenvectors corresponding to these eigenvalues are linearly 

independent.  

• If an eigenvalue has one or more repeated eigenvalues, then 

there may be fewer than n linearly independent eigenvectors 

since for each repeated eigenvalue, we may have q < m.  

This may lead to complications in solving systems of 

differential equations.  

l



Example 5: Eigenvalues (1 of 5) 

• Find the eigenvalues and eigenvectors of the matrix A. 

 

 
 

 

• Solution: Choose     such that det(A –    I) = 0, as follows. 
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Example 5: First Eigenvector (2 of 5) 

• Eigenvector for      = 2: Solve (A –    I)x = 0, as follows. 
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Example 5: 2nd and 3rd Eigenvectors (3 of 5) 

• Eigenvector for      = –1:  Solve (A –    I)x = 0, as follows. 
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Example 5: Eigenvectors of A  (4 of 5) 

• Thus three eigenvectors of A are 

 

 

 

 where x(2), x(3) correspond to the double eigenvalue     

• It can be shown that x(1), x(2), x(3) are linearly independent.   

• Hence A is a 3 x 3 symmetric matrix (A = AT ) with 3 real 

eigenvalues and 3 linearly independent eigenvectors. 
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Example 5: Eigenvectors of A  (5 of 5) 

• Note that we could have we had chosen 

 

 

 

• Then the eigenvectors are orthogonal, since 

 
 

• Thus A is a 3 x 3 symmetric matrix with 3 real eigenvalues 

and 3 linearly independent orthogonal eigenvectors.  
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Hermitian Matrices 

• A self-adjoint, or Hermitian matrix, satisfies A = A*, 

where we recall that A* = AT .   

• Thus for a Hermitian matrix,  aij = aji.  

• Note that if A has real entries and is symmetric (see last 

example), then A is Hermitian.   

• An n x n Hermitian matrix A has the following properties: 

– All eigenvalues of A are real. 

– There exists a full set of n linearly independent eigenvectors of A. 

– If x(1) and x(2) are eigenvectors that correspond to different 

eigenvalues of A, then x(1) and x(2) are orthogonal.  

– Corresponding to an eigenvalue of algebraic multiplicity m, it is 

possible to choose m mutually orthogonal eigenvectors, and hence A 

has a full set of n linearly independent orthogonal eigenvectors. 
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• The general theory of a system of n first order linear equations 

 

 

 

 

 parallels that of a single nth order linear equation.  

• This system can be written as x' = P(t)x + g(t), where 
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Vector Solutions of an ODE System 

• A vector x =    (t) is a solution of x' = P(t)x + g(t) if the 
components of x, 

 

 satisfy the system of equations on                      .   
 

• For comparison, recall that x' = P(t)x + g(t) represents our 
system of equations 

 

 

 

 
 

• Assuming P and g continuous on I, such a solution exists by 
Theorem 7.1.2. 
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Homogeneous Case; Vector Function 

Notation 

• As in Chapters 3 and 4, we first examine the general 

homogeneous equation x' = P(t)x. 

• Also, the following notation for the vector functions  

 x(1), x(2),…, x(k),… will be used: 







,

)(

)(

)(

)(,,

)(

)(

)(

)(,

)(

)(

)(

)(
2

1

)(

2

22

12

)2(

1

21

11

)1(



































































tx

tx

tx

t

tx

tx

tx

t

tx

tx

tx

t

nn

n

n

k

nn

xxx



Theorem 7.4.1 

• If the vector functions x(1) and x(2) are solutions of the system 

x' = P(t)x, then the linear combination c1x
(1) + c2x

(2) is also a 

solution for any constants c1 and c2. 

 

• Note: By repeatedly applying the result of this theorem, it 

can be seen that every finite linear combination 

 

 of solutions x(1), x(2),…, x(k) is itself a solution to x' = P(t)x.  
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Theorem 7.4.2 

• If x(1), x(2),…, x(n) are linearly independent solutions of the 

system x' = P(t)x for each point in                      , then each 

solution x =    (t) can be expressed uniquely in the form 

 
 

 

• If solutions x(1),…, x(n) are linearly independent for each 

point in                      , then they are fundamental solutions 

on I, and the general solution is given by 
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The Wronskian and Linear Independence 

• The proof of Thm 7.4.2 uses the fact that if x(1), x(2),…, x(n) 

are linearly independent on I, then detX(t) ≠ 0 on I, where 

 

 

 
 

• The Wronskian of x(1),…, x(n) is defined as  

   W[x(1),…, x(n)](t) = detX(t).  

• It follows that W[x(1),…, x(n)](t) ≠ 0 on I iff x(1),…, x(n) are 

linearly independent for each point in I.  
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Theorem 7.4.3 

• If x(1), x(2),…, x(n) are solutions of the system x' = P(t)x on                      

, then the Wronskian W[x(1),…, x(n)](t) is either identically 

zero on I or else is never zero on I.  

• This result relies on Abel’s formula for the Wronskian 

 

 

 where c is an arbitrary constant (Refer to Section 3.2) 

• This result enables us to determine whether a given set of 

solutions x(1), x(2),…, x(n) are fundamental solutions by 

evaluating W[x(1),…, x(n)](t) at any point t in                  .   
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Theorem 7.4.4 

• Let  

 

 

 
 

 

 

 

• Let x(1), x(2),…, x(n) be solutions of the system x' = P(t)x, 

                   , that satisfy the initial conditions 

 

 respectively, where t0 is any point in                  .   Then 

 x(1), x(2),…, x(n) are form a fundamental set of solutions of    

 x' = P(t)x. 
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Theorem 7.4.5 

• Consider the system 

 

 

where each element of P is a real-valued continuous function. If x = 

u(t) + iv(t) is a complex-valued solution of Eq. (3), then its real part 

u(t) and its imaginary part v(t) are also solutions of this equation.  
 

 

 

 

x' = P(t)x



Boyce/DiPrima/Meade 11th ed, Ch 7.5: Homogeneous Linear 

Systems with Constant Coefficients 
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• We consider here a homogeneous system of n first order linear 

equations with constant, real coefficients: 

 

 

 

 

• This system can be written as x' = Ax, where 
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Equilibrium Solutions 

• Note that if n = 1, then the system reduces to 

 

• Recall that x = 0 is the only equilibrium solution if a ≠ 0.  

• Further, x = 0 is an asymptotically stable solution if a < 0, 

since other solutions approach x = 0 in this case.   

• Also, x = 0 is an unstable solution if a > 0, since other 

solutions depart from x = 0 in this case.  

