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« A system of simultaneous first order ordinary differential
equations has the general form

x| =FR (X, %,,...X,)
Xo = F, (t, X, X,,...X.)

X\ =F (t, X, X,,...X,)

where each x, is a function of t. If each F, is a linear
function of x,, X,, ..., X.,, then the system of equations is said
to be linear, otherwise it is nonlinear.

« Systems of higher order differential equations can similarly
be defined.



Example 1

« The motion of a certain spring-mass system from Section 3.7
was described by the differential equation

udke) +%u(l(t) +u(t)=0

« This second order equation can be converted into a system of
first order equations by letting X, = u and x, = u". Thus

X=X,

1
x$+—x,+x,=0
or 8
Xp— X5
1
x$=-x,- =x,

8



Nth Order ODESs and Linear 15t Order
Systems

* The method illustrated in the previous example can be used
to transform an arbitrary nth order equation

yO =F(t,y,y,y,....y"?)
Into a system of n first order equations, first by defining

X =Y, X%=Y,%=Y,..,X =Y
Then

(n-1)



Solutions of First Order Systems

« A system of simultaneous first order ordinary differential

equations has the general form
X, =FR (X, %,,...X,)

X\ =F (t,X,X,,... X ).
It has a solutionon [ - g <t < p if there exists n functions
Xl — ¢l(t)’ X2 — ¢2 (t) °°°°° Xn — ¢n (t)

that are differentiable on | and satisfy the system of
equations at all points tin I.

Initial conditions may also be prescribed to give an I\VP:
X (t) = Xf’ X, (to) = Xg’---’ X (to) = Xr?



Theorem 7.1.1

» Suppose F,..., F,and
WE T, TE X, TF T, TE T X
are continuous in the region R of t X, X,...x,-space defined by
a<t<ba,<x<Bb,..,a, <x <b and let the point
(to, X0, X5,y xr?) be contained in R. Then in some interval
(t,— h, t, + h) there exists a unique solution
X =@ (1), X, =4 (1),..., X, = ¢, (1)

that satisfies the I'\VP. X! = F,(t, X, Xy X))

X, = F,(t, X, X5,...X.)

X, =F (t, X, X,,...X,)



Linear Systems

 If each F, is a linear function of x,, Xx,, ..., X, then the
system of equations has the general form

Xl' — pll(t)xl + plz(t)xz ...+ Py, (t)xn + gl(t)
X; — p21(t)X1 + pzz(t)xz ...+ Py, (t)xn + gz(t)
Xr'1 — pnl(t)xl + pnz(t)xz +...t pnn(t)xn + gn(t)

* If each of the g,(t) is zero on I, then the system is
homogeneous, otherwise it Is nonhomogeneous.



Theorem 7.1.2

*  SUPPOSE P11, Pi2s---» Pry J1s- - -» G, @r€ CONtinUoOUS on an
interval /:a <t < b withtyin |, and let

0
n

prescribe the initial conditions. Then there exists a unigue
solution

0 O
Xy s Xoyeney X

X :¢1(t)’ X, :¢2(t)1---’ X, = &, (t)
that satisfies the 1\VVP, and exists throughout I.

X = Py ()X + P ()X, +...+ py, (1)X, + g, (1)
Xy = Py (D)X + Pop ()X, +...+ P, (D)X, + 9, (1)

X; . pnl(t)X1+ an(t)XZ t.o..t pnn(t)xn + gn(t)
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* For theoretical and computational reasons, we review results
of matrix theory in this section and the next.

« A matrix A is an m x n rectangular array of elements,
arranged in m rows and n columns, denoted

d; &, v

a a a
A:(aij): .21 .22 . .Zn

am1 am2 amn

« Some examples of 2 x 2 matrices are given below:

1 2 1 3 1 3—2i
A= . B= . C= _ _
(3 4j [2 4) (4+5I 6—7Ij



Transpose

» The transpose of A = (g;) is A" = (a;).

d, A, - d; 3y o Ay
a a 000 a a 000 a
L A EV
aml am2 T amn aln a2n Tt amn

* For example,

1 2 ; (1 3 1 2 3 .
A= = A = , B= =B =
3 4 2 4 4 5 6

w N
o O1 b~



Conjugate

» The conjugate of A = (a;) is A = (a;).

a

ml

a

d, 4,
a21 a'22

m2

* For example,

S

1
3—-4i

ain gll a12 aln

a.2n — K _ a21 522 a2n

amn am1 am2 amn
2431y — (1 2-3

4 \3+4i 4




Adjoint

« The adjoint of A is AT, and is denoted by A*

d, Q, - Q, Ay, 521
a a -+ a < |a, a
N A EV N
aml am2 amn a1n a2n

* For example,

1 2+ 3l . 1 3+4i
A= _ = A = _
[3—4I 4 j (2—3I 4 j

QD

ml

2

m2

QD

mn




Square Matrices

e Asquare matrix A has the same number of rows and
columns. That is, A 1s n x n. In this case, A 1s said to have
order n.

A, dy, 0
A = Ay Ay vt 8y,
dy Ay 0 Qg
* For example,
1 2 3
1 2
A= . B=|4 5 6
3 4
/7 8 9



\ectors

« Acolumn vector x is an n x 1 matrix. For example,

1
X=|2
3

« Arow vector x Isa 1 x n matrix. For example,
y=@1 2 3)

 Note here that y = X', and that in general, if x is a column
vector x, then X' is a row vector.



The Zero Matrix

» The zero matrix is defined to be 0 = (0), whose dimensions
depend on the context. For example,

0 0 0 0 0
0= . 0= . 0=
(o o} (o 0 oj

o O O
o O O



Matrix Equality

* Two matrices A = (a;) and B = (b;;) are equal If a; = by; for
all 1 and J. For example,

1 2 1 2
A= B= —~ A=B
HALE



Matrix — Scalar Multiplication

* The product of a matrix A = (a;) and a constant k is defined
to be kA = (ka;;). For example,

1 2 3 -5 -10 -15
A= — —-5A =
(4 5 6) (— 20 -26 - 30)



Matrix Addition and Subtraction

* The sum of two m x n matrices A = (a;) and B = (by) Is
defined to be A + B = (g;; + b;;). For example,

1 2 5 6 6 8
A= , B= = A+B=
LR MM EYSLE R

* The difference of two m x n matrices A = (a;) and B = (b;;)
Is defined to be A - B = (g;; - b;;). For example,

e el a2



Matrix Multiplication

* The product of an m x n matrix A = (g;) and an n X r matrix
B = (by;) Is defined to be the matrix C = (c;;), where

n
Cijzzaikbkj
k=1
« Examples (note AB does not necessarily equal BA):
1 2 1 3 1+4 3+8 5 11
A= ,B= = AB = =
3 4 2 4 3+8 9+16) \11 25
1+9 2+12 10 14
= BA = =
2+12 4+16 14 20
0

3
1 2 3 3+24+0 0+4-3 5 1
C= D=1 2|=CD= =
4 5 6 0 12+5+0 0+10-6 17 4

-1



Example 1: Matrix Multiplication

 To illustrate matrix multiplication and show that it is not
commutative, consider the following matrices:

1 -2 1 2 1 -1
A[ 2 1}, B{l -1 o}
2 1 1 2 -1 1
* From the definition of matrix multiplication we have:

(2-2+42 1+42-1 -141) (2 2 o0 )

AB=L 2.2 241 -1 J:[o 1 -1J
4+1+2 2-1-1 -2+1 7 0 -1
((2-2 -4+2-1 2-1-1) (0 -3 0 )
BA:L 1 -2-2 1+1 :L 1 -4 2J¢AB
242 -4-2+1 2+1+1 4 -5 4



Vector Multiplication

e The dot product of two n x 1 vectors X & y Is defined as
XTy — inyj
k=1
* The inner product of two n x 1 vectors X & y is defined as
(X’y): XTy — in yj
k=1

« Example:

1 -1
X=[21] y=|2-3i| =>x'y=O)(-D+(2)(2-3i)+(3i)(5+5i) =-12+9i
3 5+5i

= (x,y)=X"Y = W)(-1) + (2)(2 + 3i) + (3i)(5—5i) =18 + 21i



Vector Length

« The length of an n x 1 vector X is defined as

b 1/2 n 1/2
=0 | 0% | =[Sk
k=1 k=1
* Note here that we have used the fact that if x = a + bi, then
x-X =(a+bi)a—bi)=a?+b? =|x’

« Example:

1
x=| 2 | =|X=xx)"*=/OQ)+(2)(2)+(3+4i)(3-4i)
3+4i

= J1+4+(9+16) =+/30



Orthogonality

« Two n x 1 vectors X & y are orthogonal if (x,y) = 0.
« Example:

w N

11
[ 4} = (xy)= 0D +(2)(-4) + (3)(-1) =0
-1



Identity Matrix

« The multiplicative identity matrix I is an n X n matrix
given by

10 - 0

« For any square matrix A, it follows that Al = A= A.
« The dimensions of | depend on the context. For example,

e 2l 96 e

0 3

01 2 1 2 3
1 0|4 5 6|=|4 5 6
0O 17 8 9 /7 8 9



Inverse Matrix

A square matrix A Is nonsingular, or invertible, if there
exists a matrix B such that that AB = BA = I. Otherwise A
IS singular.

The matrix B, if it exists, is unique and is denoted by A~
and Is called the inverse of A.

It turns out that A~ exists iff detA # 0, and A~ can be found
using row reduction (also called Gaussian elimination) on
the augmented matrix (A|l), see example on next slide.

The three elementary row operations:
— Interchange two rows.
— Multiply a row by a nonzero scalar.
— Add a multiple of one row to another row.



Example 2: Finding the Inverse of a Matrix (1 of 2)

Use row reduction to find the inverse of the matrix A below,

If It exists. 1 -1 -1

2 2 3

 Solution: If possible, use elementary row operations to

reduce (All),
1 -1 -1 1 00

(A)=]3 -1 2 0 1 0],
2 2 300 1

such that the left side Is the identity matrix, for then the
right side will be A-L. (See next slide.)



Example 2: Finding the Inverse of a Matrix (2 of 2)

1 -1-1100) (1-1-1 100
(Al)=[3 -1 2 0 1 0|>{0 2 5 -3 10
2 2 300 1 2 0 1
1o i 1 0 3/2 -1/2 1/2 0
>0 1 5/2 -3/2 1/2 0 —>[o 1 5/2 -3/2 1/2 0
0 4 5 -2 4 -2 1
10 3/2 -1/2 1/2 0y (1 0 0 7/10 -1/10 3/10
—>|0 1 5/2 -3/2 1/2 0|—»[0 1 0 1/2 -1/2 1/2
00 -5 4 -2 1) |0 0 1 -4/5 2/5 -1/5

7/10 -1/10 3/10
 Thus Al=| 1/2 -1/2 1/2
~4/5 2/5 -1/5



Matrix Functions

 The elements of a matrix can be functions of a real variable.
In this case, we write

X (t) 311(0 a12(t) ey, (t)
X(t) _ XZ;(t) | A(t) _ a21:(t) azzz(t) a2n:(t)
Xm (t) Ay (t) Ao (t) o Ay (t)

 Such a matrix Is continuous at a point, or on an interval

(a, b), if each element is continuous there. Similarly with
differentiation and integration:

(ij_,? (daj j A(t)dt—(j:aij(t)dt)



Example & Differentiation Rules

« Example: ;.
3t sint dA ot cost
A(t) = = —= _ ,
cost 4 dt —sint O

= [ At =(7_’ 1 4‘;)

« Many of the rules from calculus apply in this setting. For

example: d(CA) _dA

=C—, where CIs a constant matrix
dt dt
d(A+B) dA dB
dt dt dt

d(AB):(dA)B+A(d_Bj

dt dt dt
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« Asystem of n linear equations in n variables,
A Xty Xy ++ 8y X, = bl
a,, X, +a, X, +---+a, X =D,

a, % +a,,X, +---+a, X =b_,

n,n-n

can be expressed as a matrix equation Ax = b:

a1,1 a1,2 o al,n X b1
dpg Sy Gy, || X _ b2
an,1 a'n,2 a'n,n Xn bn

« |f b =0, then system is homogeneous; otherwise it is
nonhomogeneous.



