Boyce/DiPrima/Meade 11" ed, Ch 5.1: Review of

Power Series

Elementary Differential Equations and Boundary Value Problems, 11t edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John

Wiley & Sons, Inc.

Finding the general solution of a linear differential equation
depends on determining a fundamental set of solutions of the
homogeneous equation.

So far, we have a systematic procedure for constructing
fundamental solutions if equation has constant coefficients.

For a larger class of equations with variable coefficients, we
must search for solutions beyond the familiar elementary
functions of calculus.

The principal tool we need is the representation of a given
function by a power series.

Then, similar to the undetermined coefficients method, we
assume the solutions have power series representations, and
then determine the coefficients so as to satisfy the equation.



Convergent Power Series

* A power series about the point x, has the form

a a (x- xo)n
and Is said to converge at a point x if

lim Za (x xo)

m—)OO

exists for that x.

 Note that the series converges for x = x,. It may converge for
all x, or it may converge for some values of x and not others.



Absolute Convergence

« A power series about the point x,
¥

é. da, ()C - xo)n
=0

IS said to converng_e absolutely at a point x if the series

3 i 9 ;

a. an('x_ xO) :a an X - xO

n=0 n=0
converges.

 |f a series converges absolutely, then the series also converges.
The converse, however, Is not necessarily true.



Ratio Test

* One of the most useful tests for the absolute convergence of a
power series

IS the ratio test. If a, # 0, and if, for a fixed value of x,

n+1

an+1(X_X0)
an (X_ Xo)n

an +1

a

n

lim
Nn—oo

=[x —X,|lim

Nn—o0

=|x—X,|L,

then the power series converges absolutely at that value of x if
X — Xo|L <1 and diverges if [x — X,|L > 1. The testis

Inconclusive if [x — x,|L = 1.



Example 1

Find which values of x does power series below converge.
> (D™ n(x—2)
n=1

Using the ratio test, we obtain

__1\n+2 __n\n+l
| 12 1)(::1*?()‘ 2)? —x—2tim " o x -2/ <1, for1<x <3
N—00 — N{X — NeSco N

At x =1 and x = 3, the corresponding series are, respectively,

o0 o0 o0 e}

> (=2 => (-1, > (8-2)=> 1)

n=1 n=1 n=1 n=1

Both series diverge, since the nth terms do not approach zero.
Therefore the interval of convergence is (1, 3).




Radius of Convergence

There 1s a nonnegative ngmber r, called the radius of
convergence, such that a «,(x- x,)" converges absolutely for all
x satisfying [x - x,| < 7 and diverges for |x - x| > 7.

For a series that converges only at x,, we define r to be zero.
For a series that converges for all x, we say that 7 is infinite.

If >0, then |x - X,| < 7 Is called the interval of
convergence.

The series may either converge or diverge when [X - X,| = 7.

Series
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Example 2

Find the radius of convergence for the power series below.
i (x+1)°
n1 N 2n

Using the ratio test, we obtain

(2" (x+)™ | x+3 .

(n+1)2™ (x+1)"

At x = -3 and x = 1, the corresponding series are, respectively,

(2 () @) 1
nzzll n2" _nzzll n ' nZ:;nZ” _nzzlln

The alternating series on the left is convergent but not absolutely
convergent. The series on the right, called the harmonic series is
divergent. Therefore the interval of convergence is [-3, 1), and
hence the radius of convergence is 7 = 2.

n
n+1

lim :‘

n—oo

X +
2” <1, for-3<x<1

2 n—oo




Taylor Series

« Suppose that é¥, a,(x- x,)" converges to f(x) for |x - X,| < r.
« Then the valué of a_ is given by
£ (%)
nt
and the series is called the Taylor series for f about x = X,,.

(x- x,)",

a =

n

e Also, If ¥ )
f(X) a f (xo)

then f is continuous and has derivatives of all orders on the
Interval of convergence. Further, the derivatives of f can be
computed by differentiating the relevant series term by term.



Analytic Functions

A function f that has a Taylor series expansion about X = X,
= f (M (x )
0 =3 ) (x—x, ),
n=1 n:
with a radius of convergence 7 > 0, is said to be analytic at X,
All of the familiar functions of calculus are analytic.

For example, sinx and e* are analytic everywhere, while 1/x Is
analytic except at x = 0, and tanx Is analytic except at odd
multiples of p/2.

If f and g are analytic at x,, then so are f + g, fg, and f/g; see
text for details on these arithmetic combinations of series.




Series Equality

* |If two power series are equal, that is,

Za(x X, )" Zb(x X, )"
for each X In some open Interval with center x,, then a, = b, for
n=0,1,?2,3,.
 |In particular, if

Zan (X — X )” =
n=1

thena, =0forn=0,1,2, 3,...



Shifting Index of Summation

e The index of summation in an infinite series is a dummy
parameter just as the integration variable in a definite integral
IS a dummy variable.

 Thus it 1s immaterial which letter i1s used for the index of

summation:
k

¥ ¥
& a,(x- %) =8 a,(x- x,)
n=0 k=0
 Just as we make changes in the variable of integration in a
definite integral, we find it convenient to make changes of
summation in calculating series solutions of differential
equations.



Example 3: Shifting Index of Summation

« \\e are asked to rewrite the series below as one starting with
the index n = 0. 0
2., (%)
n=2

By letting m = n — 2 in this series. n = 2 corresponds to
m = 0, and hence

Zan (X)n — Zam+2 (X)m+2
n=2 m=0
* Replacing the dummy index m with n, we obtain

Z d, (X)n = Z N (X) e
n=2 n=0

as desired.