• For n > 1, equilibrium solutions are similarly found by 

solving Ax = 0. We assume detA ≠ 0, so that x = 0 is the 

only solution. Determining whether x = 0 is asymptotically 

stable or unstable is an important question here as well.  
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Phase Plane 

• When n = 2, then the system reduces to 

 

 

• This case can be visualized in the x1x2-plane, which is called 

the phase plane.   

• In the phase plane, a direction field can be obtained by 

evaluating Ax at many points and plotting the resulting 

vectors, which will be tangent to solution vectors.  

• A plot that shows representative solution trajectories is 

called a phase portrait.   

• Examples of phase planes, directions fields, and phase 

portraits will be given later in this section.   
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Solving Homogeneous System 

• To construct a general solution to x' = Ax, assume a solution 

of the form x =    ert, where the exponent r and the constant 

vector    are to be determined.  

• Substituting x =    ert into x' = Ax, we obtain 

 
 

• Thus to solve the homogeneous system of differential 

equations x' = Ax, we must find the eigenvalues and 

eigenvectors of  A. 

• Therefore x =    ert is a solution of x' = Ax provided that r is 

an eigenvalue and    is an eigenvector of the coefficient 

matrix A. 
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Example 1 (1 of 2) 

• Find the general solution of the system 

 

 
 

• The most important feature of this system is that the 

coefficient matrix is a diagonal matrix. Thus, by writing the 

system in scalar form, we obtain  

    

• Each of these equations involves only one of the unknown 

variables, so we can solve the two equations separately. In 

this way we find that 

    

     where c1 and c2 are arbitrary constants.  
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Example 1 (2 of 2) 
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• Then by writing the solution in vector form we have 

 

 

 

• Now we define two solutions x(1) and x(2) so that 

 

 

• The Wronskian of these solutions is 

 

 

     which is never zero. Therefore, x(1) and x(2) form a     

     fundamental set of solutions. 
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Example 2: Direction Field   (1 of 9) 

• Consider the homogeneous equation x' = Ax below. 

 

 
 

• A direction field for this system is given below. 

• Substituting x =    ert in for x, and rewriting system as  

 (A – rI)    = 0, we obtain 
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Example 2: Eigenvalues (2 of 9) 

• Our solution has the form x =    ert, where r and    are found 

by solving  

 

 
 

• Recalling that this is an eigenvalue problem, we determine r 

by solving det(A – rI) = 0:   

 

 
 

• Thus r1 = 3 and r2 = –1.    
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Example 2: First Eigenvector (3 of 9) 

• Eigenvector for r1 = 3:  Solve 

 

 
  

 by row reducing the augmented matrix: 
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Example 2: Second Eigenvector (4 of 9) 

• Eigenvector for r2 = -1:  Solve 

 

 
  

 by row reducing the augmented matrix: 
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Example 2: General Solution (5 of 9) 

• The corresponding solutions x =    ert of x' = Ax are 

 

 

• The Wronskian of these two solutions is 

 

 

• Thus x(1) and x(2) are fundamental solutions, and the general 

solution of x' = Ax is 
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Example 2: Phase Plane for x(1)   (6 of 9) 

• To visualize solution, consider first x = c1x
(1):  

 

 

• Now  

 

 

• Thus x(1) lies along the straight line x2 = 2x1, which is the line 

through origin in direction of first eigenvector    (1)  

• If solution is trajectory of particle, with position given by  

 (x1, x2), then it is in Q1 when c1 > 0, and in Q3 when c1 < 0.   

• In either case, particle moves away from origin as t increases.   
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Example 2: Phase Plane for x(2)   (7 of 9) 

• Next, consider x = c2x
(2):  

 

 

• Then x(2) lies along the straight line x2 = –2x1, which is the 

line through origin in direction of 2nd eigenvector     (2)  

• If solution is trajectory of particle, with position given by 

(x1, x2), then it is in Q4 when c2 > 0, and in Q2 when c2 < 0.   

• In either case, particle moves towards origin as t increases.   
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Example 2:  

Phase Plane for General Solution   (8 of 9) 

• The general solution is x = c1x
(1) + c2x

(2):    

 

 

• As t          , c1x
(1) is dominant and c2x

(2) becomes negligible. 

Thus, for c1 ≠ 0, all solutions asymptotically approach the 

line x2 = 2x1 as t        .  

• Similarly, for c2 ≠ 0, all solutions asymptotically approach 

the line x2 = –2x1 as t           .  

• The origin is a saddle point, 

 and is unstable.  See graph. 
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Example 2:  

Time Plots for General Solution   (9 of 9) 

• The general solution is x = c1x
(1) + c2x

(2):    

 

 

• As an alternative to phase plane plots, we can graph x1 or x2 

as a function of t.   A few plots of x1 are given below.   

• Note that when c1 = 0, x1(t) = c2e
-t       0 as t         . 

Otherwise, x1(t) = c1e
3t + c2e

-t grows unbounded as t        .  

• Graphs of x2 are similarly obtained. 
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Example 3:  Direction Field   (1 of 9) 

• Consider the homogeneous equation x' = Ax below. 

 

 
 

• A direction field for this system is given below. 

• Substituting x =    ert in for x, and rewriting system as  

 (A – rI)    = 0, we obtain 
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Example 3: Eigenvalues (2 of 9) 

• Our solution has the form x =    ert, where r and     are found 

by solving  

 

 
 

• Recalling that this is an eigenvalue problem, we determine r 

by solving det(A – rI) = 0:   

 

 
 

• Thus r1 = –1 and r2 = –4.    
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Example 3: First Eigenvector (3 of 9) 

• Eigenvector for r1 = –1:  Solve 

 

 
  

 by row reducing the augmented matrix: 
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Example 3: Second Eigenvector (4 of 9) 

• Eigenvector for r2 = –4:  Solve 

 

 
  

 by row reducing the augmented matrix: 
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Example 3: General Solution (5 of 9) 

• The corresponding solutions x =    ert of x' = Ax are 

 

 

• The Wronskian of these two solutions is 

 

 

• Thus x(1) and x(2) are fundamental solutions, and the general 

solution of x' = Ax is 
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Example 3: Phase Plane for x(1)   (6 of 9) 

• To visualize solution, consider first x = c1x
(1):  

 

 

• Now  

 

 

• Thus x(1) lies along the straight line x2 = 2½ x1, which is the 

line through origin in direction of first eigenvector     (1)  

• If solution is trajectory of particle, with position given by 

(x1, x2), then it is in Q1 when c1 > 0, and in Q3 when c1 < 0.   