Nonsingular Case

« |If the coefficient matrix A is nonsingular, then it is
Invertible and we can solve Ax = b as follows:

Ax=b =>AAX=A"D =Ix=A"D =x=A"D

« This solution is therefore unique. Also, if b =0, it follows
that the unique solutionto Ax =0 isx = A=10 = 0.

« Thus if A is nonsingular, then the only solution to Ax =0 is
the trivial solution x = 0.



Example 1: Nonsingular Case (1 of 3)

* From a previous example, we know that the matrix A below
IS nonsingular with inverse as given.

1 -2 3 -3/4 -5/4 1/4
A=-1 1 -2| A'=|-5/4 -7/4 -1/4
2 -1 -1 -1/4 -3/4 -1/4

 Using the definition of matrix multiplication, it follows that
the only solution of Ax=01s x =0:

-3/4 -5/4 1/4)0 0
Xx=A"0=|-5/4 -7/4 -1/4 =10
-1/4 -3/4 -1/4)0 0



Example 1: Nonsingular Case (2 of 3)

* Now let’s solve the nonhomogeneous linear system AX =D

i .
below using A~: T 451, + B, = 2

1, +0X, +3X, = -2
4x, —3X, +8%; = 0

 This system of equations can be written as Ax = b, where

1 -2 3 X, I
A[l 1 2} x[xz} b[S
2 -1 -1 X, 4
* Then

-3/4 -5/4 1/4\ 7 2
Xx=A'b=|-5/4 -7/4 -1/4|-5|=|-1
-1/4 -3/4 -1/4) 4 1




Example 1: Nonsingular Case (3 of 3)

 Alternatively, we could solve the nonhomogeneous linear

system AX = b below using row reduction.
X, —2X, +3X; = 7

— X, + X, —2X; =-5
2X =X, =Xy = 4
« To do so, form the augmented matrix (A|b) and reduce,
using elementary row operations.
1 -2 3 7
0 1 -1 2}

1 -2 3 7\ (1 -2 3 7
(Ab)=|-1 1 -2 -5|-»]0 -1 1 2|->
0 3 -7 -10

2 -1 -1 4 0 3 -7 -10

o 0 1 1 X, =1

1 -2 3 7 1 -2 3 7 X, —2X%, +3X, =7
-0 1 -1 -2|—»|0 1 -1 -2|—> X, — X3 =—2 — X=|-

0 0 -4 -4

2
1
1

|



Singular Case

If the coefficient matrix A is singular, then At does not
exist, and either a solution to Ax = b does not exist, or there

IS more than one solution (not unique).

Further, the homogeneous system Ax = 0 has more than one
solution. That is, in addition to the trivial solution x = 0,
there are infinitely many nontrivial solutions.

The nonhomogeneous case Ax = b has no solution unless
(b, y) =0, for all vectors y satisfying Ay = 0, where A™ is
the adjoint of A.

In this case, Ax = b has solutions (infinitely many), each of
the form x = x© + x, where x© is a particular solution of

AX = Db, and x s any solution of Ax = 0.



Example 2: Singular Case (1 of 2)

« Solve the nonhomogeneous linear system Ax = b below using row
reduction. Observe that the coefficients are nearly the same as in the

previous example X, — 2%, +3x%, =b),
—X +X,—2X, =Db,
2X, — X, + 3%, =D,
« We will form the augmented matrix (Alb) and use some of the steps in
Example 1 to transform the matrix more quickly
1 -2 3 b 1 -2 3 b,
(Ab)=[-1 1 -2 b, |0 1 -1  —b-bh,
2 -1 3 Db, 0O O O b+3b,+Db,
X, —2X, +3X =Db
— X, — X, =-b-Db, — b, +3b, +b, =0
0 =b +3b,+b,



— X + X, —2X; =D,

Example 2: Singular Case (2 of 2)

From the previous slide, if b, +3b, +b, =0, there is no solution

to the system of equations

Requiring that b, +3b, +b, =0, assume, for example, that
b=2b,=1b,=-5

Then the reduced augmented matrix (A|b) becomes:

1 -2 3 b)) X -2X, +3X =2 — X, —4 -1\ (-4
0 1 -1 -b -b, |—> X, — X3 ==3—2 X=| X—3|> X=X| 1[|+|-3
0 0 O b+3b,+h 0 =0 X, 1 0

It can be shown that the second term in x is a solution of the
nonhomogeneous equation and that the first term is the most
general solution of the homogeneous equation, letting X; =«
where o IS arbitrary



Linear Dependence and Independence

« Aset of vectors xD, x@, ..., x™ js linearly dependent if
there exists scalars c,, C,,..., C,, not all zero, such that

X+, x? 4o e xM =0

 If the only solution of
X+, x? 4o e xM =0

isc,=c¢,=...=c, =0, then X, x@,  x™is linearly
Independent.



Example 3: Linear Dependence (1 of 2)

« Determine whether the following vectors are linear
dependent or linearly independent.

1 2 -4
xO=| 2| x®@=|1]| x®=| 1
= 3 -11

 \We need to solve

cXP +¢,x? +¢c,x® =0

- 5 3



x® (

1
2

o {i

Example 3: Linear Dependence (2 of 2)

We can reduce the augmented matrix (A|b), as before.

%

1 2
0 1
0 O

—4 0
-3 0
0 0

3 | where c, can be any number

1 2 -4 0 1 2 -4 0
(Ab)=| 2 1 1 0|>|0 -3 9 0|>
-1 3 -11 0 0 5 15 0
c, +2¢c, —4c, =0 —2
c, -3, = 0->c=c,
0 =0 1

So, the vectors are linearly dependent: if ¢, = -1, 2x® —3x® —x® =0
Alternatively, we could show that the following determinant is zero:

det(x, ) =

1 2
2 1

—4
1

=13 =1l

=0

—4
1
~11



Linear Independence and Invertibility

Consider the previous two examples:

— The first matrix was known to be nonsingular, and its column vectors
were linearly independent.

— The second matrix was known to be singular, and its column vectors
were linearly dependent.
This is true in general: the columns (or rows) of A are linearly
independent iff A is nonsingular iff A exists.

Also, A is nonsingular iff detA # 0, hence columns (or rows)
of A are linearly independent iff detA # 0.

Further, if A = BC, then det(C) = det(A)det(B). Thus if the
columns (or rows) of A and B are linearly independent, then
the columns (or rows) of C are also.



Linear Dependence & Vector Functions

« Now consider vector functions x(t), x@(b),..., xM(t), where

X (t)

X5 (t)

xW(t) =  k=12...,n, tel=(ap)

X ()

« As before, x(t), xA(t),..., xX(M(t) is linearly dependent on | if
there exists scalars c,, C,,..., C,, not all zero, such that

cXP ) +e,x? () +---+c xM(t)=0, forall tel

« Otherwise xD(t), x@(b),..., xN(1) is linearly independent on |
See text for more discussion on this.



Eigenvalues and Eigenvectors

The eqn. AX =y can be viewed as a linear transformation
that maps (or transforms) x into a new vectory.

Nonzero vectors X that transform into multiples of
themselves are important in many applications.

Thus we solve Ax = / x or equivalently, (A —/ 1)x = 0.

This equation has a nonzero solution if we choose / such
that det(A— /1) =0.

Such values of / are called eigenvalues of A, and the
nonzero solutions x are called eigenvectors.



Example 4: Eigenvalues (1 of 3)

« Find the eigenvalues and eigenvectors of the matrix A.

3 -
A =
h
« Solution: Choose / such that det(A— /1) =0, as follows.

det(A— A1) = det (j __2]_/{; m

3—-1 —
= det
4 —2—1]

=(3-)-2-2)-(-1)4)
=P -21-2=(1-2)1+1)
= A=2,1=-1




Example 4: First Eigenvector (2 of 3)

To find the eigenvectors of the matrix A, we need to solve
(A—/Dx=0for /=2and / =-1.

Eigenvector for / =2: Solve

oo = (U0 o a= o Sl

and this implies that x, =X, . So

X 1 1
x® = ( 2) = c( j c arbitrary — choose X = ( )
X, 1 1



Example 4: Second Eigenvector (3 of 3)

« Eigenvector for / =-1: Solve

oo s (Moo 16 )

and this implies that x, =4x, So

X 1 1
x® = "*l=c| | c arbitrary —> choose x? =
4x, 4 4



Normalized Eigenvectors

« From the previous example, we see that eigenvectors are
determined up to a nonzero multiplicative constant.

« If this constant is specified in some particular way, then the
eigenvector Is said to be normalized.

« For example, eigenvectors are sometimes normalized by
choosing the constant so that ||x|| = (x, X)” = 1.



Algebraic and Geometric Multiplicity

In finding the eigenvalues / of an n x n matrix A, we solve
det(A— /1) =0.

Since this involves finding the determinant of an n x n
matrix, the problem reduces to finding roots of an nth
degree polynomial.

Denote these roots, or eigenvalues, by /4, /5 ..., [ o

If an eigenvalue Is repeated m times, then its algebraic
multiplicity is m.

Each eigenvalue has at least one eigenvector, and a
eigenvalue of algebraic multiplicity m may have q linearly

Independent eigevectors, 1 < g <m, and q is called the
geometric multiplicity of the eigenvalue.



Eigenvectors and Linear Independence

 |f an eigenvalue / has algebraic multiplicity 1, then it is
said to be simple, and the geometric multiplicity is 1 also.

 |f each eigenvalue of an n x n matrix A is simple, then A
has n distinct eigenvalues. It can be shown that the n
eigenvectors corresponding to these eigenvalues are linearly
Independent.

 |If an eigenvalue has one or more repeated eigenvalues, then
there may be fewer than n linearly independent eigenvectors
since for each repeated eigenvalue, we may have g < m.
This may lead to complications in solving systems of
differential equations.



Example 5: Eigenvalues (1 of 5)

* Find the eigenvalues and eigenvectors of the matrix A.
0 1 1
A=1 0 1
1 1 0

« Solution: Choose / such that det(A — /1) =0, as follows.

-2 1 1
det(A—Al)=det| 1 -4 1
1 1 -4

=1 +31+2

= (A—2)(A+1)’
= 4=22,=-12,=-1



Example 5: First Eigenvector (2 of 5)

« Eigenvector for / =2: Solve (A — / 1)x =0, as follows.

-2 1 10 1 1 -2 0 1 1 -2 0
1 -2 10|—»| 1 -2 10|->|0 -3 30
1 1 -2 0 -2 1 10 0 3 -3 0
1 1 -2 0 1 0 -10 1x, -1x, =
-0 1 -1 0|—»>|0 1 -1 0|—> 1x, —=1x, =
00 0O 0 0 0O OX, =

Xq 1 1

—xW =] x, |=c| 1], c arbitrary — choose x" =| 1
Xq 1 1



Example 5: 2"d and 39 Eigenvectors (3 of 5)

« Eigenvector for / =-1: Solve (A— / )x =0, as follows.

1110 (11 10) 1x +1x, +1x, =0
1110{—»-/0 000 0> 0X, =0
1110 0 0 0O Ox, =0

1 -1
—x®? = [ 1|+x,| 0}, where x,,Xx, arbitrary

0 1
—choose x? = 0], x¥=| 1

-1 —1




Example 5: Eigenvectors of A (4 of 5)

Thus three eigenvectors of A are

1 1 0
xD =1 x@= 0| x®=| 1
1 -1 -1

where x@), X correspond to the double eigenvalue / =-1.
It can be shown that XM, x(@, x® are linearly independent.
Hence A is a 3 x 3 symmetric matrix (A = A" ) with 3 real
eigenvalues and 3 linearly independent eigenvectors.