Example 4: Rewriting Generic Term

We can write the following series
Z(n+2)(n +Da_(X—x,)"?

as a sum whose generlc term involves (X—X,)" by

lettingm =n—2. Then n =2 corresponds to m = 0.
It follows that

S (n+2)(n+1)a, (x—%)"2 = > (m+4)(M +3)a,, (X~ %,)"

Replacing the dummy index m with n, we obtain
> (n+4)(n+3)a,, (X~ %,)"
n=0

as desired.



Example 5: Rewriting Generic Term

We can write the following series

X2 (r+n)a,x™"*
n=0

as a series whose generic term involves x™"
Begin by taking x* inside the summation and letting m = n+1

X2y (r+nma,x™"=>"(r+n)a,x"" => (r+m-1)a, x""
n=0 n=0 m=1

Replacing the dummy index m with n, we obtain the desired

result:

o0

> (r+n-1)a, x""

n=1



Example 6: Determining Coefficients (1 of 2)

 Assume that - o
D nax"t=>ax"
n=1 n=0

« Determine what this implies about the coefficients.

« Begin by writing both series with the same powers of x. As
before, for the series on the left, let m = n— 1, then replace m
by as we have been doing. The above equality becomes:

a

Z(n _|_:I')an+1xn N Zanxn — (n +1)an+1 - a'n — an+1 N -
n=0 n+1

nN=

0
forn=0,1,2,3, ...



Example 6: Determining Coefficients (2 of 2)

 Using the recurrence relationship just derived:
a

n

a

n+1

n+l
« we can solve for the coefficients successively by letting
n=a0,1,2,...
a, _ G a, 4 d,
a,=da,,d,=—=—,d :—:—’...,an:_
1 0> “2 ) 7 3 3 30 oy

 Using these coefficients in the original series, we get a
recognizable Taylor series:

¥
ox”

a,a — T ape
n=o 1

X
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In Chapter 3, we examined methods of solving second order
linear differential equations with constant coefficients.

We now consider the case where the coefficients are functions
of the independent variable, which we will denote by x.

It is sufficient to consider the homogeneous equation
d®y
dx®
since the method for the nonhomogeneous case is similar.

We primarily consider the case when P, Q, R are polynomials,
and hence also continuous.

However, as we will see, the method of solution is also
applicable when P, Q and R are general analytic functions.

P(x) +Q(x)%+ R(x)y =0,



Ordinary Points

« Assume P, Q, R are polynomials with no common factors, and
that we want to solve the equation below in a neighborhood of
a point of interest X,:

d’y

P(x) dx?

+Q(x)%+ R(x)y=0

* The point X, Is called an ordinary point if P(x,) # 0. Since P
IS continuous, P(x) # 0 for all x in some interval about x,. For
X In this interval, divide the differential equation by P to get

d%y QY .. R(X)
peo’ ¥

dx®
 Since p and g are continuous, Theorem 3.2.1 says there is a
unique solution, given initial conditions y(X,) = Yo, Y'(X5) = Yo'

d
+ p(x)d—i+q(x)y =0, where p(x) =



Singular Points

Suppose we want to solve the equation below in some
neighborhood of a point of interest x,:

d%y QX) .. R(X)
peo’ ¥ p

i p(x)ﬂ+q(x)y =0, where p(x) =
dx dx

The point x, Is called an singular point if P(x,) = 0.

Since P, Q, R are polynomials with no common factors, it

follows that Q(x,) # 0 or R(x,) # 0, or both.

Then at least one of p or g becomes unbounded as x—X,, and

therefore Theorem 3.2.1 does not apply in this situation.

Sections 5.4 through 5.8 deal with finding solutions in the

neighborhood of a singular point.



Series Solutions Near Ordinary Points

 In order to solve our equation near an ordinary point X,

d?y dy
Y LR(X)V=0
> +Q(X) dx+ (X)y

P(x)

we will assume a series representation of the unknown solution
function y:

Y09 = Y2, (x =)'

« As long as we are within the interval of convergence, this
representation of y iIs continuous and has derivatives of all
orders.



Example 1: Series Solution (1 of 8)

Find a series solution of the equation
y'+y=0, —co<Xx<o0

Here, P(x) =1, Q(x) =0, R(x) = 1. Thus every point X is an
ordinary point. We will take x, = 0.

Assume a series solution of the form
y(x)=> a,x"
Differentiate term by term to obtain
y)=>ax", y(x)=> nax"", y"(x)=> n(n-1)a,x"?
n=0 n=1 n=2
Substituting these expressions Into the equation, we obtain

Z n— 1ax”2+Zax =0
n=0

n=2



Example 1: Combining Series (2 of 8)

e Our equation is
i n(n—21)a,x" + ianxn =0
n=2 n=0

 Shifting indices, we obtain

o0

> (n+2)n+1a,,,x"+ ianxn =0

n=0 n=0
or

i [(n+2)n+1)a,,+a |x"=0

n=0



Example 1: Recurrence Relation (3 of 8)

Our equation is

o0

> l(n+2)n+1)a,,, +a,]x" =0

n=0

For this equation to be valid for all x, the coefficient of each
power of x must be zero, and hence

(n+2)n+1)a, _,+a, =0, n=0,12,..

n+2
or
_ an

— , =0,12,...
M2 = 2 n+D) |

This type of equation is called a recurrence relation.
Next, we find the individual coefficients a,, a,, a,, ...




a = o

o " (n+2)n+1)
Example 1: Even Coefficients (4 of 8)

* Tofind a,, a,, ag, ...., we proceed as follows:
a0
a, =———,
©241
a4 = — a2 = aO :
4.3 4.3.2.1

a, a,
a6:_—:_ :
65 6-54.3.2-1

N ) P
2k DR




a = o

o "2 (n+2)n+1)
Example: Odd Coefficients (5 of 8)

* Tofind as, a, a-, ...., we proceed as follows:
ao B
3:2
= "8 _
5 = - y
5-4 5-4.3-2-1
a % _ 2,

7.6  7-6-5-4.3.2.1



Example 1: Solution (6 of 8)

We now have the following information:

[GN 0 - (D"
2k)! % Gzt (2k +1)!

y(X) = Zax where a,, = a,

Thus

_ S (_ ( 1)n 2n+1
y(x) = a, 2 on) aiZ T

Note: a, and a, are determined by the initial conditions.
(Expand series a few terms to see this.)