• In either case, particle moves towards origin as t increases.   
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Example 3: Phase Plane for x(2)   (7 of 9) 

• Next, consider x = c2x
(2):  

 

 

• Then x(2) lies along the straight line x2 = –2½ x1, which is the 

line through origin in direction of 2nd eigenvector    (2)  

• If solution is trajectory of particle, with position given by  

 (x1, x2), then it is in Q4 when c2 > 0, and in Q2 when c2 < 0.   

• In either case, particle moves towards origin as t increases.   
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Example 3:  

Phase Plane for General Solution   (8 of 9) 

• The general solution is x = c1x
(1) + c2x

(2):    

 

 

• As t         , c1x
(1) is dominant and c2x

(2) becomes negligible. 

Thus, for c1 ≠ 0, all solutions asymptotically approach 

origin along the line x2 =        x1 as t        .  

• Similarly, all solutions are unbounded as t           .  

• The origin is a node, and is  

asymptotically stable.   
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Example 3:  

Time Plots for General Solution   (9 of 9) 

• The general solution is x = c1x
(1) + c2x

(2):    

 

 
 

• As an alternative to phase plane plots, we can graph x1 or x2 

as a function of t.   A few plots of x1 are given below.   

• Graphs of x2 are similarly obtained. 
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2 x 2 Case:   

Real Eigenvalues, Saddle Points and Nodes 

• The previous two examples demonstrate the two main cases 

for a 2 x 2 real system with real and different eigenvalues: 

– Both eigenvalues have opposite signs, in which case origin is a 

saddle point and is unstable. 

– Both eigenvalues have the same sign, in which case origin is a node, 

and is asymptotically stable if the eigenvalues are negative and 

unstable if the eigenvalues are positive. 



Eigenvalues, Eigenvectors  

and Fundamental Solutions 

• In general, for an n x n real linear system x' = Ax: 

– All eigenvalues are real and different from each other. 

– Some eigenvalues occur in complex conjugate pairs. 

– Some eigenvalues are repeated. 

• If eigenvalues r1,…, rn are real & different, then there are n 

corresponding linearly independent eigenvectors      (1),…,     

        (n).  The associated solutions of x' = Ax are 

 
 

• Using Wronskian, it can be shown that these solutions are 

linearly independent, and hence form a fundamental set of 

solutions.  Thus general solution is  
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Hermitian Case: Eigenvalues, Eigenvectors & 

Fundamental Solutions 

• If A is an n x n Hermitian matrix (real and symmetric), then 

all eigenvalues r1,…, rn are real, although some may repeat.   

• In any case, there are n corresponding linearly independent 

and orthogonal eigenvectors     (1),…,     (n). The associated 

solutions of x' = Ax are 

 

 and form a fundamental set of solutions.   
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Example 4: Hermitian Matrix   (1 of 3) 

• Consider the homogeneous equation x' = Ax below. 

 

 
 

 

• The eigenvalues were found previously in Ch 7.3, and were: 

  r1 = 2, r2 = –1 and r3 = –1.   

• Corresponding eigenvectors:  
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Example 4:  General Solution (2 of 3) 

• The fundamental solutions are  

 

 
 

 

 with general solution   
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Example 4: General Solution Behavior  (3 of 3) 

• The general solution is x = c1x
(1) + c2x

(2) + c3x
(3):  

 

 

 

• As t          , c1x
(1) is dominant and c2x

(2) , c3x
(3) become 

negligible.  

• Thus, for c1 ≠ 0, all solns x become unbounded as t         , 

 while for  c1 = 0, all solns x      0 as t         . 

• The initial points that cause c1 = 0 are those that lie in plane 

determined by    (2) and   (3).  Thus solutions that start in this 

plane approach origin as  t         . 
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Complex Eigenvalues and Fundamental Solns  

• If some of the eigenvalues r1,…, rn occur in complex 

conjugate pairs, but otherwise are different, then there are 

still n corresponding linearly independent solutions 

 
 

 which form a fundamental set of solutions.  Some may be 

complex-valued, but real-valued solutions may be derived 

from them.  This situation will be examined in Ch 7.6. 
 

• If the coefficient matrix A is complex, then complex 

eigenvalues need not occur in conjugate pairs, but solutions 

will still have the above form (if the eigenvalues are 

distinct) and these solutions may be complex-valued.  
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Repeated Eigenvalues and Fundamental Solns  

• If some of the eigenvalues r1,…, rn are repeated, then there 

may not be n corresponding linearly independent solutions of 

the form 

  

• In order to obtain a fundamental set of solutions, it may be 

necessary to seek additional solutions of another form.  

• This situation is analogous to that for an nth order linear 

equation with constant coefficients, in which case a repeated 

root gave rise solutions of the form  

 

 This case of repeated eigenvalues is examined in Section 7.8.  
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Boyce/DiPrima/Meade 11th ed, Ch 7.6:  

Complex Eigenvalues 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• We consider again a homogeneous system of n first order 

linear equations with constant, real coefficients, 

 

 

 

 

 and thus the system can be written as x' = Ax, where 
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Conjugate Eigenvalues and Eigenvectors 

• We know that x =    ert is a solution of x' = Ax, provided r is 

an eigenvalue and     is an eigenvector of A. 

• The eigenvalues r1,…, rn are the roots of det(A – rI) = 0, 

and the corresponding eigenvectors satisfy (A – rI)    = 0.   

• If A is real, then the coefficients in the polynomial equation 

det(A – rI) = 0 are real, and hence any complex eigenvalues 

must occur in conjugate pairs. Thus if r1 =              is an 

eigenvalue, then so is r2 =            .  

• The corresponding eigenvectors     (1),     (2) are conjugates 

also. 

 To see this, recall A and I have real entries, and hence 
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Conjugate Solutions 

• It follows from the previous slide that the solutions 

 
  

 corresponding to these eigenvalues and eigenvectors are 

conjugates conjugates as well, since 
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Example 1: Direction Field   (1 of 7) 

• Consider the homogeneous equation x' = Ax below. 

 

 
 

• A direction field for this system is given below. 

• Substituting x =      ert in for x, and rewriting system as  

 (A – rI)     = 0, we obtain 
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Example 1: Complex Eigenvalues   (2 of 7) 

• We determine r by solving det(A – rI) = 0.   Now 

 

 

 

• Thus  

 

 

 

• Therefore the eigenvalues are r1 = –1/2 + i and r2 = –1/2 – i.    
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Example 1: First Eigenvector  (3 of 7) 

• Eigenvector for r1 = –1/2 + i: Solve 

 

 
  

  

 

 by row reducing the augmented matrix: 
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Example 1: Second Eigenvector  (4 of 7) 

• Eigenvector for r1 = –1/2 – i: Solve 

 

 
  

  

  

 by row reducing the augmented matrix: 

 

 
 

• Thus 
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Example 1: General Solution (5 of 7) 

• The corresponding solutions x =    ert of x' = Ax are 

 

 

 

 
 

• The Wronskian of these two solutions is 

 

 
 

• Thus u(t) and v(t) are real-valued fundamental solutions of 

x' = Ax, with general solution x = c1u + c2v.  
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Example 1: Phase Plane (6 of 7) 

• Given below is the phase plane plot for solutions x, with 

 

 

• Each solution trajectory approaches origin along a spiral path 

as t           , since coordinates are products of decaying 

exponential and sine or cosine factors.   