011
A=l1 0 1
1 10



Example 5: Eigenvectors of A (5 of 5)

Note that we could have we had chosen

1 1 1
xD =11 x?=] 0|, x®=|-2
1 -1 1

Then the eigenvectors are orthogonal, since
(X(l) Xx® )= 0 (X(l) x® )= 0 (X(z) x® )= 0

Thus A Is a 3 x 3 symmetric matrix with 3 real eigenvalues
and 3 linearly independent orthogonal eigenvectors.



Hermitian Matrices

A self-adjoint, or Hermitian matrix, satisfies A = A",
where we recall that A" = AT,

Thus for a Hermitian matrix, a;; = a;;..

Note that if A has real entries and Is symmetric (see last
example), then A is Hermitian.

An n x n Hermitian matrix A has the following properties:

All eigenvalues of A are real.
There exists a full set of n linearly independent eigenvectors of A.

If X and x®@ are eigenvectors that correspond to different
eigenvalues of A, then x® and x®@ are orthogonal.

Corresponding to an eigenvalue of algebraic multiplicity m, it is
possible to choose m mutually orthogonal eigenvectors, and hence A
has a full set of n linearly independent orthogonal eigenvectors.
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* The general theory of a system of n first order linear equations

X1’ — pll(t)xl + p12(t)X2 ...+ Py, (t)xn + gl(t)
X; — p21(t)xl + pzz(t)xz ...+ Py, (t)xn + gz(t)

Xr’1 — pnl(t)xl + pnz(t)xz T...F pnn(t)xn + gn(t)
parallels that of a single nth order linear equation.
« This system can be written as x' = P(t)x + g(t), where

Xl(t) gl(t) pll(t) plZ(t) pln(t)
Xz(t) g(t): 92('[) p21(t) pzz(t) pzn(t)

Xn (t) g, (t) P (t) Pn2 (t) o Py (t)

X(t) = , P(t) =




Vector Solutions of an ODE System

« Avector x = £ (t) is a solution of x' = P(t)x + g(t) if the
components of X,

X :¢1(t)1 X, = ¢2(t)’---1 X, =9, (1),
satisfy the system of equationson [/ : g <t < b.
« For comparison, recall that x' = P(t)x + g(t) represents our
system of equations
X1 = Pra(D)X + Prp ()X, +...+ Py, (D)X, + 9, (1)
Xy = Py ()X + Pop ()X, +...+ Pan (D)X, + 9, (1)

X;l — pnl(t)xl + pnz(t)xz T...F pnn(t)xn + gn(t)

« Assuming P and g continuous on I, such a solution exists by
Theorem 7.1.2.



Homogeneous Case; Vector Function
Notation

« As in Chapters 3 and 4, we first examine the general
homogeneous equation x' = P(t)x.

 Also, the following notation for the vector functions
XM, x@ . x® . will be used:

Xll(t) X12(t) Xln (t)
x® (t) = XZl;(t) | (@) (t) = Xzzz(t) ..... 5 (k) (t) = X2n:(t) .
an (t) Xn2 (t) Xnn (t)




Theorem 7.4.1

« |f the vector functions x( and x(@ are solutions of the system
X' = P(t)x, then the linear combination ¢,x®) + ¢,x is also a
solution for any constants ¢, and c..

* Note: By repeatedly applying the result of this theorem, it
can be seen that every finite linear combination

X=X () +c,x? (1) +...+ ¢, x (1)

of solutions x®), x@_ ... x® js itself a solution to x' = P(t)x.



Theorem 7.4.2

o IfxM, x@, . . . xM are linearly independent solutions of the
system X' = P(t)x for each pointin / : @ <t < b, then each
solution x = 7 (t) can be expressed uniquely in the form

X =c XV (t)+c,x () +...+¢c x™(t)

« |f solutions x4, ..., x(™ are linearly independent for each
pointin [ :a <t < b, then they are fundamental solutions
on I, and the general solution is given by

X =Cc XV (t)+c,xD(t)+...+¢c.x™ (1)



The Wronskian and Linear Independence

« The proof of Thm 7.4.2 uses the fact that if xb), x@, ..., x(™
are linearly independent on I, then detX(t) # 0 on I, where

Xll(t) Xln(t)
X('[)z : . :

an.(t) Xnn.(t)

« The Wronskian of x1_.... x s defined as
WI[xD, ..., x(M](t) = detX(t).

« |t follows that W[x®,..., x™M](t) # 0 on | iff x®,..., x™ are
linearly independent for each point in I.



Theorem 7.4.3

« IfxD, x@ . xM are solutions of the system x' = P(t)x on
, thdn Baerenbkian W[x®, ..., xM](t) is either identically
zero on | or else Is never zero on 1.

e This result relies on Abel’s formula for the Wronskian

dw [ P11(t)+Paa(t)+ -+ Py ()] dt
O = (Buy Py b4 Pry) S WO =ce

where c is an arbitrary constant (Refer to Section 3.2)
 This result enables us to determine whether a given set of

solutions xD, x@, ..., x are fundamental solutions by
evaluating W[x®,..., xM](t) at any pointtin & <t < b.



Theorem 7.4.4

Let 1 0
1 0

eW=10] e®=(0].. eM"=|:

: : 0

0 0 1

Let x(M, x@, ..., x( be solutions of the system x' = P(t)x,
a <t < b, that satisfy the initial conditions
xO(t,) =e?, ..., x"(t,) =e®,
respectively, where t, is any pointin @ <¢f < b. Then
xW, x@ . xM are form a fundamental set of solutions of
X' = P(t)x.



Theorem 7.4.5

« Consider the system

X' =P(t)x

where each element of P is a real-valued continuous function. If x =
u(t) + iv(t) is a complex-valued solution of Eqg. (3), then its real part
u(t) and its imaginary part v(t) are also solutions of this equation.



Boyce/DiPrima/Meade 11t ed, Ch 7.5: Homogeneous Linear
Systems with Constant Coefficients
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* \We consider here a homogeneous system of n first order linear
equations with constant, real coefficients:

!
Xy =y X +8yX, +...+8,, X,

X, =a X +a,X, +...+a X

« This system can be written as X' = Ax, where

X, (t) Ay &y Ay,
Xz(t) dyy 8y - Ay,

X(t) =

Xm(t) anl an2 o a



Equilibrium Solutions

Note that if n = 1, then the system reduces to
X =ax = x(t)=e"
Recall that x = 0 Is the only equilibrium solution if a # 0.

Further, x = 0 i1s an asymptotically stable solution if a <0,
since other solutions approach x = 0 in this case.

Also, x = 0 Is an unstable solution if a > 0, since other
solutions depart from x = 0 in this case.

For n > 1, equilibrium solutions are similarly found by
solving Ax = 0. We assume detA # 0, so that x = 0 Is the
only solution. Determining whether x = 0 is asymptotically
stable or unstable is an important question here as well.



Phase Plane

When n = 2, then the system reduces to

X1' = a1 X T a,%,

X; = 8y X T 85,X,
This case can be visualized in the x,x,-plane, which is called
the phase plane.

In the phase plane, a direction field can be obtained by
evaluating Ax at many points and plotting the resulting
vectors, which will be tangent to solution vectors.

A plot that shows representative solution trajectories is
called a phase portrait.

Examples of phase planes, directions fields, and phase
portraits will be given later in this section.



Solving Homogeneous System

To construct a general solution to x' = Ax, assume a solution
of the form x = xe™, where the exponent r and the constant
vector xare to be determined.

Substituting x = xe' into X' = Ax, we obtain
rége" = A" o rE=At < (A-rl)g=0

Thus to solve the homogeneous system of differential
equations x' = Ax, we must find the eigenvalues and
eigenvectors of A.

Therefore x = xe' is a solution of X' = Ax provided that r Is
an eigenvalue and xis an eigenvector of the coefficient
matrix A.



Example 1 (10f2)

 Find the general solution of the system

(2 0
X = X
0 -3

« The most important feature of this system is that the
coefficient matrix is a diagonal matrix. Thus, by writing the
system in scalar form, we obtain

x',=2x, x',=-3x,
 Each of these equations involves only one of the unknown

variables, so we can solve the two equations separately. In
this way we find that

— 2t — -
where ¢, and c, are arbitrary constants.

3t



Example 1 (2 of 2)

« Then by writing the solution in vector form we have

_[cleZt\_[em\ [O\_(l\Zt [O\-?)t
X_L L J_Clk 0 J"'Czk ! J_ClL 0 Je +CzL 1 Je

« Now we define two solutions x( and x® so that

X(l)(f):[ é ]ez’, x‘z’(t){ 2]e‘3f

 The Wronskian of these solutions is

wx®, x@(r) = e 0
0 e

which is never zero. Therefore, x4 and x@ form a
fundamental set of solutions.




Example 2: Direction Field (10f9)

« Consider the homogeneous equation x' = Ax below.

(11
X = X
4 1

« Adirection field for this system is given below.
 Substituting X = xe' in for x, and rewriting system as
(A —rl) x =0, we obtain

FEL PSS
| L} Y 2y : !
1_ r 1 O I I T T W NP N S A A R Y
1 R EERENEY RSN
— R O R A B S N T S A B N A Y B
- N A Y A N Y N N NP A S S N B R A S S A |
1 ———— ettt
P R B S B A A S B A A A S
b f ; \ ! P
I '-:. \




Example 2: Eigenvalues (2 of 9)

Our solution has the form x = xe' where r and x are found
by solving

I-r 1 )a) (O
4 1-r)&) o
Recalling that this is an eigenvalue problem, we determine r
by solving det(A —rl) = 0:

=(1-r)°=4=r°-2r-3=(r-3)(r +1)

1-r 1
4 1-r

Thusr,=3and r, =-1.



Example 2: First Eigenvector (3 of 9)

 Eigenvector for r, = 3: Solve

aone-o = (7l o= (0 2JE o

by row reducing the augmented matrix:

2 1.0\ (1 -1/2 0 (1 -1/2 0) 15 -1/2& =0
— — —
4 -2 0/ (4 -2 0) lo 0 0 0&, =

1/2 1/2 1
— &% = = C , ¢ arbitrary — choose &Y =
S 1 2



Example 2: Second Eigenvector (4 of 9)

 Eigenvector for r, =-1: Solve

(A—rIE=0 1+1 1Y &) (0 - 2 1y&)_(0
4 1+1) &) \O 4 2)\& ) (0
by row reducing the augmented matrix:

2 1 0) (1 1/2 0) (1 1/2 0) 1& +1/2& =0
— — —
4 20 4 20 (o 00 0&, =0

—-1/2 —-1/2 1
—&" = * ¢ , ¢ arbitrary — choose £ =
1 —2



Example 2: General Solution (5 of 9)

The corresponding solutions x = xe™ of X' = Ax are

om | et @[ L)
X (t)_(zje , X (t)_(_z)e

The Wronskian of these two solutions Is

t —t

e’ e
20 _2e™
Thus xM) and x@ are fundamental solutions, and the general
solution of X' = AX IS

X(t) = cx® (1) + ¢, x? (t)

1 1
= (:1[2]e3t + 02(_ Zje‘

W {x® x@ ft) = =—4e™* £0




Example 2: Phase Plane for x4 (6 of 9)

To visualize solution, consider first x = ¢, x(:

X 1
x®(t) = (le = cl(zJegt & X =ce”, x,=2ce”
2

Now

X, X
X, =Ce”, X, =2ce" < et'="2="2 o x,=2X
C, 2C

Thus x lies along the straight line x, = 2x,, which is the line
through origin in direction of first eigenvector xb

If solution is trajectory of particle, with position given by
(X4, X,), then it is in Q1 when ¢, > 0, and in Q3 when ¢, <O.
In either case, particle moves away from origin as t increases.