Also, by the ratio test it can be shown that these two series
converge absolutely on (- ¥,¥), and hence the manipulations
we performed on the series at each step are valid.



Example 1: Functions Defined by IVP (7 of 8)

Our solution is

( 1) 2n+1
alz 5 (2n +1)'

From Calculus, we know this solution is equivalent to
y(X) =a, cos X +a, Sin X

In hindsight, we see that cos x and sin x are indeed
fundamental solutions to our original differential equation

YV'+y=0, —co<X<®
While we are familiar with the properties of cos x and sin X,

many important functions are defined by the initial value
problem that they solve.



o0 o0

Y09 =% Zo(z n)! Z:(zn+1>' .
Example 1: Graphs (8 of 8)

* The graphs below show the partial sum approximations of
cosx and sinx.

 As the number of terms increases, the interval over which
the approximation is satisfactory becomes longer, and for
each x In this interval the accuracy improves.

* However, the truncated power series provides only a local
approximation in the neighborhood of x = 0.

'2_ 4 n=8 n=12 n=16 r1—20 Y n=5 n=9 n=13 n=17 n=21
S , |

1 1 f!."II /!;'Jl
. / —
_,;’ )
,____/’I ._/




Example 2: Airy’s Equation (1 of 10)

Find a series solution of Airy’s equation about x, = O:
y'—Xy =0, —00< X <0

Here, P(X) =1, Q(x) =0, R(X) =- x. Thus every point x is an

ordinary point. We will take x, = 0.

Assuming a series solution and differentiating, we obtain

Y(X) =Y ax", y() =3 nax" y'(x)=> n(n-1ax"
n=0 n=1 n=2

Substituting these expressions into the equation, we obtain

o0

i n(n-1)a,x"?-> a x" =0

n=2 n=0



Example 2: Combine Series (2 of 10)

e Our equation is

i n(n-1)a x"? — i a x"" =
n=2 n=0

 Shifting the indices, we obtain

o0

> (n+2)n+1)a,,,X" i a_x"=0
n=1

n=0
or

n+2

2-1-a, +Z[n+2 (n+1)a_,,—a ]x"=0



Example 2: Recurrence Relation (3 of 10)

e Our equation is

2-1-a, +Z[(n+2)(n+1) ,—a X" =0

 For this equation to be valid for all x, the coefficient of each
power of x must be zero; hence a, = 0 and
a‘n—l

= , =12,3,...
2 = 2fn+D) |

or

a .= %  n_012..

" (n+3)n+2)




Example 2: Coefficients (4 of 10)

We have a, = 0 and

a
_ n . n=012,..
F2 T e 2)ne3)

For this recurrence relation, note thata, =a: =ag=... = 0.

Next, we find the coefficients a,, as, a, ....
We do this by finding a formula a;,, n=1, 2, 3, ...

After that, we find a,, a,, @, ..., by finding a formula for
s, N=1,2,3, ...



an
%42 = (4 2)fn+3)

Example 2: Find a5, (5 of 10)

* Find as, ag, a,, ...

d, d; d, a_a6_ d,

—_ a. = — : — — R
%=53 %7567 2356 @ 89 2356809

» The general formula for this sequence is

a

Az, = 2:3-5-6---(3n—4)(3n—3)(3n-— 1)(3I’l)




d
an+3 — ;
Example 2: Find a;,,; (6 of 10) n-2)n+3)

* Find a,, a;, a,, ...

A a, a a; a
a. = — a. — = Ry
‘ aio9-10 3-4.6-7-9-10

3.4 7 6.7 3.4.67

» The general formula for this sequence is

a
= : n=4

A3 = 3-4-6-7---(3n—3)(3n—2)3n)(3n+1) ?




Example 2: Series and Coefficients (7 of 10)

* \We now have the following information:
y(x)=> ax"=a,+ax+y ax"
n=0 n=3

where a,, a, are arbitrary, and

a, = “o , n>4
2-3-5-6---(3n—4)(3n—3)(3n—1)(3n)
= 4 n=4

Az = 3467(3n_ 3)(3n_2)(3n)(3n+1) >



Example 2: Solution (8 of 10)

 Thus our solution Is

. X3” © X3n+1

where a,, a, are arbitrary (determined by Initial conditions).

Consider the two cases
(1)a,=1, a,=0 and y(0)=1,y'(0)=0
(2)a,=0, a;,=1 and y(0)=0,y'(0)=1

* The corresponding solutions y,(x), y,(x) are linearly
Independent, since W(y,, ¥,)(0) =1 # 0, where

y:(0) y,(0)
y:(0) y;(0)

W(y,, ¥,)(0)=

=Y,(0)y;(0)-y;(0)y,(0)



Example 2: Fundamental Solutions (9 of 10)

e Qur solution:

. X3” © X3n+1
= a{“; 2-3---(3n—1)(3n)}+a{x+;3-4---(3n)(3”+1)}

* For the cases
(1)a,=1, a,=0 and y(0)=1,y'(©0)=0
(2)a,=0, a,=1 and y(0)=0,y'(0) =1,

the corresponding solutions y,(x), y,(x) are linearly
Independent, and thus are fundamental solutions for Airy’s
equation, with general solution

y (X) = € Y1(X) + €1 Y,(X)




Example 2: Graphs

« Thus given the initial conditions

y(0)=1,y'(0) =0 and y(0)=0,y(0) =1

the solutions are, respectively,

o0

X3

n

yl(X) =1+ Z

n=1

2-3---(3n-1)(3n)

J y2 (X) —

(10 of 10)

o0 X3n+1
X +
;3-4---(3n)(3n +1)

» The graphs of y, and y, are given below. Note the approximate
Intervals of accuracy for each partial sum
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Example 3: Airy’s Equation (10f7)

* Find a series solution of Airy’s equation in powers of x —1
(.e. about x, = 1):
y'—xy =0, —co< X <0

* Here, P(x) =1, Q(x) =0, R(X) =-x. Thus every point x Is an
ordinary point. We will take x, = 1.