• The graph of u passes through (1,0),  

 since u(0) = (1,0). Similarly, the  

 graph of v passes through (0,1).  

• The origin is a spiral point, and  

 is asymptotically stable.  
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Example 1: Time Plots (7 of 7) 

• The general solution is x = c1u + c2v: 

 

 

• As an alternative to phase plane plots, we can graph x1 or x2 

as a function of t.  A few plots of x1 are given below, each 

one a decaying oscillation as t           . 
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General Solution 

• To summarize, suppose r1 =             , r2 =             ,  and that 

r3,…, rn are all real and distinct eigenvalues of A. Let the 

corresponding eigenvectors be 

 

• Then the general solution of x' = Ax is  

 

 where 
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Real-Valued Solutions 

• Thus for complex conjugate eigenvalues r1 and r2 , the 
corresponding solutions x(1) and x(2) are conjugates also. 

• To obtain real-valued solutions, use real and imaginary parts 
of either x(1) or x(2). To see this, let    (1) = a + i b. Then 

 

 

 
 

 where 

 
  

 are real valued solutions of x' = Ax, and can be shown to be 
linearly independent.   
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Spiral Points, Centers,  

Eigenvalues, and Trajectories 

• In previous example, general solution was 

 

 

• The origin was a spiral point, and was asymptotically stable.   

• If real part of complex eigenvalues is positive, then 

trajectories spiral away, unbounded, from origin, and hence 

origin would be an unstable spiral point.  

• If real part of complex eigenvalues is zero, then trajectories 

circle origin, neither approaching nor departing. Then origin 

is called a center and is stable, but not asymptotically stable.  

Trajectories periodic in time.  

• The direction of trajectory motion depends on entries in A.  
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Example 2:  

Second Order System with Parameter  (1 of 2) 

• The system x' = Ax below contains a parameter      . 

 

 

• Substituting x =     ert in for x and rewriting system as  

 (A – rI)     = 0, we obtain 

 

 
 

• Next, solve for r in terms of      : 
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Example 2:  

Eigenvalue Analysis   (2 of 2) 

• The eigenvalues are given by the quadratic formula above. 

• For       < –4, both eigenvalues are real and negative, and hence 
origin is asymptotically stable node.   

• For      > 4, both eigenvalues are real and positive, and hence 
the origin is an unstable node. 

• For –4 <     < 0, eigenvalues are complex with a negative real 
part, and hence origin is asymptotically stable spiral point. 

• For 0 <      < 4, eigenvalues are complex with a positive real 
part, and the origin is an unstable spiral point. 

• For      = 0, eigenvalues are purely imaginary, origin is a center.  
Trajectories closed curves about origin & periodic. 

• For     = ±  4, eigenvalues real & equal, origin is a node (Ch 
7.8) 
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Second Order Solution Behavior and 

Eigenvalues: Three Main Cases 

• For second order systems, the three main cases are: 

– Eigenvalues are real and have opposite signs; x = 0 is a saddle point. 

– Eigenvalues are real, distinct and have same sign; x = 0 is a node. 

– Eigenvalues are complex with nonzero real part; x = 0 a spiral point. 

• Other possibilities exist and occur as transitions between two 

of the cases listed above:  

– A zero eigenvalue occurs during transition between saddle point and 

node. Real and equal eigenvalues occur during transition between 

nodes and spiral points. Purely imaginary eigenvalues occur during a 

transition between asymptotically stable and unstable spiral points.   
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Example 3: Multiple Spring-Mass System (1 of 6) 

• The equations for the system of two masses and three 

springs discussed in Section 7.1, assuming no external 

forces, can be expressed as: 

 

 

 
 

 

• Given          ,       , the 

equations become  
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Example 3: Multiple Spring-Mass System (2 of 6) 

• Writing the system of equations in matrix form: 

 

 

 
 

• Assuming a solution of the form y =     ert , where r must 

be an eigenvalue of the matrix A and      is the 

corresponding eigenvector, the characteristic polynomial of 

A is 

 

 yielding the eigenvalues:  
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Example 3: Multiple Spring-Mass System (3 of 6) 

• For the eigenvalues            the correspond-

ing eigenvectors are  

 

 

 

• The products       yield the complex-valued solutions: 
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Example 3: Multiple Spring-Mass System (4 of 6) 

• After validating that             are linearly 

independent, the general solution of the system of equations can be 

written as 

 

 

 

• where           are arbitrary constants. 

• Each solution will be periodic with period 2π, so each trajectory is a 

closed curve. The first two terms of the solution describe motions with 

frequency 1 and period 2π while the second two terms describe 

motions with frequency 2 and period π. The motions of the two masses 

will be different relative to one another for solutions involving only the 

first two terms or the second two terms.  
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Example 3: Multiple Spring-Mass System (5 of 6) 

• To obtain the fundamental mode of vibration with frequency 1 

 

• To obtain the fundamental mode of vibration with frequency 2 

 

• Plots of          and parametric plots (y, y’) are shown for a 

selected solution with frequency 1 
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Example 3: Multiple Spring-Mass System (6 of 6) 

• Plots of         and parametric plots (y, y’) are shown for a selected 

solution with frequency 2 
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Boyce/DiPrima/Meade 11th ed, Ch 7.7: Fundamental Matrices 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• Suppose that x(1)(t),…, x(n)(t) form a fundamental set of 

solutions for x' = P(t)x  on              .   

• The matrix 

 

 

 

 whose columns are x(1)(t),…, x(n)(t), is a fundamental matrix 

for the system x' = P(t)x. This matrix is nonsingular since its 

columns are linearly independent, and hence det    ≠ 0.    

• Note also that since x(1)(t),…, x(n)(t) are solutions of x' = P(t)x,      

         satisfies the matrix differential equation     ' = P(t)    . 
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Example 1: 

• Consider the homogeneous equation x' = Ax below. 