Example 2: Phase Plane for x@ (7 of 9)

Next, consider x = ¢,x(?):
X 1
X (t) = (le = cz[_ Zjet & X =Ce", X,=-2ce"

2
Then x@ lies along the straight line x, = —2x,, which is the
line through origin in direction of 2nd eigenvector x(

If solution is trajectory of particle, with position given by
(X1, X,), then it is in Q4 when ¢, > 0, and in Q2 when ¢, < 0.

In either case, particle moves towards origin as t increases.



Example 2:
Phase Plane for General Solution (8 of 9)

The general solution is x = ¢, xM + ¢, x():

t) = 1 3t 1 —t
x()_cl(zje +02(_2je

Ast — o , c,x) is dominant and ¢,x® becomes negligible.
Thus, for ¢, # 0, all solutions asymptotically approach the
line x, =2x,ast — oo

Similarly, for c, # 0, all solutions asymptotically approach
the line x, = —2x,ast —>-.

The origin is a saddle point,
and Is unstable. See graph.




Example 2:
Time Plots for General Solution (9 of 9)

The general solution is x = ¢, xM + ¢, x():

1 1 X, (t ! B
2 —2 X, (t) 2ce” —2c,e”
As an alternative to phase plane plots, we can graph x, or X,

as a function of t. A few plots of x, are given below.

Note that when c, =0, x,(t) = c,et ->0ast »>x.
Otherwise, x,(t) = c,e3 + c,et grows unbounded as t — o.

Graphs of x, are similarly obtained.




Example 3: Direction Field (10f9)

« Consider the homogeneous equation x' = Ax below.

) =| 3 \Ex
J2. =2

« Adirection field for this system is given below.
 Substituting X = xe" in for x, and rewriting system as
(A —rl) x=0, we obtain

(3or 2 W k) (0)

Ll
LAAAAA
LA A A AL
LA ALl
LA A
I

—————

g g N N N T T ——— e e

e T N e e W N SRl i N N ——— e NN S N N
2 _2_ 7 )@ e g e

e R SO S SO SO S VR S

S e N R R s R
S o S VI () A Ao N S R G e
L S S S OSSO
——— 7 AN ANNNNNNNNN N
AAAAAA Zc DN NGNS SRS SR RS
=t 7 [ NN N N A N S B IR
——— = Z NN 2 N N NN IR =
— i AT N bR S A NN S
= TN NN TR N NN RO N A



Example 3: Eigenvalues (2 of 9)

e Qur solution has the form x = xe'™ where r and x are found
by solving

( B \/_ \( \

L\/E -z-rﬂ J(J

« Recalling that this is an eigenvalue problem, we determine r
by solving det(A —rl) = 0:

—3-r JE
J§ —2-r

 Thusr,=-1andr, =-4.

=(-3-1)(-2-1)=2=r°+5r+4=(r +1)(r + 4)




Example 3: First Eigenvector (3 of 9)

 Eigenvector for r, =-1: Solve

SR i S R e

by row reducing the augmented matrix:

—2\50_) 1 —2/2 0_)[1 212 o)
J2 -1 0 42 1 0) |0 0 0

N212& 1
1) _ 2 (1) _
— & _L 652)—)Chooseg _[\Ej



Example 3: Second Eigenvector (4 of 9)

 Eigenvector for r, = —4: Solve

I IR R BX

by row reducing the augmented matrix:

1 V2 OJ_)[l J2 o)_)az)_ R
V2 2 0) 0 00 - 3

—> choose &£? = [_ \EJ



Example 3: General Solution (5 of 9)

The corresponding solutions x = xe™ of x' = Ax are

xB (1) = ( \/Eljet , xB (1) = E_ \EJe‘“

1
The Wronskian of these two solutions Is
-t —4t
W [X(l) ’ x(2) ](t) _ € \/Ee — 35t £
J2e e ™

Thus xM) and x@ are fundamental solutions, and the general
solution of X' = AX Is

x(t) = c,xP (t) + ¢, x? (1)

—c ( 1jet +C [_ \Eje‘”
1 \/5 2 1



Example 3: Phase Plane for x4 (6 of 9)

To visualize solution, consider first x = ¢, x(:

X 1
(@)} . 11 —t . —t . —t
X (t) = =C e & X, =Ce T, X, =4+/2Ce
() (ij 1( /Zj 1 1 2 1
Now
_ _ _ X X
X, =Ce™, X,=4J2ce" < e =L=—2_ & X, =2X
C, 2(31

Thus xW lies along the straight line x, = 2*2x,, which is the
line through origin in direction of first eigenvector x()

If solution is trajectory of particle, with position given by
(X1, X,), then it is in Q1 when ¢, > 0, and in Q3 when ¢, <O.

In either case, particle moves towards origin as t increases.



Example 3: Phase Plane for x@ (7 of 9)

Next, consider x = ¢,x(?):
x(2) (t) = (le _ Cz[_ \/E)em & X = —\/ECZG_M, X, = C26_4t

X, 1
Then x@ lies along the straight line x, = —2"x,, which is the
line through origin in direction of 2nd eigenvector x(?
If solution is trajectory of particle, with position given by
(X1, X,), then it is in Q4 when ¢, > 0, and in Q2 when ¢, < 0.
In either case, particle moves towards origin as t increases.



Example 3:
Phase Plane for General Solution (8 of 9)

 The general solution is x = ¢, xY + ¢, x():

1 _

xP (1) = ( \Ejet, x (t) :L \/Elje‘“

« Ast -, c,x) is dominant and ¢,x® becomes negligible.
Thus, for ¢, # 0, all solutions asymptotically approach
origin along the line x, = /2 x;ast > .

« Similarly, all solutions are unbounded ast — - .

« The origin is a node, and is R
asymptotically stable. NN

X




Example 3:
Time Plots for General Solution (9 of 9)

* The general solution is x = ¢,x®) + ¢,x):
1 — X (t -t —4t
X(t) = Cl( jet + C2 \/E e—4t - 1( ) _ Cle \/Ecze
V2 1 X, (1)) \V2ce™ +c,e™

» As an alternative to phase plane plots, we can graph x; or x,
as a function of t. A few plots of x, are given below.

» Graphs of x, are similarly obtained.




2 X 2 Case:
Real Eigenvalues, Saddle Points and Nodes

« The previous two examples demonstrate the two main cases
for a 2 x 2 real system with real and different eigenvalues:

— Both eigenvalues have opposite signs, in which case origin is a
saddle point and is unstable.

— Both eigenvalues have the same sign, in which case origin is a node,
and is asymptotically stable if the eigenvalues are negative and
unstable if the eigenvalues are positive.

x(1) ol

x(2 (1) x2(t)




Eigenvalues, Eigenvectors
and Fundamental Solutions

* In general, for an n x n real linear system x' = AX:
— All eigenvalues are real and different from each other.
— Some eigenvalues occur in complex conjugate pairs.
— Some eigenvalues are repeated.
 If eigenvaluesr,,..., r, are real & different, then there are n
corresponding linearly independent eigenvectors x ), ...,

x(M, The associated solutions of x' = Ax are
x (t) _ é(l)erlt . .’X(n) (t) — g(n)ernt

« Using Wronskian, it can be shown that these solutions are
linearly independent, and hence form a fundamental set of
solutions. Thus general solution is

x=cge™ +...+cgMe™



Hermitian Case: Eigenvalues, Eigenvectors &
Fundamental Solutions

« [f Aisan n x n Hermitian matrix (real and symmetric), then
all eigenvalues r,,..., r, are real, although some may repeat.

* In any case, there are n corresponding linearly independent
and orthogonal eigenvectors x, ..., x™. The associated
solutions of x' = Ax are

xW(t)=¢g%e™, .., x™ () =gMe"

and form a fundamental set of solutions.



Example 4. Hermitian Matrix (1 of 3)

« Consider the homogeneous equation x' = Ax below.
0 11
X'=11 0 1
1 1 0

« The eigenvalues were found previously in Ch 7.3, and were:
rr=2,r,=-1andry; =-1.
« Corresponding eigenvectors:
1 1 0

&"(1) =1], g(Z) =| 0], §(3) - 1
1 -1 -1



Example 4. General Solution (2 of 3)

 The fundamental solutions are

1 1 0
xV=|1* x@?=| 0", x¥=| 1"
1 -1 -1

with general solution

1 1 0
x=c|lle*+c,| Olet+c, 1l
1 -1 -1



Example 4: General Solution Behavior (3 of 3)

The general solution is x = ¢, X1 + ¢,x®@) + ¢,x):

1 1 0
x=c|lle*+c,| Olet+c,| 1™
1 -1 -1

Ast — o, c,x) is dominant and ¢,x® , c;x3 become
negligible.

Thus, for ¢, # 0, all solns x become unbounded as t — o,
while for ¢, =0, all solnsx ->0ast — oo.

The initial points that cause c, = 0 are those that lie in plane
determined by x® and x®. Thus solutions that start in this
plane approach originas t — .



Complex Eigenvalues and Fundamental Solns

* If some of the eigenvalues r,,..., r, occur in complex
conjugate pairs, but otherwise are different, then there are
still n corresponding linearly independent solutions

¥ ('[) — g(l)erlt . .’X(n) (t) — g(n)ernt,

which form a fundamental set of solutions. Some may be
complex-valued, but real-valued solutions may be derived
from them. This situation will be examined in Ch 7.6.

* If the coefficient matrix A is complex, then complex
eigenvalues need not occur in conjugate pairs, but solutions
will still have the above form (if the eigenvalues are
distinct) and these solutions may be complex-valued.



Repeated Eigenvalues and Fundamental Solns

* If some of the eigenvalues r,,..., r, are repeated, then there

may not be n corresponding linearly independent solutions of
the fOrm X(l) (t) _ g(l)erlt o X(n) (t) _ g(n)el’nt

 In order to obtain a fundamental set of solutions, it may be
necessary to seek additional solutions of another form.

 This situation is analogous to that for an nth order linear
equation with constant coefficients, in which case a repeated
root gave rise solutions of the form

ert tert tzert

This case of repeated eigenvalues is examined in Section 7.8.



Boyce/DiPrima/Meade 11t ed, Ch 7.6:
Complex Eigenvalues

Elementary Differential Equations and Boundary Value Problems, 11t edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc.

* \We consider again a homogeneous system of n first order
linear equations with constant, real coefficients,
X =X +a,X, +...+8,X,
Xy, =8, X +8y,X, +...+8,,X

2n“*n

X =a, X +a,X,+...+a X

nn“'n?

and thus the system can be written as x' = Ax, where

X(t) d, d, - &,

Xz(t) dyy Ay, Ay,

X(t) = , A=

Xn(t) an1 an2 o a

nn



Conjugate Eigenvalues and Eigenvectors

* \We know that x = xe™ is a solution of x' = Ax, provided r is
an eigenvalue and x Is an eigenvector of A.

* The eigenvaluesry,..., r, are the roots of det(A—rl) =0,
and the corresponding eigenvectors satisfy (A —rl) x=0.

« |If Ais real, then the coefficients in the polynomial equation
det(A —rl) = 0 are real, and hence any complex eigenvalues
must occur in conjugate pairs. Thusifr, =/ +i/mr isan
eigenvalue, thensoisr, =/ - in.

* The corresponding eigenvectors x@), x@ are conjugates
also.