« Assuming a series solution and differentiating, we obtain
y(x) =Y a,(x=1", y'(x)=> na,(x-)"*, y"(x)=> n(n-1)a,(x-1)"*
 Substituting these into ODE & shifting indices, we obtain

:zo(n +2)n+Da,,(x—1)" = x> a, (x-1)



Example 3: Rewriting Series Equation (2 of 7)

e Our equation is

e )

S (n+2)n+1)a,,,(x—1) = xz a (x-1)

n=0

e The x on right side can be written as 1 + (x — 1); and thus

in+2)(n+1 Ja,.,(x=1)" =[1+(x— 1)]ian (x-1)

3



Example 3: Recurrence Relation

« Thus our equation becomes

2a,+ (n+2)n+1a,,(x-1) =a, + Y a, (x-1) +
n=1 n=1

* Thus the recurrence relation is
(n+2)(n+1a

n+2

=a, +a ,, (n=1)

« Equating like powers of x — 1, we obtain

2a, =a, =a, =
(3-2)a,=a,+a, =a,=

(4-3)a,=a,+a, =a,=

)

a a
e
6 6
b 4

24 12°

(30f 7)

o0

> a,(x-1)

n=1



Example 3: Solution

(4 of 7)

* \We now have the following information:

Y09 =Y a,(x-1)

and

2

6

24

y(x) = a{1+ (x-1f | (x-1] | (x-1) +}

+a1{(x—1)+

(x-1F _ (x-1)

12

ﬁ

a, = arbitrary
a, = arbitrary

a,

Ay

4

_aO
2
_aO
6
_aO

24

Y
6
oG

12°



Example 3: Solution and Recursion (5 of 7)

* Our solution: a, — arbitrary
_1V 1) 1) = arbitrar
y(X) =a, 1+(X 1) +(X 1) +(X 1) + - % U
6 24 'S
2 = )
2
(x=1  (x-1)'
+a,| (X=1)+ + + .- a
6 6
* The recursion has three terms, _%h a4

d, ,
(h+2)(n+a o4 12

and determining a general formula for the coefficients a,, can
be difficult or impossible.

« However, we can generate as many coefficients as we like,
preferably with the help of a computer algebra system.

=a,+a _,, (n>1)

n+2



Example 3: Solution and Convergence (6 of 7)

* Qur solution:

y(X) = a{1+ (x—1f + (x=1) + (x=1) +}
2 6 24

+a{(x_1)+ (Xgl)?’ (x=1) +}

12

* Since we don’t have a general formula for the a,, we cannot
use a convergence test (i.e., ratio test) on our power series

y(x) = a,(x-1)

« This means our manipulations of the power series to arrive at
our solution are suspect. However, the results of Section 5.3
will confirm the convergence of our solution.



Example 3: Fundamental Solutions (7 of 7)

e Qur solution:
0=t 0ol G

6 24

+a{(x—1)+ (x;l)?’ Nt +}

12

or
y(X) = 85Y;(X) +ay,(X)

* It can be shown that the solutions y;(X), y,(x) are linearly
independent, and thus are fundamental solutions for Airy’s
equation, with general solution

Y(X) =a,Y5(X) +a,y,(X)
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« Afunction p is analytic at X, If it has a Taylor series
expansion that converges to p in some interval about X,

JORDINCES]

* The point x, Is an ordinary point of the equation

2

P(x) glx

¥+Q(x)%+R(x)y=O

If p(x) = Q(X)/P(x) and g(x)= R(x)/P(x) are analytic at x,.
Otherwise X, Is a singular point.
* If x, IS an ordinary point, then p and g are analytic and have

derlvatlves of all orders at x,, and tfus enables us to solve for
- In the solution expansion y(x) = a a (x- x,). See text.

n=0



Theorem 5.3.1

 If x, Is an ordinary point of the differential equation
d’y
dx*

then the general solution for this equation is

P(x)

+Q(x)%+ R(x)y=0

y(X) = iaﬂ (X— Xo)n — aOyl(X) +a,Y, (X)

where a, and a, are arbitrary, and y,, y, are linearly
Independent series solutions that are analytic at X,.

 Further, the radius of convergence for each of the series
solutions y, and y, Is at least as large as the minimum of the
radii of convergence of the series for p and g.



Radius of Convergence

* Thus If X, Is an ordinary point of the differential equation,
then there exists a series solution y(x) =@ a,(x- x,)" .

 Further, the radius of convergence of th€®series solution is at
least as large as the minimum of the radii of convergence of
the series for p and g.

« These radii of convergence can be found in two ways:

1. Find the series for p and g, and then determine their radii of
convergence using a convergence test.

2. If P, Q and R are polynomials with no common factors, then it can
be shown that Q/P and R/P are analytic at x, if P(x,) # 0, and the
radius of convergence of the power series for Q/P and R/P about x, is
the distance to the nearest zero of P (including complex zeros).