 

 
 

• In Example 2 of Chapter 7.5, we found the following 

fundamental solutions for this system: 

 

 

• Thus a fundamental matrix for this system is  
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Fundamental Matrices and General Solution 

• The general solution of x' = P(t)x  

 
  

 can be expressed x =     (t)c, where c is a constant vector with 

components c1,…, cn:   
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Fundamental Matrix & Initial Value Problem 

• Consider an initial value problem 

   x' = P(t)x,  x(t0) = x0  

 where                 and x0 is a given initial vector. 

• Now the solution has the form x =     (t)c, hence we choose c 

so as to satisfy x(t0) = x0.   

• Recalling     (t0) is nonsingular, it follows that   

 

• Thus our solution x =     (t)c can be expressed as 
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Recall: Theorem 7.4.4 

• Let  

 

 

 

 

• Let x(1),…, x(n) be solutions of x' = P(t)x on I:                    

that satisfy the initial conditions 

 
  

 Then  x(1),…, x(n) are fundamental solutions of x' = P(t)x. 
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Fundamental Matrix & Theorem 7.4.4 

• Suppose x(1)(t),…, x(n)(t) form the fundamental solutions given 

by Thm 7.4.4. Denote the corresponding fundamental matrix 

by     (t).  Then columns of     (t) are x(1)(t),…, x(n)(t), and 

hence  

 

 

 

  

• Thus      –1(t0) = I, and the hence general solution to the 

corresponding initial value problem is  

 

• It follows that for any fundamental matrix     (t), 
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The Fundamental Matrix  .    

and Varying Initial Conditions 

• Thus when using the fundamental matrix     (t), the general 

solution to an IVP is  

 

• This representation is useful if same system is to be solved for 

many different initial conditions, such as a physical system 

that can be started from many different initial states.  

• Also, once     (t) has been determined, the solution to each set 

of initial conditions can be found by matrix multiplication, as 

indicated by the equation above. 

• Thus     (t) represents a linear transformation of the initial 

conditions x0 into the solution x(t) at time t.  
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Example 2: Find     (t) for 2 x 2 System  (1 of 5) 

• Find     (t) such that     (0) = I for the system below.  

 

 

• Solution:  First, we must obtain x(1)(t) and x(2)(t) such that 

 

 

• We know from previous results that the general solution is 

 

 

• Every solution can be expressed in terms of the general 

solution, and we use this fact to find x(1)(t) and x(2)(t).  
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Example 2: Use General Solution (2 of 5) 

• Thus, to find x(1)(t), express it terms of the general solution 

 

 

 and then find the coefficients c1 and c2.   

• To do so, use the initial conditions to obtain 

 

 

 or equivalently,  
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Example 2: Solve for x(1)(t)   (3 of 5) 

• To find x(1)(t), we therefore solve 

 

 

 by row reducing the augmented matrix: 

 

 

 

 

• Thus 
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Example 2: Solve for x(2)(t)   (4 of 5) 

• To find x(2)(t), we similarly solve 

 

 

 by row reducing the augmented matrix: 

 

 

 

 

• Thus 
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Example 2: Obtain      (t)   (5 of 5) 

• The columns of      (t) are given by x(1)(t) and x(2)(t), and 

thus from the previous slide we have  

 

 

 
 

• Note      (t) is more complicated than      (t) found in Ex 1. 

However, it is now much easier to determine the solution to 

any set of initial conditions. 
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Matrix Exponential Functions 

• Consider the following two cases: 

– The solution to x' = ax, x(0) = x0, is x = x0e
at, where e0 = 1. 

– The solution to x' = Ax, x(0) = x0, is x =     (t)x0, where      (0) = I.  

• Comparing the form and solution for both of these cases, we 

might expect     (t) to have an exponential character.   

• Indeed, it can be shown that      (t) = eAt, where  

 

 

 is a well defined matrix function that has all the usual 

properties of an exponential function.  See text for details.   

• Thus the solution to x' = Ax, x(0) = x0, is x = eAtx0.  
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Coupled Systems of Equations 

• Recall that our constant coefficient homogeneous system 

 

 

 

 written as x' = Ax with 

 

 

 

 is a system of coupled equations that must be solved 

simultaneously to find all the unknown variables.  
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Uncoupled Systems & Diagonal Matrices 

• In contrast, if each equation had only one variable, solved for 

independently of other equations, then task would be easier. 

• In this case our system would have the form 

 

 

 

  

 or x' = Dx, where D is a diagonal matrix:   
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Uncoupling: Transform Matrix T 

• In order to explore transforming our given system x' = Ax of 

coupled equations into an uncoupled system x' = Dx, where D is 

a diagonal matrix, we will use the eigenvectors of A. 

• Suppose A is n x n with n linearly independent eigenvectors       

                      , and corresponding eigenvalues               . 

• Define n x n matrices T and D using the eigenvalues & 

eigenvectors of A: 

 

 

 

 

• Note that T is nonsingular, and hence T-1 exists.  
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Uncoupling:  T-1AT = D 

• Recall here the definitions of A, T and D: 

 

 

 

 

• Then the columns of AT are A   (1),…, A   (n), and hence 

 

 

 

 

• It follows that T–1AT = D.   
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Similarity Transformations 

• Thus, if the eigenvalues and eigenvectors of A are known, 

then A can be transformed into a diagonal matrix D, with  

    T–1AT = D   

• This process is known as a similarity transformation, and A 

is said to be similar to D. Alternatively, we could say that A 

is diagonalizable.   
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Similarity Transformations: Hermitian Case 

• Recall:  Our similarity transformation of A has the form  

    T–1AT = D   

 where D is diagonal and columns of T are eigenvectors of A.   

• If A is Hermitian, then A has n linearly independent 

orthogonal eigenvectors                   , normalized so that  

                      for i = 1,…, n, and                          for i ≠ k.   

• With this selection of eigenvectors, it can be shown that  

 T–1 = T*.  In this case we can write our similarity transform 

as 

    T*AT = D  

x (1),...,x (n)

(x (i ),x (i )) = 1 (x (i ),x (k )) = 0



Nondiagonalizable A 

• Finally, if A is n x n with fewer than n linearly independent 

eigenvectors, then there is no matrix T such that T–1AT = D.   

• In this case, A is not similar to a diagonal matrix and A is not 

diagonlizable.   
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Example 3:  

Find Transformation Matrix T  (1 of 2) 

• For the matrix A below, find the similarity transformation 

matrix T and show that A can be diagonalized.  

 

 
 

• We already know that the eigenvalues are     1 = 3,     2 = –1 

with corresponding eigenvectors 

 

 

• Thus 
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Example 3: Similarity Transformation  (2 of 2) 

• To find T–1, augment the identity to T and row reduce: 

 

 

 

 

• Then 

 

 

 

 

• Thus A is similar to D, and hence A is diagonalizable.  
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Fundamental Matrices for Similar Systems  (1 of 3) 

• Recall our original system of differential equations x' = Ax. 