To see this, recall A and | have real entries, and hence
(A-rlE® =0 = (A-T1)EPY =0 = (A-r,1)g? =0



Conjugate Solutions

« |t follows from the previous slide that the solutions
X —gWeit  x(@ _ g@grt
corresponding to these eigenvalues and eigenvectors are
conjugates conjugates as well, since

X2 = g@git _ EWgit _



Example 1: Direction Field (1 0of7)

« Consider the homogeneous equation x' = Ax below.

(12 1
X = X
( -1 —1/2J

« Adirection field for this system is given below.
« Substituting x = ye'in for x, and rewriting system as

(A —rl) x =0, we obtain
(1 \(
2

1

4

)
X

I
TR

X
e — — Tha Ty Ty Ty A¥
ol il B — — . '\-" \ \ b .'.l
........ ——— e N N %
o n —— o NN D VoA
il R S L T T T T T A 1
L g R e T T (I |
R R R P o VL W N A | ol
LR e e e e e L T T A '
AV LR T T I I A A
P A A { P i Iy F "
; A P |- -
Fr=E oo oA Vs X2
I R B N - o
2 T T T T T T W N -
[ Y ] — =
| L T T T T T T e
I T T T T T T T
3 LY N W —— -—
[ N M el ————
\ A e ———
Y N .. 4=




Example 1: Complex Eigenvalues (2 of 7)

We determine r by solving det(A —rl) =0. Now

~1/2-r 1

=(r+1/2) +1= B
-1 ~-1/2—r 4

* Thus

_1+.12-4 142 .
o J (5/4) _-1%2i _ 1.

2 2 2

» Therefore the eigenvaluesare ry, =-1/2 +iandr, = -1/2 — 1.



Example 1: First Eigenvector (3of7)

 Eigenvector for r, =-1/2 + 1: Solve

R R =
=(3 ala)) = a0

by row reducing the augmented matrix:

(1 i Oj_)(l i Ojﬁg(l):(_ié]achooseimz(})
-1 —-i 0) "l0 0O E |
e Thus 1Y (0
o
0 1



Example 1: Second Eigenvector (4 of 7)

 Eigenvector for r, = -1/2 —i: Solve

S W

= (a2 &0 = Eo

by row reducing the augmented matrix:

( L - Oj_)(l i 0)%@:(i@j%hoc)seg(a:( }]
-1 1 0 O 0 O &, —1
Thus N (o
ROLE
0 1



Example 1: General Solution (5 of 7)

The corresponding solutions x = xe™ of X' = Ax are

1 0 cost
ut)=e"?|| “|cost—| |sint| =e"?

0 1

1

0

—sint

_ 0 o[ SINt
sint + cost| =e
1 | cost

The Wronskian of these two solutions Is

v(t)=e"?

e ?cost e Y?sint

—t
=e #0
—e2sint e Y?cost

W x(l),x(z)](t) -

Thus u(t) and v(t) are real-valued fundamental solutions of
X' = AX, with general solution X = c,u + c,V.



Example 1: Phase Plane (6 of 7)

Given below is the phase plane plot for solutions x, with

N e 2 cost e e "2sint
X, \—esint) ‘le"?cost
Each solution trajectory approaches origin along a spiral path

as t — 00, since coordinates are products of decaying
exponential and sine or cosine factors.

The graph of u passes through (1,0),
since u(0) = (1,0). Similarly, the

graph of v passes through (0,1). /
The origin is a spiral point, and M |
IS asymptotically stable.

P

R -
B
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Example 1: Time Plots (7 of 7)

The general solution is X = c,u + c,V:
. [ xl(t)j _ ( c.e'2 cost+c,e ' sin tj
X,(t)) (—ce™"?sint+c,e™*cost
As an alternative to phase plane plots, we can graph x, or X,

as a function of t. A few plots of x, are given below, each
one a decaying oscillationas t — o0,




General Solution

* Tosummarize, supposer, = / +i/m 1, = / - i/ and that
r,,..., I are all real and distinct eigenvalues of A. Let the
corresponding eigenvectors be

e® —a+ib, &? =a—ib, £@, &®, . &
« Then the general solution of X' = AX IS
X =CU(t) +C,v(t) +c,gPe™ +...+c,gMe™
where
u(t) = e*(acos ut —bsin wt), v(t) = e* (asin ut +bcos ut)



Real-Valued Solutions

» Thus for complex conjugate eigenvalues r, and r, , the
corresponding solutions xY and x(@) are conjugates also.

 To obtain real-valued solutions, use real and imaginary parts
of either x or x@. To see this, let y) =a + ib. Then

x® = gWell — (@t ib)e™(cos wt +isin ut)
—e*'(acos ut—Dbsin ut)+ie* (asin ut +bcos ut)

e = UOHIV()

u(t) = e*(acos ut —bsin ut), v(t) =e* (asin ut +bcos ut),

are real valued solutions of x' = Ax, and can be shown to be
linearly independent.



Spiral Points, Centers,
Eigenvalues, and Trajectories

In previous example, general solution was

o[ %) [ &Mooty o e sint) (S
- _ 1 — - 2 — -"‘“\ WA VR
X, —e%sint e 2 cost LIRS

The origin was a spiral point, and was asymptotically stable.

If real part of complex eigenvalues is positive, then
trajectories spiral away, unbounded, from origin, and hence
origin would be an unstable spiral point.

If real part of complex eigenvalues is zero, then trajectories
circle origin, neither approaching nor departing. Then origin
IS called a center and is stable, but not asymptotically stable.
Trajectories periodic in time.

The direction of trajectory motion depends on entries in A.
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Example 2:
Second Order System with Parameter (1 of 2)

* The system x' = Ax below contains a parameter g.

, a 2
X' = X
-2 0

 Substituting X = xe' in for x and rewriting system as
(A —-rl) x =0, we obtain
(a-r 2\()(1\:(0\
L -2 -1 JL XzJ k J

 Next, solve forrinterms of &:

a—rT1 2
-2 —r

a+a’—-16
2

=r(r-a)+4=r’—-ar+4=r=




Example 2: Pl e
Eigenvalue Analysis (2 of 2)

The eigenvalues are given by the quadratic formula above.

For & <-4, both eigenvalues are real and negative, and hence
origin is asymptotically stable node.

For &> 4, both eigenvalues are real and positive, and hence
the origin is an unstable node.

For -4 < &< 0, eigenvalues are complex with a negative real
part, and hence origin is asymptotically stable spiral point.

For 0 < & <4, eigenvalues are complex with a positive real
part, and the origin is an unstable spiral point.

For & =0, eigenvalues are purely imaginary, origin is a centetr.
Trajectories closed curves about origin & periodic.

For d=+ 4, eigenvalues real & equal, origin is a node (Ch
7.8)



Second Order Solution Behavior and
Eigenvalues: Three Main Cases

* For second order systems, the three main cases are:

— Eigenvalues are real and have opposite signs; x = 0 is a saddle point.
— Eigenvalues are real, distinct and have same sign; x = 0 is a node.
— Eigenvalues are complex with nonzero real part; x = 0 a spiral point.

 Other possibilities exist and occur as transitions between two
of the cases listed above:

— A zero eigenvalue occurs during transition between saddle point and
node. Real and equal eigenvalues occur during transition between
nodes and spiral points. Purely imaginary eigenvalues occur during a
transition between asymptotically stable and unstable spiral points.

R % //"_'\
_ —b++/b*-4ac 1IN —

r
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J 2 x




Example 3: Multiple Spring-Mass System (1 of 6)

« The equations for the system of two masses and three
springs discussed In Section 7.1, assuming no external
forces, can be expressed as:

d*x d*x
m, ?21 =—(k, +k,)x, +k,x, and m, ?22

or m1y3':_(k1+k2)y1+k2y2 and m2y4':k2y1_(k2+k3)y2

— kle — (kz + k3)X2

where y, =X, ¥, =X,, Y;=X%',and y, =X,

 Givenm =2, m,=9/4, k, =1 k, =3, and k,,=15/4 , the
eguations become

Yi'=VYs Yo =VYa Y3 =2y, +3/2 y,,and y,'=4/3 y, -3y,



y1|:y31 y2': Ya Y3':_2)’1+3/2 Yo and y4':4/3 y1_3y2

Example 3: Multiple Spring-Mass System (2 of 6)

 Writing the system of equations in matrix form:

0O 0 1 0
0 0 0 I
I = = A
Y 2 3/2 00 Y
4/3 =3 0 0

« Assuming a solution of the formy = xe', where r must
be an eigenvalue of the matrix A and X is the
corresponding eigenvector, the characteristic polynomial of
AlS r* +5r° +4=(r* +1)(r* +4)

L=1,r=-,1r=2iandr, =-2i
yielding the eigenvalues:



:

-2 3/2
4/3 -3 0

0 0 1
0 0 0
0

Example 3: Multiple Spring-Mass System (3 of 6)

- For the eigenvalues I, =1, I, =—1, I, =2i,and r, =—2i the correspond-
INg elgenvectors are 3 3 3 3
2 2 —4 -4
® _ (2) _ Q) _ (4) _
=| . | = b =| . |, and = _
s 3i 3 -3 3 4] 3 — 0l
2i —2i - 8i 8i
(1) Ait d (3) A 2it - . _
e The products &7 and &~e™ yield the complex-valued solutions:
3 3cost 3sint
: 2 2cost 2sint
Delt — cost+isint) = +i —uP®)+ivO(t
] 3i ( ) —3sint 3cost © ®
2i —2sint 2cost
3 3cos 2t 3sin 2t
_ —4 —4cos 2t —4sin 2t
E®e?t = " |(cos2t+isin2t) = _ +i =u@ ) +iv?@ ()
ol —6sIn 2t 6 cos 2t
—8i 8sin 2t —8cos 2t



V.'=VYa Yo' =Y, V'=-2y,+3/2 y,,and y,'=4/3 y, -3y,

Example 3: Multiple Spring-Mass System (4 of 6)

 After validating that u® (), v®(t), u® (), v (t) are linearly
Independent, the general solution of the system of equations can be

written as
( 3cost\ (3sint\ ( 3C0s2¢ ) ( 3sin 2¢ )

y=e 2C0St 4 2sint 4 -4 cos2t 4 -4sin2t
' -3sint | 3cost I -6sin2¢ ‘| 6cos2t
- 2sint 2C0St 8sin2¢ - 8c0s2¢

* where C, C,, G5, C, are arbitrary constants.

« Each solution will be periodic with period 2x, so each trajectory is a
closed curve. The first two terms of the solution describe motions with
frequency 1 and period 2z while the second two terms describe
motions with frequency 2 and period . The motions of the two masses
will be different relative to one another for solutions involving only the
first two terms or the second two terms.



y, and y, represent the motion of themassesand Ys =Y.' » ¥, =Y.'

Example 3: Multiple Spring-Mass System (5 of 6)

« To obtain the fundamental mode of vibration with frequency 1
c, =¢, =0— occurs when 3y, (0) =2y, (0) and 3y,(0) =2y,(0)
« To obtain thé fundamental mode of vibration with frequency 2
¢, =C, =0— occurs when 3y, (0) =—4y,(0) and 3y, (0) =—4y,(0)

* Plots of y,and y, and parametric plots (y, y’) are shown for a
selected solution with frequency 1




y, and y, represent the motion of themassesand Y; =Y, Y, =VY:

Example 3: Multiple Spring-Mass System (6 of 6)

 Plots of Y, and Yy, and parametric plots (y, y") are shown for a selected
solution with frequency 2
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Boyce/DiPrima/Meade 11t ed, Ch 7.7: Fundamental Matrices

Elementary Differential Equations and Boundary Value Problems, 11% edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc

« Suppose that xA(t),..., xM(t) form a fundamental set of
solutions for X' = P(t)x ona<¢<b.

 The matrix
P - x"()
wit)= @ :

XM - xO(t)

whose columns are x(t),..., x((t), is a fundamental matrix
for the system x' = P(t)x. This matrix is nonsingular since its
columns are linearly independent, and hence det Y # 0.