Example 1 (1 of 2)

« Let y =7(x)be asolution of the initial value problem:

(L+x%)y"+2xy'+4xy =0, y'(0) =1
» Determine 7"(0), 7" (0), and 7*(0)
 To find £ "(0), evaluate the equation when x = 0:

(1+0°)y"+2(0)y'+4(0)’y=0
so £"(0)=0



Example 1 (2 of 2)

» To find 7™(0), differentiate the equation with respect to x:

(L+x°)F"(x) +2xF"(x) + 2xf "(x) + 27 '(x) + 4x°F'(x) + 8xf (x) =0

e Then evaluate at x = 0:
F"(0)+27'(0)=0
 Thus 7"(0)=-27'(0)=0
 Differentiating the equation above with respect to x:
(L+x°) D (x)+2xf"(x)+4xF"(x) +4F "(x) + (4x* + 2) "(x)

+8xf'(x)+8xf'(x)+8f(x)=0
« And evaluating using 7(0)=1, 7'(0)=7"(0)=7r"(0)=0

gives us £ (0)=-38.



Example 2

Let f(x) = (1 + x?)~L. Find the radius of convergence of the
Taylor series of f about x, = 0.

The Taylor series of f about x, =0 is
1

14 x°

Using the ratio test, we have

(_1)n+1x2n+2
(_1)n X2n

Thus the radius of convergence is 7 = 1.
Alternatively, note that the zeros of 1 + x? are x = #i. Since

the distance in the complex plane fromOtoi1or—i is 1, we
see again that 7 = 1.

=1 X+ X =X (D)X 4

lim

N—o0

=lim x* <1, for |x| <1

N—o0




Example 3

Find the radius of convergence of the Taylor series for
(x*—2x+1)™ about x, = 0 and about x, = 1. First observe:

(X° =2X+1) =0=>x=1+i
Since the denominator cannot be zero, this establishes the
bounds over which the function can be defined.

In the complex plane, the distance from x,=0to 1 +iis V2,
so the radius of convergence for the Taylor series expansion
about x,=01is 7 =2 .

In the complex plane, the distance from x, =1tol1+1iis1,
so the radius of convergence for the Taylor series expansion
about x,=01s 7 = 1.



Example 4: Legendre Equation (1 of 2)

Determine a lower bound for the radius of convergence of the
series solution about x, = 0 for the Legendre equation

A—x?)y"—2xy' +ala+1)y =0, o aconstant.
Here, P(X) = 1 —x2, Q(x) = -2x, R(x) = a(a +1).
Thus x, = 0 is an ordinary point, since p(x) = —2x/(1 — x?) and
q(x) =a(a +1)y(1 — x?) are analytic at x, = 0.
Also, p and g have singular points at x = £1.

Thus the radius of convergence for the Taylor series
expansions of p and q about x,=01is 7 =1.

Therefore, by Theorem 5.3.1, the radius of convergence for
the series solution about x, =0 is at least /7 = 1.



Example 4: Legendre Equation (2 of 2)

* Thus, for the Legendre equation
A—x*)y"—2xy' +a(a+1)y =0,
the radius of convergence for the series solution about
Xo=0Isatleast / =1.

|t can be shown that if 7 Is a positive integer, then one of the
series solutions terminates after a finite number of terms, and
hence converges for all x, not just for |x| < 1.



Example 5: Radius of Convergence (1 of 2)

» Determine a lower bound for the radius of convergence of the
series solution about x, = 0 for the equation

1+ x?)y"+2xy’ +4x*y =0
« Here, P(x) =1 + X2, Q(x) = 2%, R(x) = 4x.
« Thus x, = 0 is an ordinary point, since p(x) = 2x/(1 + x?) and
q(x) = 4x% /(1 + x?) are analytic at x, = 0.
« Also, p and g have singular points at x = =i.

 Thus the radius of convergence for the Taylor series
expansions of p and q about x, =01is 7 =1.

« Therefore, by Theorem 5.3.1, the radius of convergence for
the series solution about x, = 0 is at least / = 1.



Example 5: Solution Theory (20f2)

Thus for the equation
(L+X°)y"+2xy'+4x°y =0,
the radius of convergence for the series solution about
Xo=01Isatleast /=1, by Theorem 5.3.1.

Suppose that initial conditions y(0) =y, and y(0) = y," are
given. Since 1 + x2 # 0 for all x, there exists a unique solution
of the initial value problem on (- %¥,%¥), by Theorem 3.2.1.

On the other hand, Theorem 5.3.1 only guarantees a solution
of the form & a,x"for —1 <x < 1, where a, = y, and a, = y,".

Thus the uni'a(ﬂe solution on (- ¥,¥ ) may not have a power
series about x, = 0 that converges for all x.



Example 6

Determine a lower bound for the radius of convergence of the
series solution about x, = 0 for the equation

Yy +(sinx)y’ +(1+x?)y =0
Here, P(x) =1, Q(x) =sinx, R(x) = 1 + x2.
Note that p(x) = sin x Is not a polynomial, but recall that it
does have a Taylor series about x, = 0 that converges for all x.
Similarly, q(x) = 1 + x? has a Taylor series about x, = 0,
namelyl + x?, which converges for all x.

Therefore, by Theorem 5.3.1, the radius of convergence for
the series solution about x, = 0 is infinite.
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 Recall that the point X, Is an ordinary point of the equation
d®y
dx”?
If p(x) = Q(X)/P(x) and g(x)= R(x)/P(x) are analytic at at x,.
Otherwise X, Is a singular point.

P(x) +Q(x)%+ R(x)y=0

« Thus, if P, Q and R are polynomials having no common
factors, then the singular points of the differential equation

are the points for which P(x) = 0.



Euler Equations

« Avrelatively simple differential equation that has a regular
singular point is the Euler equation,

LIyl=x"y"+axy'+ By =0
where g and pare constants.
 Note that x, = 0 Is a regular singular point.