• If A is n x n with n linearly independent eigenvectors, then A 

is diagonalizable. The eigenvectors form the columns of the 

nonsingular transform matrix T, and the eigenvalues are the 

corresponding nonzero entries in the diagonal matrix D.    

• Suppose x satisfies x' = Ax, let y be the n x 1 vector such that 

x = Ty. That is, let y be defined by y = T–1x. 

• Since  x' = Ax and T is a constant matrix, we have Ty' = ATy, 

and hence y' = T–1ATy = Dy. 

• Therefore y satisfies y' = Dy, the system similar to x' = Ax.   

• Both of these systems have fundamental matrices, which we 

examine next. 



Fundamental Matrix for Diagonal System  (2 of 3) 

• A fundamental matrix for y' = Dy is given by Q(t) = eDt.   

• Recalling the definition of eDt, we have 
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Fundamental Matrix for Original System  (3 of 3) 

• To obtain a fundamental matrix     (t) for x' = Ax, recall that 

the columns of     (t) consist of fundamental solutions x 

satisfying x' = Ax. We also know x = Ty, and hence it follows 

that  

 

 

 

 

• The columns of     (t) given the expected fundamental 

solutions of x' = Ax.   
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Example 4:  

Fundamental Matrices for Similar Systems 

• We now use the analysis and results of the last few slides. 

• Applying the transformation x = Ty to x' = Ax below, this 

system becomes y' = T–1ATy = Dy: 

 

 
 

• A fundamental matrix for y' = Dy is given by Q(t) = eDt: 

 

 

• Thus a fundamental matrix      (t) for x' = Ax is 
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Boyce/DiPrima/Meade 11th ed, Ch 7.8:  

Repeated Eigenvalues 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• We consider again a homogeneous system of n first order 

linear equations with constant real coefficients x' = Ax. 

• If the eigenvalues r1,…, rn of A are real and different, then 

there are n linearly independent eigenvectors                      , 

and n linearly independent solutions of the form 

 

• If some of the eigenvalues r1,…, rn are repeated, then there 

may not be n corresponding linearly independent solutions of 

the above form. 

• In this case, we will seek additional solutions that are products 

of polynomials and exponential functions.  
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Example 1: Eigenvalues (1 of 2) 

• We need to find the eigenvectors for the matrix: 

 

 

• The eigenvalues r and eigenvectors     satisfy the equation 

 (A – rI )    =0  or  

 
 

 

 

• To determine r, solve det(A – rI) = 0:   

 

 

• Thus r1 = 2 and r2 = 2.    
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Example 1: Eigenvectors (2 of 2) 

• To find the eigenvectors, we solve 

 

 
  

 by row reducing the augmented matrix: 

 

 

 

 
 

• Thus there is only one linearly independent eigenvector for 

the repeated eigenvalue r = 2.  
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Example 2: Direction Field   (1 of 10) 

• Consider the homogeneous equation x' = Ax below. 

 

 
 

• A direction field for this system is given below. 

• Substituting x =     ert in for x, where r is A’s eigenvalue and     

         is its corresponding eigenvector,  

 the previous example showed the 

 existence of only one eigenvalue,  

 r = 2, with one eigenvector: 
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Example 2: First Solution; and 

Second Solution, First Attempt (2 of 10) 

• The corresponding solution x =    ert of x' = Ax is 

 

 

• Since there is no second solution of the form x =    ert, we 

need to try a different form.  Based on methods for second 

order linear equations in Ch 3.5, we first try x =     te2t.  

• Substituting x =     te2t into x' = Ax, we obtain 
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Example 2:  

Second Solution, Second Attempt    (3 of 10) 

• From the previous slide, we have 

 
 

• In order for this equation to be satisfied for all t, it is 

necessary for the coefficients of te2t and e2t to both be zero. 

• From the e2t term, we see that      = 0, and hence there is no 

nonzero solution of the form x =     te2t. 

• Since te2t and e2t appear in the above equation, we next 

consider a solution of the form   
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Example 2: Second Solution and its  

Defining Matrix Equations             (4 of 10) 

• Substituting x =     te2t +    e2t into x' = Ax, we obtain 

 
  

 or 

 
 

• Equating coefficients yields A    = 2    and A     =     + 2     , 

or  

 
 

• The first equation is satisfied if      is an eigenvector of A 

corresponding to the eigenvalue r = 2. Thus   
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Example 2: Solving for Second Solution  (5 of 10) 

• Recall that 

 

 

• Thus to solve (A – 2I)     =      for     , we row reduce the 

corresponding augmented matrix:  
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Example 2: Second Solution (6 of 10) 

• Our second solution x =    te2t +    e2t  is now 

 

 

• Recalling that the first solution was 

 

 

 we see that our second solution is simply 

 

 

 since the last term of third term of x is a multiple of x(1).   
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Example 2: General Solution (7 of 10) 

• The two solutions of  x' = Ax are 

 

 

• The Wronskian of these two solutions is 

 

 

• Thus x(1) and x(2) are fundamental solutions, and the general 

solution of x' = Ax is 
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Example 2: Phase Plane  (8 of 10) 

• The general solution is 

 

 

• Thus x is unbounded as t          , and x      0 as t             .  

• Further, it can be shown that as t            , x       0 asymptotic  

 to the line x2 = –x1 determined by the first eigenvector.  

• Similarly, as t           , x is asymptotic  

to a line parallel to x2 = –x1.  
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Example 2: Phase Plane  (9 of 10) 

• The origin is an improper node, and is unstable. See graph.  

• The pattern of trajectories is typical for two repeated 

eigenvalues with only one eigenvector.  

• If the eigenvalues are negative, then the trajectories are 

similar but are traversed in the inward direction. In this case 

the origin is an asymptotically stable improper node.  



Example 2:  

Time Plots for General Solution   (10 of 10) 

• Time plots for x1(t) are given below, where we note that the 

general solution x can be written as follows.    
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General Case for Double Eigenvalues 

• Suppose the system x' = Ax has a double eigenvalue r =   
and a single corresponding eigenvector    . 

• The first solution is  

                                  ,  

 where      satisfies (A –     I)    = 0.   

• As in Example 1, the second solution has the form 

 

 where     is as above and      satisfies                       .   
 

• Even though det(A –     I) = 0, it can be shown that              

                           can always be solved for     .   

• The vector      is called a generalized eigenvector.   
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Example 2 Extension:  

Fundamental Matrix  (1 of 2) 

• Recall that a fundamental matrix     (t) for x' = Ax has 

linearly independent solution for its columns.   