« Note also that since xD(t),..., x("(t) are solutions of x' = P(t)x,
v satisfies the matrix differential equation Y'=P(t) Y.



Example 1:

« Consider the homogeneous equation x' = Ax below.
(11
X = X
4 1

« In Example 2 of Chapter 7.5, we found the following
fundamental solutions for this system:

om | et v@m | L)
X (t)_(zje , X (t)_(_z)e

« Thus a fundamental matrix for this system is

e3t

ot
S [Ze3t - Zetj



Fundamental Matrices and General Solution

* The general solution of X' = P(t)x
X=cxXP()+---+c x"

can be expressed x = Y (t)c, where c Is a constant vector with
components c,,..., C,;:

X - xPO)
x=%P{t)c=| : [}

XM - xP(M) e

n



Fundamental Matrix & Initial VValue Problem

Consider an initial value problem
X' = P(t)x, X(ty)=x°
where a <z, < b and xV is a given initial vector.

Now the solution has the form x = Y (t)c, hence we choose ¢
so as to satisfy x(t;) = x°.
Recalling y (t;) Is nonsingular, it follows that
P(t,)c=x" = c=¥'(t,)x°
Thus our solution x = Y (t)c can be expressed as

X ="Y({t)¥P(t,)x°



Recall: Theorem 7.4.4

e Let 1 0 0
1 0

e =10 e®={0]... e"M=|:

: : 0

0 0 1

o Letx®,..., x™ be solutions of X' = P(t)xonl: a<t<b
that satisfy the initial conditions

xOt)=e®, ..., xV(t,)=e", a<t, <}

Then x@, ..., x( are fundamental solutions of x' = P(t)x.



Fundamental Matrix & Theorem 7.4.4

« Suppose xM(t),..., x((t) form the fundamental solutions given
by Thm 7.4.4. Denote the corresponding fundamental matrix
by F (t). Then columns of F (t) are x(t),..., x("(t), and

hence 10 .

CI)(to) = -

0 1 -

00 -

-0

0

« Thus F (t,) =1, and the hence general solution to the
corresponding initial value problem is

X=®t)D *(t,)X° = D(t)x"
« It follows that for any fundamental matrix F (t),
X=P[t)¥ ()X’ =@t)x’ = ®Ot)=PY[)P (t,)



The Fundamental Matrix |-
and Varying Initial Conditions

Thus when using the fundamental matrix F (t), the general
solution to an IVP Is

X=®t)D *(t,)X° = B(t)x"

This representation is useful if same system is to be solved for
many different initial conditions, such as a physical system
that can be started from many different initial states.

Also, once F (t) has been determined, the solution to each set
of initial conditions can be found by matrix multiplication, as
Indicated by the equation above.

Thus F (t) represents a linear transformation of the initial
conditions x° into the solution x(t) at time t.



Example 2: Find |- (t) for 2 x 2 System (1 of 5)

* Find F (t) such that F (0) = I for the system below.
, [1 1]
X = X
4 1
 Solution: First, we must obtain x((t) and x(t) such that

@) _ 1 (2) _ 0
o[} -

« \We know from previous results that the general solution is

1 1
X = cl[zj@t + cz[ zjet

« Every solution can be expressed in terms of the general
solution, and we use this fact to find x®(t) and x)(t).



Example 2: Use General Solution (2 of 5)

« Thus, to find x)(t), express it terms of the general solution

1 1)
X (t) = cl(zje3‘ + 02(_ Zje t

and then find the coefficients c, and c..
 To do so, use the initial conditions to obtain

D7 1 1 B 1
oo

or equivalently,

2 ale)-o



Example 2: Solve for xM(t) (3 of5)

« To find xM(t), we therefore solve
1 1)) (1
2 -2)c,) |0
by row reducing the augmented matrix:
1 11 1 1 1 11 1 1 0 1/2
— —> —>
2 -2 0 0 -4 -2 0 1 1/2 0 1 1/2
C, =1/2
c, = 1/2

%

* Thus



Example 2: Solve for x@(t) (4 of 5)

 To find x@(t), we similarly solve

2 o)

by row reducing the augmented matrix:

1 10 1 10 11 0 1 0 1/4
—> —> —>
2 -2 1 0 -4 1 0 1 -1/4 0 1 -1/4
C, = 1/4

c, =-1/4
* Thus 1, 1

x@ty==| "l _= at_| 4 4
® 412 4\ -2 1 5,1

%




Example 2: Obtain F(f) (50f5)

« The columns of F (t) are given by x(t) and x@(t), and
thus from the previous slide we have

_e3t+1e—t _e3t_£e—t
D(t) = 2 2 4 il
%t _ ot S

* Note F (t) iIs more complicated than Y (t) found in Ex 1.
However, 1t 1S now much easier to determine the solution to
any set of initial conditions.



Matrix Exponential Functions

Consider the following two cases:

— The solution to X' = ax, x(0) = X,, is X = X,e3, where e® = 1.

— The solution to X' = Ax, X(0) = x9, is x = F ()x%, where F (0) =1.
Comparing the form and solution for both of these cases, we
might expect F (t) to have an exponential character.

Indeed, it can be shown that F (t) = e”t, where
0 Antn 00 Antn
e = =1
nz(; n! +nzll n!
Is a well defined matrix function that has all the usual
properties of an exponential function. See text for details.
Thus the solution to X' = AX, X(0) = X?, is x = eAtxO,




Coupled Systems of Equations

» Recall that our constant coefficient homogeneous system

!
X, =a; X, +aLX, +...+a,, X,

X' =a X +a,X, +...+a X,

written as X' = Ax with
X, (t) Q; -t
xt)=| @ |, A=| P .
Xn(t) an1 ann

IS a system of coupled equations that must be solved
simultaneously to find all the unknown variables.



Uncoupled Systems & Diagonal Matrices

 In contrast, if each equation had only one variable, solved for
Independently of other equations, then task would be easier.

* In this case our system would have the form
X, =d; X +0x, +...+0x,
X, =0x, +d; X, +...+0x,

X\ =0x,+0x,+...+d_X

nn“'n?

or X' = Dx, where D Is a diagonal matrix:

d, 0 .- O

X (t) 0 d e 0
0= i | p=| . F
SO PR

nn



Uncoupling: Transform Matrix T

In order to explore transforming our given system x' = Ax of
coupled equations into an uncoupled system x' = Dx, where D is
a diagonal matrix, we will use the eigenvectors of A.

Suppose A is n x n with n linearly independent eigenvectors
xY,..., x") and corresponding eigenvalues / ...,/ .

Define n x n matrices T and D using the eigenvalues &
eigenvectors of A:

© éz(n) A - 0
| T |0 A 0
) T () Doon
3 3 0 0 .

n

Note that T is nonsingular, and hence T-! exists.



Uncoupling: TtAT =D

Recall here the definitions of A, T and D:

Q, - 4,

&

5 @
n

) égl(n)

. 5(”)
n

4 0 0
S_| 0 4 0
0 0 A

« Then the columns of AT are A x,.... A ¥, and hence

ZR

>
Il

2

It follows that T-1AT = D.

(n)
ﬂ‘n 1

A"

=TD




Similarity Transformations

« Thus, If the eigenvalues and eigenvectors of A are known,
then A can be transformed into a diagonal matrix D, with

T1AT =D
« This process is known as a similarity transformation, and A

IS said to be similar to D. Alternatively, we could say that A
IS diagonalizable.

® ... g0 4
A = a:il . a?n T= 51 - 51: D 0 ﬁz . 0
a, -+ a @ ... g0 : .o
nl nn gn gn 0 O /1




Similarity Transformations: Hermitian Case

« Recall: Our similarity transformation of A has the form
TIAT =D
where D is diagonal and columns of T are eigenvectors of A.

« |If A is Hermitian, then A has n linearly independent
orthogonal eigenvectors x*¥ ..., x*), normalized so that

(X, XN =1fori=1,...,n, and (X, x*)=0 fori+#k.
 With this selection of eigenvectors, it can be shown that

T-1=T". Inthis case we can write our similarity transform
as

T°AT=D



Nondiagonalizable A

* Finally, if Ais n x n with fewer than n linearly independent
eigenvectors, then there is no matrix T such that T-1AT = D.

 Inthis case, A Is not similar to a diagonal matrix and A is not
diagonlizable.

0 0
() (n) Al
ot T 51. 0 A, 0
A=| : R =1 - . |, D=| . :
a ... a @ ... (n) '
nl nn gn fn O O /1




Example 3:
Find Transformation Matrix T (10of2)

* For the matrix A below, find the similarity transformation
matrix T and show that A can be diagonalized.

s

« \We already know that the eigenvaluesare / ,=3, /,=-1
with corresponding eigenvectors

@) _ 1 (2) _ 1
: (t)—@,é (t)—(_zj
T= D=
2 =2 0 -1



Example 3: Similarity Transformation (2 of2)

« To find T-1, augment the identity to T and row reduce:
1 1 10 1 1 10 11 1 0
—> —>
2 -2 0 1 0 -4 -2 1 01 1/2 -1/4
1 0 1/2 1/4 1/4
9
0 1 1/2 —1/4 1/2 —-1/4
* Then

L 1/2  1/4)
TAT =
1/2 —-1/4 2 _2
(12 1/4 3 -1 _
“l1/2 -1/4)\6 2] \lo -1)

« Thus A is similar to D, and hence A is diagonalizable.




Fundamental Matrices for Similar Systems (1 of 3)

* Recall our original system of differential equations x' = Ax.

« If Ais n x nwith n linearly independent eigenvectors, then A
Is diagonalizable. The eigenvectors form the columns of the
nonsingular transform matrix T, and the eigenvalues are the
corresponding nonzero entries in the diagonal matrix D.

e Suppose x satisfies x' = Ax, let y be the n x 1 vector such that
X = Ty. That is, let y be defined by y = T-x.

« Since x'=Axand T Is a constant matrix, we have Ty' = ATy,
and hence y' = T-1ATy = Dy.

» Therefore y satisfies y' = Dy, the system similar to x' = AX.

« Both of these systems have fundamental matrices, which we
examine next.



Fundamental Matrix for Diagonal System (2 of 3)

A fundamental matrix for y' = Dy is given by Q(t) = el
 Recalling the definition of eP!, we have

00 ﬂltn
A0 0 Z( ,) 0 0
ooDntn 0 tn n=0 n
Qt)y=> —=>]0 . 0|—= O 3 0
n=0 nl n=0 n nl B (ﬂ.t)n
0 0 4 0 0 Y
n=0 n!
(e 0 0
=l 0 . O
At
0O 0 e )



Fundamental Matrix for Original System (3 of 3)

« To obtain a fundamental matrix Y (t) for x' = Ax, recall that
the columns of Y (t) consist of fundamental solutions x
satisfying x' = Ax. We also know x = Ty, and hence it follows
that

51(1) é;l(n) /eﬂlt 0 0 5(1)eﬂlt g(n)eﬂ ot
Y=TQ=| : : 0 . 0 |=
grfl) .. grsn) ) O O eﬂvnt frfl)e/llt L. grfn)eﬂnt

* The columns of Y (t) given the expected fundamental
solutions of x' = Ax.




Example 4.
Fundamental Matrices for Similar Systems

* \We now use the analysis and results of the last few slides.

« Applying the transformation x = Ty to X' = Ax below, this
system becomes y' = T-tATy = Dy:

o (1), (3 0
= — =
4 1 ’ 0—1y

A fundamental matrix for y' = Dy is given by Q(t) = eP":

e 0
w-{% ©)

* Thus a fundamental matrix Y (t) for x' = AX is

1 1 e3t O e3t e—t
T =TQ= (2 _ 2}[ 0 e‘] } (2e3t - 2etj



Boyce/DiPrima/Meade 11t ed, Ch 7.8:
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* \We consider again a homogeneous system of n first order
linear equations with constant real coefficients x' = Ax.