« The solution of the Euler equation is typical of the solutions of
all differential equations with regular singular points, and
hence we examine Euler equations before discussing the more
general problem.



| L[yl=x*y"+axy'+y=0
Solutions of the Formy = X'

 |In any interval not containing the origin, the general
solution of the Euler equation has the form

y(x) — Clyl(x) +C Y, (X)
« Suppose x >0, and assume a solution of the form
y =x". Then
y=X", yV=rxy =r(r-1)x’
 Substituting these into the differential equation, we obtain
L[X']=r(r-Dx" +arx" + 8x =0

or L[x"]=x"[r(r-)+ar+p]=0

or LIX 1= X" |r? + (@ =Dr + B]=0



Quadratic Equation

Thus, after substituting y = x" into our differential equation,
we arrive at

x[r(r- D)+ar+b=0, x>0
and hence

~(@-Dty(a-1?%- 4b
2

nr=

Let F(r) be defined by
F(r)=r’+(a-)r+B=(-r)(r-r,)

We now examine the different cases for the roots ry, r,.



Real, Distinct Roots

* If F(r) has real roots r, #r,, then
Y. (X) = X%, y,(X) = X"
are solutions to the Euler equation. Note that

Yi Y, X" X2
!/ !
Yi Y,

=1, X" — X

W =

nxq& Gxgﬁ

rn+r-1

=(r,—r, )x""=" 20 forall x> 0.
* Thusy, and y, are linearly independent, and the general
solution to our differential equation is
y(x) =c, X" +c,x2, x>0



Example 1

Consider the equation

2X°y"+3xy'—y=0, x>0
Substituting y = X" into this equation, we obtain

y _ Xr, yr —r Xr—l, y” —_ r(r _1)Xr—2
and Ha y(X):X1/2+X,1

Zr(r—l)xr +3I‘Xr _Xr O 3V
0

x"[2r(r 1) +3r —1]
X'[2r2+r-1]=0
x"(2r-1)r+1)=0

Thusr, =1/2, r, =1, and our general solution is

y(x)=c,x"*+c, x5 x>0



Equal Roots

If F(r) has equal roots r; = r,, then we have one solution
Y, (X) = x*

We could use reduction of order to get a second solution;
Instead, we will consider an alternative method.
Since F(r) has a double root ry, F(r) = (r - r,)?, and F'(r,) = 0.
This suggests differentiating L[x"] with respect to r and then
setting r equal to ry, as follows:

L[x"]=x" [r2 +(a-Dr +,B]= x'(r—r)

O, ca O )
5L[x ]25)( (r-r)
L[x"Inx]=x"Inx(r—r,)* +2(r =1, )x'

= V,(X)=x"Inx, x>0



Equal Roots

Thus in the case of equal roots r, = r,, we have two
solutions

Y, (X) = X", Y,(X) = X" In X

Y, Y, X" X" In X
/ /
Yi Y

x®t x" Y Inx+1)
= x*"(r, In x+1)—rx

Now
W =

2n

LInx

25—

Y20 forall x> 0.

Thus y, and y, are linearly independent, and the general
solution to our differential equation is

y(X) =cx* +¢,x" Inx=(c, +¢, Inx)x*, x>0

= X



Example 2

Consider the equation

2.,

X“y"+5xy'+4y=0, x>0
Then
y:Xr’ yr:rxr—l’y”:r(r_l)xr—Z

and
r(r- Dx" +5m” +4x" =0 2

| y(x) = (L+In x)x”
x"(r(r- 1)+5r+4)=0 K

Y2 +ara)=0 |

x" (r + 2)2 =0 7

Thus r; =r, =2, our general solution is
y(x)=(c,+c,Inx)x?, x>0




Complex Roots

* Suppose F(r) has complex roots » =/ +imandr, =/ - im nt 0.
Then

r Inx rinx (A+ig)Inx AInx 4qipInx

X' =™ —eM—¢g =e*"e

Inx* ~iuInx

=" "™ = x*[cos(uIn x)+isin(uInx)|, x>0

« Thus x"is defined for complex r, and it can be shown that the
general solution to the differential equation has the form

y(x) =X +c,x* 7, x>0

« However, these solutions are complex-valued. It can be shown that
the following functions are solutions as well:

v, () = x* cos(zIn x), y,(x) = x* sin(zIn x)



Complex Roots

The following functions are solutions to our equation:

y,(X) = x* cos(zIn x), y,(x) = x* sin(zIn x)

Using the Wronskian, it can be shown that y, and y, are
linearly independent,

W |x* cos(zIn x), x* sin(zIn x)|= 2 x#* %0 for x>0
and thus the general solution to our differential equation can
be written as

y(x) = ¢,x* cos(uIn x)+c,x* sin(uInx), x>0



Example 3

Consider the equation

Xzy” + Xy, + y = 0, X> O ty(x) = cos(In x)+sin(In x)
1\ 0<x<05
Then lw"%x
y=x", y=rx"Ly =r(r-)x—°
and
r(r _1)Xr + rXr + Xr — O y(x) = cos(In x)+sin(In x)
1 O0<x<15
X'[r(r-=)+r+]=0 [\N
x'[r2+1]=0

Thus r, =1, r, = 1, and our general solution is
y(x) = ¢,x° cos(In x)+c,x sin(In x)
=¢, cos(Inx)+c,sin(Inx), x>0



Solution Behavior

Recall that the solution to the Euler equation
LIy]=x*y"+axy'+ By =0

depends on the roots:

L#"r,: y(X) =C,X* +C,X"

=T, y(x) =(c, +¢, In x)x"

r,, r, complex : y(x) = c,x* cos(uIn x)+c,x* sin(zIn x),

where =/ +imandr,=/ - im
The qualitative behavior of these solutions near the singular
point x = 0 depends on the nature of r, and r,.

Also, we obtain similar forms of solution when t < 0. Overall
results are summarized on the next slide.