• In Example 1, our system x' = Ax was 

 

 

 and the two solutions we found were  

 

 

• Thus the corresponding fundamental matrix is 





























11

1
)( 2

222

22

t

t
e

etee

tee
t t

ttt

tt

Ψ

x
(1)(t) =

1

-1

æ

èç

ö

ø÷
e2t , x(2)(t) =

1

-1

æ

èç

ö

ø÷
te2t +

0

-1

æ

èç

ö

ø÷
e2t

xx 






 


31

11

Y



Example 2 Extension: 

Fundamental Matrix  (2 of 2) 

• The fundamental matrix     (t) that satisfies     (0) = I can be 

found using                              , where 

 

 
  

 where      –1(0) is found as follows: 

 

 
 

• Thus 
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Jordan Forms  

• If A is n x n with n linearly independent eigenvectors, then A 

can be diagonalized using a similarity transform T–1AT = D. 
The transform matrix T consisted of eigenvectors of A, and 

the diagonal entries of D consisted of the eigenvalues of A.  

• In the case of repeated eigenvalues and fewer than n linearly 

independent eigenvectors, A can be transformed into a nearly 

diagonal matrix J, called the Jordan form of A, with 

    T–1AT = J.  



Example 2 Extension:  

Transform Matrix   (1 of 2) 

• In Example 2, our system x' = Ax was 

 

 

 with eigenvalues r1 = 2 and r2 = 2 and eigenvectors 

 

 
 

• Choosing k = 0, the transform matrix T formed from the 

two eigenvectors     and     is   
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Example 2 Extension: Jordan Form   (2 of 2) 

• The Jordan form J of A is defined by T–1AT = J.  

• Now 

 
  

 and hence 

 

 
 

• Note that the eigenvalues of A, r1 = 2 and r2 = 2, are on the 

main diagonal of J, and that there is a 1 directly above the 

second eigenvalue. This pattern is typical of Jordan forms.  
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Boyce/DiPrima/Meade 11th ed, Ch 7.9: Nonhomogeneous 

Linear Systems 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• The general theory of a nonhomogeneous system of equations 

 

 

 

 

 parallels that of a single nth order linear equation.  

• This system can be written as x' = P(t)x + g(t), where 
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General Solution 

• The general solution of x' = P(t)x + g(t) on I:   

     has the form 

 

 where 

 

 is the general solution of the homogeneous system x' = P(t)x  

 and v(t) is a particular solution of the nonhomogeneous 

system x' = P(t)x + g(t).  
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Diagonalization 

• Suppose x' = Ax + g(t), where A is an n x n diagonalizable 

constant matrix.  

• Let T be the nonsingular transform matrix whose columns are 

the eigenvectors of A, and D the diagonal matrix whose 

diagonal entries are the corresponding eigenvalues of A.    

• Suppose x satisfies x' = Ax, let y be defined by x = Ty.   

• Substituting x = Ty into x' = Ax, we obtain 

                    Ty' = ATy + g(t).  

 or                  y' = T–1ATy + T–1g(t) 

 or                  y' = Dy + h(t), where h(t) = T–1g(t). 

• Note that if we can solve diagonal system y' = Dy + h(t) for y, 

then x = Ty is a solution to the original system.  



Solving Diagonal System 

• Now y' = Dy + h(t) is a diagonal system of the form 

 

 

 

 
 

 where r1,…, rn are the eigenvalues of A.   

• Thus y' = Dy + h(t) is an uncoupled system of n linear first 

order equations in the unknowns yk(t), which can be isolated   

 

 and solved separately, using methods of Section 2.1:  
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Solving Original System 

• The solution y to y' = Dy + h(t) has components 

 
 

• For this solution vector y, the solution to the original system  

 x' = Ax + g(t) is then x = Ty.  

• Recall that T is the nonsingular transform matrix whose 

columns are the eigenvectors of A.   

• Thus, when multiplied by T, the second term on right side of 

yk produces general solution of homogeneous equation, while 

the integral term of yk produces a particular solution of 

nonhomogeneous system.  
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Example 1: General Solution of Homogeneous 

Case  (1 of 5) 

• Consider the nonhomogeneous system x' = Ax + g below. 

 

 
 

• Note: A is a Hermitian matrix, since it is real and symmetric.  

• The eigenvalues of A are r1 = -3 and r2 = -1, with 

corresponding eigenvectors   

 

 

• The general solution of the homogeneous system is then 
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Example 1: Transformation Matrix (2 of 5) 

• Consider next the transformation matrix T of eigenvectors. 

Using a Section 7.7 comment, and A Hermitian, we have 

 T–1 = T* = TT, provided we normalize    (1)and    (2) so that (   
(1),   (1)) = 1 and (   (2),   (2)) = 1. Thus normalize as follows: 

 

 
 

 

 

• Then for this choice of eigenvectors,  
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Example 1:  

Diagonal System and its Solution (3 of 5) 

• Under the transformation x = Ty, we obtain the diagonal 

system y' = Dy + T–1g(t): 

 

 

 

 

 

• Then, using methods of Section 2.1,  
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Example 1:  

Transform Back to Original System (4 of 5) 

• We next use the transformation x = Ty to obtain the solution 

to the original system x' = Ax + g(t): 
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Example 1:  

Solution of Original System (5 of 5) 

• Simplifying further, the solution x can be written as 

 

 

 

 

 

 
 

• Note that the first two terms on right side form the general 

solution to homogeneous system, while the remaining terms 

are a particular solution to nonhomogeneous system. 
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Nondiagonal Case 

• If A cannot be diagonalized, (repeated eigenvalues and a 

shortage of eigenvectors), then it can be transformed to its 

Jordan form J, which is nearly diagonal.   

• In this case the differential equations are not totally 

uncoupled, because some rows of J have two nonzero 

entries: an eigenvalue in diagonal position, and a 1 in 

adjacent position to the right of diagonal position.  

• However, the equations for y1,…, yn can still be solved 

consecutively, starting with yn. Then the solution x to 

original system can be found using x = Ty.  



Undetermined Coefficients 

• A second way of solving x' = P(t)x + g(t) is the method of 

undetermined coefficients. Assume P is a constant matrix, 

and that the components of g are polynomial, exponential or 

sinusoidal functions, or sums or products of these.  

• The procedure for choosing the form of solution is usually 

directly analogous to that given in Section 3.6.    