 If the eigenvaluesry,..., r, of A are real and different, then
there are n linearly independent eigenvectors x& . x|
and n linearly independent solutions of the form
xP () =&0e™,... ,xV () =g"Me™
* If some of the eigenvaluesr,,..., r, are repeated, then there
may not be n corresponding linearly independent solutions of
the above form.

 In this case, we will seek additional solutions that are products
of polynomials and exponential functions.



Example 1: Eigenvalues (1 of 2)

We need to find the eigenvectors for the matrix:
A :( L L \X
(1 3)
The eigenvalues r and eigenvectors x satisfy the equation
(A—rl) x=0 or

I-r -1)g&) (O
1 3-r)\¢&) (0
To determine r, solve det(A —rl) = 0:
1-r -1

1 3-r
Thusr,=2andr, = 2.

=(r=1)(r-3)+1=r"—-4r+4=(r-2)°



Example 1: Eigenvectors (2 of 2)

 To find the eigenvectors, we solve

R v R R

by row reducing the augmented matrix:
-1 -1 0 110 1 1 0) 1 +15 =0
—> —> —>
1 10 110 0 00 0&, =0

Q _ _52 @ _ 1
—>& —( fj_) choose & _i—lj

2

« Thus there is only one linearly independent eigenvector for
the repeated eigenvalue r = 2.
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Example 2: Direction Field (1 of 10)

AX below.

« Consider the homogeneous equation X'

« Adirection field for this system is given below.

« Substituting x = xe™in for x, where r is A’s eigenvalue and

X1s Its corresponding eigenvector,
the previous example showed the
existence of only one eigenvalue,

r = 2, with one eigenvector:
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Example 2: First Solution; and
Second Solution, First Attempt (2 of 10)

e The corresponding solution x = xe' of X' = AX Is

o[

« Since there is no second solution of the form x = xe', we
need to try a different form. Based on methods for second
order linear equations in Ch 3.5, we first try x = xte.

 Substituting x = xte?tinto X' = AX, we obtain
ge™t + 26te” = Akte”
or
2tte” +E0” — Alte” =0



Example 2:
Second Solution, Second Attempt (3 of 10)

e From the previous slide, we have
2ete” +&e” — Aéte™ =0
 In order for this equation to be satisfied for all t, it is

necessary for the coefficients of te?t and e=t to both be zero.

* From the e?'term, we see that X = 0, and hence there is no
nonzero solution of the form x = xte?t,

« Since te?t and e?t appear in the above equation, we next
consider a solution of the form

X = Ete®' +ne”



Example 2: Second Solution and Its
Defining Matrix Equations (4 of 10)

Substituting x = xte?t + Ae?tinto X' = Ax, we obtain

ge? +2ete? + 2ne” = Alete® +ne?)
or
2tte” +(&+2n)e” = Agte” + Ane”
« Equating coefficients yields Ax=2xandAh= x+2 ",
o (A-21E=0 and (A-2l)n=¢

« The first equation is satisfied if x is an eigenvector of A
corresponding to the eigenvalue r = 2. Thus

:



Example 2: Solving for Second Solution (5 of 10)

* Recall that

e Thus to solve (A—21)/1 = x for /7, we row reduce the
corresponding augmented matrix:

1 -1 1) (11 -1 (1 1 -1 ,
— — —>n,=-1-
1 1 -1) 11 1) lo o o] " n
0 1
-1-n, -1 -1



Example 2: Second Solution (6 of 10)

Our second solution X = xte?t + /72t is now

1 0 1
X = te” + e +k| T |e”
-1 -1 -1

Recalling that the first solution was

x D (t) = (_1je2t |

we see that our second solution is simply

(2) . 1 2t 0 2t
X (t)—(_ljte +[_Je ,

since the last term of third term of x is a multiple of x(,



Example 2: General Solution (7 of 10)

The two solutions of x' = Ax are

1) . 1 2t (2) f+\ _ 1 2t 0 2t
X (t)_(_l)e , X (t)_(_ljte +(_Je

The Wronskian of these two solutions is

eZt te 2t
2

: — e 20
e

W {x® x® ](t) =

_e 2t _ g2t

Thus xM) and x@ are fundamental solutions, and the general
solution of X' = AX Is

X(t) = c,xP (t) +c,x? (t)

of el e 2



Example 2: Phase Plane (8 of 10)

The general solution is

X(t) =¢, e~ +c¢, te” + e
-1 -1 -1

Thus x Is unbounded ast — oo, and x —>0ast — - o0.
Further, it can be shown that as t — - o0, x — 0 asymptotic
to the line x, = —x, determined by the first eigenvector.
Similarly, ast — oo, X IS asymptotic PO
to a line parallel to x, = —X;.




Example 2: Phase Plane (9 of 10)

« The origin iIs an iImproper node, and is unstable. See graph.

« The pattern of trajectories is typical for two repeated
eigenvalues with only one eigenvector.

« |If the eigenvalues are negative, then the trajectories are
similar but are traversed in the inward direction. In this case
the origin is an asymptotically stable improper node.




Example 2:
Time Plots for General Solution (10 of 10)

» Time plots for x,(t) are given below, where we note that the
general solution x can be written as follows.

el
X(t) =¢, e~ +¢, te” + e
-1 -1 -1

- (xl(t)j _ ( ce” +c,te” ]
X,(t)) (—(c,+c,)e” —c,te”




General Case for Double Eigenvalues

Suppose the system x' = Ax has a double eigenvalue r = r
and a single corresponding eigenvector y.

The first solution is
XY () = xe”,
where x satisfies (A— r 1) x=0.
As in Example 1, the second solution has the form
x? =Ete”" +ne”
where x is as above and /7 satisfies (A- rl)h=x.

Even though det(A— 7 1) =0, it can be shown that
(A- rl)h= xcan always be solved for #.
The vector /7 is called a generalized eigenvector.



Example 2 Extension:
Fundamental Matrix (1 of 2)

Recall that a fundamental matrix Y (t) for x' = Ax has
linearly independent solution for its columns.

In Example 1, our system x' = Ax was
(1 -1
X = X

and the two solutions we found were

e dlie e
X()(t)_k _1)e ’X()(t)_L -1Jte +L -1Je

Thus the corresponding fundamental matrix is

eZt te2t 1 t
P(t) = —e”
—e?t —te¥ —e® -1 —-t-1



Example 2 Extension:
Fundamental Matrix (2 of 2)

e The fundamental matrix F (t) that satisfies F (0) = I can be
found using F (1) =Y ()Y "*(0), Where

1 0) ., 1 0
o~} %ro-} %

where Y %(0) is found as follows:

1 0 1 0 1 01 0 1 0 1 O
—> —>
-1 -1 0 1 O -1 1 1 O 1 -1 -1
* Thus

S 1t 1 o_eZt 1-t  —t
[ P R (P t  t+1



Jordan Forms

If A Is n x n with n linearly independent eigenvectors, then A

can be diagonalized using a similarity transform T-*AT = D.
The transform matrix T consisted of eigenvectors of A, and
the diagonal entries of D consisted of the eigenvalues of A.

In the case of repeated eigenvalues and fewer than n linearly
Independent eigenvectors, A can be transformed into a nearly
diagonal matrix J, called the Jordan form of A, with

TAT = J.



Example 2 Extension:
Transform Matrix (1 of 2)

« In Example 2, our system x' = AX was

(1 -1
X = X

with eigenvalues r; = 2 and r, = 2 and eigenvectors

&{_3’ ":[—2j+k(—3

« Choosing k = 0, the transform matrix T formed from the
two eigenvectors xand A/ is

-



Example 2 Extension: Jordan Form (2 of 2)

* The Jordan form J of A is defined by TtAT = J.

> ow 1 0\, (1 0
T = T =
1 -1 1 -1

and hence

=rar=( SJ6 30 AG

» Note that the eigenvalues of A, r, =2 and r, = 2, are on the
main diagonal of J, and that there is a 1 directly above the
second eigenvalue. This pattern is typical of Jordan forms.
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» The general theory of a nonhomogeneous system of equations
Xl' — pll(t)xl + p12(t)xz +...+ Doy (t)xn + gl(t)
X; = le(t)Xl + pzz(t)xz +...+ Dy, (t)xn + gz(t)

Xr'1 — pnl(t)xl + pnz(t)xz Tt pnn(t)xn + gn(t)
parallels that of a single nth order linear equation.
« This system can be written as x' = P(t)x + g(t), where

Xl(t) 91(t) p11(t) p12(t) pln(t)
Xz(t) g(t): gz(t) p21(t) pzz(t) p2n(t)

Xn (t) g, (t) P (t) P2 (t) Py (t)/

X(t) = , P(t) =




General Solution

* The general solutionof X' =P(t)x+g(t)onl: a<t<b
has the form
X =C XV (1) +C,x D (1) +...+¢c X () + v(t)

where
XY )+, xP () +...+c xM(t)
IS the general solution of the homogeneous system x' = P(t)x

and v(t) is a particular solution of the nonhomogeneous
system x' = P(t)x + g(t).



Diagonalization

Suppose x' = Ax + g(t), where A is an n X n diagonalizable
constant matrix.

Let T be the nonsingular transform matrix whose columns are
the eigenvectors of A, and D the diagonal matrix whose
diagonal entries are the corresponding eigenvalues of A.

Suppose x satisfies x' = Ax, let y be defined by x = Ty.
Substituting x = Ty into X' = AX, we obtain

Ty' = ATy + g(t).
or y' = T1ATy + Tg(t)
or y' = Dy + h(t), where h(t) = T1g(t).
Note that if we can solve diagonal system y' = Dy + h(t) for vy,
then x = Ty Is a solution to the original system.



Solving Diagonal System

 Now y' =Dy + h(t) is a diagonal system of the form

y; =6y, +0y, +...+0y, +h(t) | i) (n 0 - 0)y) (h
Y2 OY1+r2Y2+ "‘Oyn"'h(t)&@ y; :C:) r:2 O y:2 n h:2
Yy, =0y, +0y, +...+ 1y, +h () Yo ) (O 0 - 1 y,) (h,

where r,,..., r, are the eigenvalues of A.

* Thusy' =Dy + h(t) is an uncoupled system of n linear first
order equations in the unknowns y,(t), which can be isolated

yi =ry.+h (), k=1...,n
and solved separately, using methods of Section 2.1

y, =e' e “h (s)ds+ce"™, k=1,..




Solving Original System

The solution y to y' = Dy + h(t) has components

For this solution vector y, the solution to the original system
X'=AXx + g(t) is then x = Ty.

Recall that T is the nonsingular transform matrix whose
columns are the eigenvectors of A.

Thus, when multiplied by T, the second term on right side of
Y, produces general solution of homogeneous equation, while
the integral term of y, produces a particular solution of
nonhomogeneous system.



Example 1: General Solution of Homogeneous
Case (1of5)

« Consider the nonhomogeneous system x' = Ax + g below.

i [ 9t )
X’:( 2 1\X+ 28 :Ax+g(t)
L1 2 )
* Note: A is a Hermitian matrix, since it is real and symmetric.