General Solution of the Euler Equation

« The general solution to the Euler equation
2.,/M

XYV'+axy'+ fy=0
In any interval not containing the origin is determined by the
roots r, and r, of the equation

FIr)=r’+(a-Dr+pB=(r-r)(r-r,)
according to the following cases:
[L#T,: y(x) =c X" +¢,[x"

n

[L=r,: y(x) = (c, +c, In|X] )\x

)

r,, 1, complex: y(x) =c,[x|’ cos( In|X] )+ c,x* sin(u In|x

where =/ +imandr, =/ - im



Shifted Equations

« The solutions to the Euler equation

(X=X, )y +a(x=x, )y’ +By=0
are similar to the ones given in previous slide:

=", Y(X) = C X = Xo|* +C,[x = X,|”

"

[L=r,: y(x):(cl+c2 In\x—xo\)\x—xo

I, I, complex:

y(X) :cl\x—xo\ﬂ“ cos(yln\x—xo\ )+(:2xi sin(yln\x—xo\ )
where r, =/ +imandr, =/ - im



Solution Behavior and Singular Points

If we attempt to use the methods of the preceding two
sections to solve the differential equation in a neighborhood
of a singular point x,, we will find that these methods falil.

This Is because the solution may not be analytic at x,, and
hence will not have a Taylor series expansion about X,
Instead, we must use a more general series expansion.

A differential equation may only have a few singular points,
but solution behavior near these singular points is important.

For example, solutions often become unbounded or
experience rapid changes in magnitude near a singular point.

Also, geometric singularities in a physical problem, such as
corners or sharp edges, may lead to singular points in the
corresponding differential equation.



Numerical Methods and Singular Points

« As an alternative to analytical methods, we could consider
using numerical methods, which are discussed in Chapter 8.

* However, numerical methods are not well suited for the study
of solutions near singular points.

* When a numerical method is used, it helps to combine with it
the analytical methods of this chapter in order to examine the
behavior of solutions near singular points.



Solution Behavior Near Singular Points

* Thus without more information about Q/P and R/P in the
neighborhood of a singular point x,, it may be impossible to
describe solution behavior near x,.

It may be that there are two linearly independent solutions
that remain bounded as x — X,; or there may be only one,
with the other becoming unbounded as x — X,; or they may
both become unbounded as x — X,

 |If a solution becomes unbounded, then we may want to know
If y — <o In the same manner as (X — Xg)~* or |[X — Xg| ™, or in
some other manner.



Classifying Singular Points

* Our goal Is to extend the method already developed for solving
P(X)Y"+Q(X)y" +R(x)y =0
near an ordinary point so that it applies to the neighborhood of
a singular point X,
* To do so, we restrict ourselves to cases in which singularities

In Q/P and R/P at x, are not too severe, that is, to what might
be called “weak singularities.”

|t turns out that the appropriate conditions to distinguish “weak
singularities’ are
2 R(X)

Iim(x—xo)w is finite and lim (x—x,)* —— is finite.

X=X P(x) X%, P(x)



Regular Singular Points

Consider the differential equation
P(x)y"+Q(x)y'+R(x)y =0
If P and Q are polynomials, then a regular singular point x,
IS singular point for which
2 R(X)

Iim(x—xo)w is finite and lim (x—x,)* —— is finite.

X— X, P(X) X— X, P(X)
For more general functions than polynomials, x, is a regular
singular point if it Is a singular point with

(x XO)P(x) and (x—x,) o) are analyticat x = x,.

Any other singular point x, Is an irregular singular point.



Example 4: Legendre Equation

Consider the Legendre equation
[L-x?)y" —2xy' + a(a +1)y =0

The point x = 1 is a regular singular point, since both of the
following limits are finite:

jim (x— x )2 _ Iim(x—l)(l_ 2X j - |im(2—"1j ~1,

X—>Xg P(X) x—1 —X x—>1\ X 4
lim (x = x, )° RO _ Iim(x—l)z(a(aﬂ)j = Iim(x—l)(a(aﬂ)j =0
%0 P(x) xot 1-x2 ) X +1

Similarly, it can be shown that x = —1 is a regular singular
point.



Example 5
Consider the equation
2X(x=2) y" +3xy' +(x=2)y =0
The point x = 0 Is a regular singular point:

: Q(x) .. 3X : 3X
x"i?o(x *) P(x) i X[ 2x(x—2) j at 2(x—2) o<

jim (x=x, F ) _ i 2| 222 | jim— X _0<o0
X=X P(x) x0 | 2x(x-2) 2

The point x = 2, however, is an irregular singular point, since the
following limit does not exist:

. QM) _ jim(x—2)f —3*__ | = jim 3
o5 i | M




Example 6: Nonpolynomial Coefficients (1 of 2)

Consider the equation
2
[x - gj Y+ (COSx)y’ + (Sinx)y =0

Note that x = 0/2 is the only singular point.

We will demonstrate that x = 0/2 iIs a regular singular point by
showing that the following functions are analytic at p/2:

COS X COS X >  SINX .
= r 1 2) e o xmiz YT e M




Example 6: Regular Singular Point (2 of 2)

Using methods of calculus, we can show that the Taylor series of
cos X about O/2 is

o0 n+l 2n+l
COSx = ( 1) (x- Ej
= (2n+1)! 2

cosx (- 1) p)"
x-p/2 Z:(2n+1)|[ _ 2] |

which converges for all x, and hence is analytic at O/2.
Similarly, sin x is analytic at ©/2, with Taylor series

2n
Sinx = 1 ( '0)
n=0 ( n)l 2
Thus p/2 is a regular singular point of the differential equation.

Thus
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* We now consider solving the general second order linear
equation in the neighborhood of a regular singular point x,,.
For convenience, we will take x,= 0.