• The main difference arises when g(t) has the form ue  t, 

where      is a simple eigenvalue of P. In this case, g(t) 

matches solution form of homogeneous system x' = P(t)x, 

and as a result, it is necessary to take nonhomogeneous 

solution to be of the form ate  t + be  t. This form differs 

from the Section 3.6 analog, ate   t. 

l

l

l l
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Example 2: Undetermined Coefficients  (1 of 5) 

• Consider again the nonhomogeneous system x' = Ax + g: 

 

 
 

• Assume a particular solution of the form 

 

 where the vector coefficents a, b, c, d are to be determined.  

• Since r = -1 is an eigenvalue of A, it is necessary to include 

both ate-t and be-t, as mentioned on the previous slide.  
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Example 2:  

Matrix Equations for Coefficients  (2 of 5) 

• Substituting 

 

 in for x in our nonhomogeneous system x' = Ax + g, 

 

 

 we obtain 

 

 

• Equating coefficients, we conclude that 
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Example 2:  

Solving Matrix Equation for (a)    (3 of 5) 

• Our matrix equations for the coefficients are: 

 

 

• From the first equation, we see that a is an eigenvector of A 

corresponding to eigenvalue r = -1, and hence has the form 

 

 

• We will see on the next slide that      = 1, and hence  
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Example 2:  

Solving Matrix Equation for (b)    (4 of 5) 

• Our matrix equations for the coefficients are: 

 

 

• Substituting a =             into the second equation,  

 

 

 

 
 

• Thus     = 1, and solving for b, we obtain 
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Example 2: Particular Solution    (5 of 5) 

• Our matrix equations for the coefficients are: 

 

 

• Solving third equation for c, and then fourth equation for d, 

it is straightforward to obtain cT = (1, 2), dT = (–4/3, –5/3).   

• Thus our particular solution of x' = Ax + g is 

 

 
 

• Comparing this to the result obtained in Example 1, we see 

that both particular solutions would be the same if we had 

chosen k = ½ for b on previous slide, instead of k = 0. 
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Variation of Parameters: Preliminaries 

• A more general way of solving x' = P(t)x + g(t) is the 

method of variation of parameters.  

• Assume P(t) and g(t) are continuous on                , and let     

         (t) be a fundamental matrix for the homogeneous system.  

• Recall that the columns of      are linearly independent 

solutions of x' = P(t)x, and hence     (t) is invertible on the 

interval                , and also                            .  

• Next, recall that the solution of the homogeneous system 

can be expressed as x =     (t)c.   

• Analogous to Section 3.7, assume the particular solution of 

the nonhomogeneous system has the form x =     (t)u(t), 

 where u(t) is a vector to be found.   

a < t < b
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Y
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a < t < b Y '(t) = P(t)Y(t)
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Variation of Parameters: Solution 

• We assume a particular solution of the form x =     (t)u(t).   

• Substituting this into x' = P(t)x + g(t), we obtain 

      '(t)u(t) +     (t)u'(t) = P(t)    (t)u(t) + g(t) 

• Since     '(t) = P(t)    (t), the above equation simplifies to 

          u'(t) =     –1(t)g(t) 

• Thus 

 

 where the vector c is an arbitrary constant of integration. 

• The general solution to x' = P(t)x + g(t) is therefore 
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Variation of Parameters: Initial Value 

Problem 

• For an initial value problem  

   x' = P(t)x + g(t), x(t0) = x(0),  

 the general solution to x' = P(t)x + g(t) is 

 
 

• Alternatively, recall that the fundamental matrix     (t) 

satisfies      (t0) = I, and hence the general solution is 

 
 

• In practice, it may be easier to row reduce matrices and 

solve necessary equations than to compute     –1(t) and 

substitute into equations. See next example. 
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Example 3: Variation of Parameters  (1 of 3) 

• Consider again the nonhomogeneous system x' = Ax + g: 

 

 
 

• We have previously found general solution to homogeneous 

case, with corresponding fundamental matrix:  

 

 

• Using variation of parameters method, our solution is given 

by x =     (t)u(t), where u(t) satisfies      (t)u'(t) = g(t), or 
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Example 3: Solving for u(t)    (2 of 3) 

• Solving      (t)u'(t) = g(t) by row reduction, 

 

 

 

 

 

 

 

• It follows that  
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Example 3: Solving for x(t)    (3 of 3) 

• Now x(t) =     (t)u(t), and hence we multiply 

 

 
  

 to obtain, after collecting terms and simplifying, 

 

 

 

• Note that this is the same solution as in Example 1.    
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Laplace Transforms 

• The Laplace transform can be used to solve systems of 

equations. Here, the transform of a vector is the vector of 

component transforms, denoted by X(s):   

 

 
 

• Then by extending Theorem 6.2.1, we obtain 
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Example 4: Laplace Transform  (1 of 5) 

• Consider again the nonhomogeneous system x' = Ax + g: 

 

 
 

• Taking the Laplace transform of each term, we obtain  

 
  

  

 where G(s) is the transform of g(t), and is given by 
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Example 4: Transfer Matrix  (2 of 5) 

• Our transformed equation is  

 
  

• If we take x(0) = 0, then the above equation becomes 

 

 or 

 

• Solving for X(s), we obtain 

 
 

• The matrix (sI – A)–1 is called the transfer matrix.  
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Example 4: Finding Transfer Matrix  (3 of 5) 

• Then  

 
  

 

• Solving for (sI – A)–1, we obtain 
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Example 4: Transfer Matrix  (4 of 5) 

• Next, X(s) = (sI – A)–1G(s), and hence 
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Example 4: Transfer Matrix  (5 of 5) 

• Thus 

 

 

 

 

• To solve for x(t) = L-1{X(s)}, use partial fraction expansions 

of both components of X(s), and then Table 6.2.1 to obtain: 

 

 
 

• Since we assumed x(0) = 0, this solution differs slightly 

from the previous particular solutions.  
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Summary   (1 of 2) 

• The method of undetermined coefficients requires no 

integration but is limited in scope and may involve several 

sets of algebraic equations. 

• Diagonalization requires finding inverse of transformation 

matrix and solving uncoupled first order linear equations. 

When coefficient matrix is Hermitian, the inverse of 

transformation matrix can be found without calculation, 

which is very helpful for large systems. 

• The Laplace transform method involves matrix inversion, 

matrix multiplication, and inverse transforms. This method 

is particularly useful for problems with discontinuous or 

impulsive forcing functions.   



Summary   (2 of 2) 

• Variation of parameters is the most general method, but it 

involves solving linear algebraic equations with variable 

coefficients, integration, and matrix multiplication, and 

hence may be the most computationally complicated 

method.  

• For many small systems with constant coefficients, all of 

these methods work well, and there may be little reason to 

select one over another.  