* The eigenvalues of A are r, =-3and r, = -1, with
corresponding eigenvectors

1) _ 1 (2) _ 1
e,

« The general solution of the homogeneous system is then
(1), (1)
X(t)—qL _1Je +02L1Je



Example 1: Transformation Matrix (2 of 5)

« Consider next the transformation matrix T of eigenvectors.
Using a Section 7.7 comment, and A Hermitian, we have
T1=T"=TT, provided we normalize x®and x@ so that (
Ly y=1and ( @y @y =1. Thus normalize as follows:

el
JOO+)EY) (-1 V2 -1)

-l 3l
JOO+oo 1) V21
« Then for this choice of eigenvectors,

col(1n) o, 111
_\E(—l 1)’ _\E[l 1)




Example 1:
Diagonal System and its Solution (3 of 5)

« Under the transformation x = Ty, we obtain the diagonal
system y' = Dy + T-1g(t):

i) (=3 O0Yvy,) 1 (1 -1)2e"
= + —
Y, 0 -1ly,) J2\1 1) 3t
(=3y, +i 2 -3t
-y, ) 2|2t +3t
» Then, using methods of Section 2.1,

/ 3 N2 3(t 1
T \/E & 2 (3 j 1

, ~ 3 _ _
Yo+ Y, =~/2e t+ﬁt =y, =+/2te t+—2(t—1)+cze t

0 ]



Example 1:
Transform Back to Original System (4 of 5)

» \We next use the transformation x = Ty to obtain the solution
to the original system x' = Ax + g(t):

(1, (t 1
N R AL R
) V2(-1 DAYe) (= D S gy e
\ 2 i
k.e™ +(k2 + 1jet +1 4 +te™ N
_ 2 3 -
y y Ny
—ke™ +(k2 —%)e‘ + 2t —%the“ V2

\

\

L2
J2



Example 1:
Solution of Original System (5 of 5)

« Simplifying further, the solution x can be written as

ke ™ + [kz + ljet it-2 e
2 3

xlj
(XZ —ke™ + (kz -~ ;jet +2t — g +te™
1 1 1 1 1 4
=k, e +k,| e+ 1 et | et Tleod
-1 1 2\ -1 1 2 3\ 9

* Note that the first two terms on right side form the general
solution to homogeneous system, while the remaining terms
are a particular solution to nonhomogeneous system.




Nondiagonal Case

If A cannot be diagonalized, (repeated eigenvalues and a
shortage of eigenvectors), then it can be transformed to its
Jordan form J, which is nearly diagonal.

In this case the differential equations are not totally
uncoupled, because some rows of J have two nonzero
entries: an eigenvalue in diagonal position, and a 1 in
adjacent position to the right of diagonal position.

However, the equations for y,,..., y, can still be solved
consecutively, starting with y,. Then the solution x to
original system can be found using x = Ty.



Undetermined Coefficients

« Asecond way of solving x' = P(t)x + g(t) is the method of
undetermined coefficients. Assume P Is a constant matrix,
and that the components of g are polynomial, exponential or
sinusoidal functions, or sums or products of these.

« The procedure for choosing the form of solution is usually
directly analogous to that given in Section 3.6.

« The main difference arises when g(t) has the form ue’t,
where / is a simple eigenvalue of P. In this case, g(t)
matches solution form of homogeneous system x' = P(t)x,
and as a result, it is necessary to take nonhomogeneous
solution to be of the form ate/t + be/t. This form differs
from the Section 3.6 analog, ate /.



Example 2: Undetermined Coefficients (1 of 5)

« Consider again the nonhomogeneous system X'=AX +Q:

x':( -2 1\x+( Zet\ ( _ z\e"+(0\t
L1 2 )" & )7L 1-2J (o) "1 3)

« Assume a particular solution of the form
v(t)=ate™ +be™ +ct+d
where the vector coefficents a, b, ¢, d are to be determined.

« Sincer =-11s an eigenvalue of A, It is necessary to include
both ate and be, as mentioned on the previous slide.



Example 2:
Matrix Equations for Coefficients (2 of5)

 Substituting
v(t)=ate™ +be™ +ct+d
In for X In our nonhomogeneous system x' = Ax + g,
(2 1) (2)., (0)
Tl 2)% o) L)

we obtain

- ate’ ' +(a- b)e't+c=Aate't+Abe't+Act+Ad+[ é )e't+(

)
)t

0
3
« Equating coefficients, we conclude that

. ~ (2Y)Y (o) ..
Aa=- a, Ab—a-b-L O)’Ac_-L 3J,Ad—c



Example 2:
Solving Matrix Equation for (a) (3 0of5)

« Our matrix equations for the coefficients are:
2 0
Aa=-a, Ab =a—b—(0], AcC :—(3} Ad =c

« From the first equation, we see that a is an eigenvector of A
corresponding to eigenvalue r = -1, and hence has the form

a

 We will see on the next slide that & = 1, and hence

-,



Example 2:
Solving Matrix Equation for (D) (4 of 5)

« Our matrix equations for the coefficients are:
2 0
Aa=-a, Ab :a—b—[o} Ac =—(3], Ad =c

» Substituting a = (g,a)" into the second equation,
[ R G
Ab = — — + —
a b, 1 -2) \0 1)(b, o
[ 9 P S P I P
N = < =
1 -1)hb, o 0 O\b, a-1
 Thus @ =1, and solving for b, we obtain

1 0 0
b:k(j—( j—)Choosek:O—>b:( J
1 1 —1



Example 2: Particular Solution (5 of 5)

Our matrix equations for the coefficients are:
2 0
Aa=-a, Ab :a—b—[OJ, Ac =—(3], Ad =c

Solving third equation for c, and then fourth equation for d,
It is straightforward to obtain c™ = (1, 2), d" = (-4/3, -5/3).

Thus our particular solution of X' = AXx + g IS

(t)_/l\t_t_(o\_t(l 1( 4 )
) Tl ) T2 ) El s )
Comparing this to the result obtained in Example 1, we see

that both particular solutions would be the same if we had
chosen k =% for b on previous slide, instead of k = 0.



Variation of Parameters: Preliminaries

A more general way of solving x' = P(t)x + g(t) Is the
method of variation of parameters.

Assume P(t) and g(t) are continuous on & <t < b, and let
Y (t) be a fundamental matrix for the homogeneous system.

Recall that the columns of Y are linearly independent
solutions of X' = P(t)x, and hence Y (t) is invertible on the
interval g <t < b, and also Y '(r) = P(t)Y (¢).

Next, recall that the solution of the homogeneous system
can be expressed as x = Y (t)c.

Analogous to Section 3.7, assume the particular solution of
the nonhomogeneous system has the form x = vy (t)u(t),

where u(t) is a vector to be found.



Variation of Parameters: Solution

We assume a particular solution of the form x = Y (Hu(t).
Substituting this into x' = P(t)x + g(t), we obtain
Y'(Qu(t) + Y (Qu'(t) = P(t) Y (Hu(t) + g(t)
Since Y'(t) = P(t) Y (t), the above equation simplifies to
u'(t) = Y ~(t)a(t)
Thus
u(t) = j ¥ (t)g(t)dt +c
where the vector c Is an arbitrary constant of integration.
The general solution to x' = P(t)x + g(t) Is therefore

x = Y(t)c+ ¥(t) f ¥Y1(s)g(s)ds, t, e (e, 3) arbitrary



Variation of Parameters: Initial VValue
Problem

 For an initial value problem
X' = P(t)x + g(t), x(tp) = xO,
the general solution to x' = P(t)x + g(t) Is

X =P (t,)x + (1) ¥(s)g(s)ds

 Alternatively, recall that the fundamental matrix F (t)
satisfies F (t,) = I, and hence the general solution is

_ (0) Lyt
X = D)X + ®(t) jt ¥1(s)g(s)ds
 In practice, it may be easier to row reduce matrices and

solve necessary equations than to compute Y —1(t) and
substitute into equations. See next example.



Example 3: Variation of Parameters (1 of3)

« Consider again the nonhomogeneous system X'=AX +Q:
(22 1) (et ) [ 2 Y., (0)
L2 ) s )T zJ koJ "3)

* \We have previously found general solution to homogeneous
case, with corresponding fundamental matrix:

e—3t e—t
o 20
-e™ e
 Using variation of parameters method, our solution is given
by X = Y (t)u(t), where u(t) satisfies Y (t)u'(t) = g(t), or

e ey ) (2
—e® et )uy) [ 3



Example 3: Solving for u(t)

(2 of 3)

« Solving Y (t)u'(t) = g(t) by row reduction,

e e 2e™"

0 e' e'+3t/2
1 0 e”*-3te™/2
0 1 1+3tet/2j

%

* |t follows that

() |

{24

0 2e

e 0
%
[ 0 e

2e"
2e ' +3t

et —3t/2
e ' +3t/2

—e?' —3te¥ /2

Uy
u, =1+3te'/2

e 12-te”[2+e” 16+c,

)
t+3te' 12- 3¢' 12+, J



Example 3: Solving for X(t) (3 of3)
* Now x(t) = Y (tu(t), and hence we multiply
‘ e et)e’/2-te®/2+e"/6+c,
—e ' e ) t+3te'/2-3e'/2+c,
to obtain, after collecting terms and simplifying,

( (1) (1)

(1) o 1)
4l 1) el ety el ) e )

* Note that this is the same solution as in Example 1.



_aplace Transforms

» The Laplace transform can be used to solve systems of
equations. Here, the transform of a vector Is the vector of
component transforms, denoted by X(s):

o))

« Then by extending Theorem 6.2.1, we obtain

L{X'(t)} = sX(s) —x(0)



Example 4: Laplace Transform (1 of 5)

« Consider again the nonhomogeneous system x' = AX + gQ:

, (-2 1 2™
X' = X +
1 -2 3t
 Taking the Laplace transform of each term, we obtain

sX(s) —x(0) = AX(s) + G(s)

where G(s) is the transform of g(t), and is given by
(2 )
s+l
3

2
S

G(s) =




Example 4: Transfer Matrix (2 of 5)

Our transformed equation is
sX(s)—x(0) = AX(s) +G(s)

If we take x(0) = 0, then the above equation becomes
sX(s) = AX(s) + G(s)

or
(sl —A)X(s) =G(s)

Solving for X(s), we obtain
X(s) = (sl —A)"G(s)

The matrix (sl — A) is called the transfer matrix.



Example 4: FiInding Transfer Matrix (3 of 5)

e Then

2 deea 2,0

 Solving for (sl — A)=, we obtain

(51-A)" 1 (s+ 2 1)

:(s+1)(s+3) 1 s+2




Example 4: Transfer Matrix (4 of5)

* Next, X(s) = (sl — A)*G(s), and hence

X(s) - 1 (S +2 1](2/ (S J;l))
(s+1)(s+3) 1 s+2) 3/s

or
[ 2(s+2) 3 b

(s+1)°(s+3) " s?(s+1)(s+3)
2 3(s +2)

L(s+1)*(s+3) +sz(s+1)(s+3))




Example 4: Transfer Matrix (5 of 5)

Thus
205+2) 3
x(s)=| 6+U (5+3) s*(s+1)(s+3)
) 2 3(s+2)
_I_
(s+1P(s+3) s°(s+1)(s+3),

To solve for x(t) = L{X(s)}, use partial fraction expansions
of both components of X(s), and then Table 6.2.1 to obtain:

o200 s (e L M) L fa) 1fa)
3l -1 )¢ L) "L )® "2 )73l s )

Since we assumed Xx(0) = 0, this solution differs slightly
from the previous particular solutions.



Summary (1of2)

* The method of undetermined coefficients requires no
Integration but is limited in scope and may involve several
sets of algebraic equations.

 Diagonalization requires finding inverse of transformation
matrix and solving uncoupled first order linear equations.
When coefficient matrix is Hermitian, the inverse of
transformation matrix can be found without calculation,
which is very helpful for large systems.

* The Laplace transform method involves matrix inversion,
matrix multiplication, and inverse transforms. This method
Is particularly useful for problems with discontinuous or
Impulsive forcing functions.



summary (2of2)

 Variation of parameters is the most general method, but it
Involves solving linear algebraic equations with variable
coefficients, integration, and matrix multiplication, and
hence may be the most computationally complicated
method.

« For many small systems with constant coefficients, all of
these methods work well, and there may be little reason to
select one over another.