 Recall that the point x,= 0 is a regular singular point of

P(x) dZZ +Q) Y 4Ry =0
dx dx
Iff
x% = xp(x) and x° R _ x°q(x) areanalyticat x=0
P(x) P(x
Iff

Xp(X) = i p.x" and x°q(x) = iqnx”, convergent on |x| < p
n=0 n=0



Transforming the Differential Equation

Our differential equation has the form
P(X)y"+Q(x)y +R(x)y =0
Dividing by P(x) and multiplying by x?, we obtain
X2y" +X[xp(x)]y' +[x?q(x) [y =0
Substituting in the power series representations of p and q,

xp(x)= > p,x", x*a(x) = q,x",
n=0 n=0

we obtain
2.1

X*y +x(pO + PX+ P,X° +-~-)y’+(q0+q1x+q2x2 +---)y:0



Comparison with Euler Equations

Our differential equation now has the form

2.,

X"y +x(p0+ PX+ p2x2+---)y’+(q0+q1x+q2x2+---)y:0
Note that If
pp=p="=0=0=-=0

then our differential equation reduces to the Euler Equation
2.,m

Xy + poxy’+q0y:0
In any case, our equation is similar to an Euler Equation but
with power series coefficients.

Thus our solution method: assume solutions have the form

y(x)= x“(a0 +a,X+a,Xx’ +---)= > ax™", fora, =0, x>0
n=0



Example 1: Regular Singular Point (1 of 13)

« Consider the differential equation
2x2y" —xy'+(@+x)y =0
 This equation can be rewritten as

, X, 14X
Y Y Yo

 Since the coefficients are polynomials, it follows that x = 0 Is
a regular singular point, since both limits below are finite:

: X 1 . HS(1+x) 1
Ilmx——2 =——=— <o and limx ~|== <o
Xx—0 2)( 2 Xx—0 2)( 2




2x%y"—xy'+(1+x)y =0
Example 1: Euler Equation (2 of 13)

Now xp(x) = -1/2 and x2q(x) = (1 + x )/2, and thus for
xp(x)= > p,x", x*a(x) = q,x",
n=0 n=0

It follows that

p0=—1/2,q0=1/2,q1 =1/2, P.=P, = —qZ:q3:"':O

Thus the corresponding Euler Equation is
2.,

XY+ PoXyY' + QY =0 < 2X°y"—xy'+y=0
As In Section 5.5, we obtain

x'[2r(r-1)-r+1]=0 < (2r-1(r-1)=0 < r=1r=1/2
We will refer to this result later.



2x2y" —xy'+(1+x)y =0
Example 1: Differential Equation (3 of 13)

 For our differential equation, we assume a solution of the form

y(X) _ i a‘an+n’ yr(x) _ i an (r n r])Xr+n—1’
n=0 n=0

y'(x)=>a,(r+n)r+n-1)x"""
n=0
« By substitution, our differential equation becomes

iZan(r +n)r+n-1)x"" - ian (r+n)x™" + ianxr+n + ianxr+n+1 =0
n=0 n=0 n=0 n=0

or

2a_(r+n)r+n-1)x"" - ian (r+n)x™" + ianxr+n + ian_lxr+n =0

>
||[f/18
o



Example 1: Combining Series (4 of 13)

« QOur equation
iZan(r +n)r+n-1)x"" - ian (r+n)Xx™+> ax™+>a x"" =0
n-0 10
can next be written as

a,[2r(r—1)—r+1]x" + i{an [2(r+n)r+n-1)—(r+n)+1+a_ , }x™" =0
o
* It follows that
a,[2r(r—1)—r+1]=0

and

a [2(r+n)r+n-1)—(r+n)+1]+a , =0, n=12,...



Example 1: Indicial Equation (5 of 13)

From the previous slide, we have
a,[2r(r-1)—r+1]x’ +Z a [2(r+n)r+n-1)—(r+n)+1]+a_, }x"" =0

The equation
ay#0

a[2r(r-)-r+1]=0 < 2r*-3r+1=2r-1)(r-1)=0
Is called the indicial equation, and was obtained earlier when

we examined the corresponding Euler Equation.

The roots r, = 1, r, = %, of the indicial equation are called the
exponents of the singularity, for regular singular point x = 0.

The exponents of the singularity determine the qualitative
behavior of solution in neighborhood of regular singular point.



Example 1: Recursion Relation (6 of 13)

* Recall that
a,[2r(r-1)—r+1]x’ +z a [2(r+n)r+n-1)—(r+n)+1]+a_, }x"" =0

 \We now work W|th the coefficient on x+":
a [2(r+n)r+n-1)—(r+n)+1]+a_, =0

" 2(r+n)r+n-1)—(r+n)+1
an—l
2(r+n)’ =3(r+n)+1

= — %y n>1

[2(r +n)—=1]|(r +n)-1]’

* |t follows that . a .




Example 1: First Root (7 of 13)

« \We have
an 1

"+ n)—l]_[(r +n)-1]

« Starting with r, = 1, this recursion becomes

a

, forn>1, rp=1andr, =1/2

— _ a‘n—l — _ an—1 >1
T T R@an)-1a+n)-1]" (@n+Dn’ -
 Thus
a, a, a,
=——2 =2 —_ et
=73 BT (3-5-7)1-2-3) -
a, =— % = % (_1)nao

w2 e "= Es et "



Example 1: First Solution (8 of 13)

« Thus we have an expression for the n-th term:
L (s

" (3-5-7---(2n+1))n!’

« Hence for x > 0, one solution to our differential equation is

n>1

yl(X) = Z anxn+Ir
n=0

00 ( 1) a Xn+1
~(3-5-7-- (2n+1))n!

a"{ﬂi(s = 1)(nZ)r(‘n”))”J

d, X+




Example 1: Radius of Convergence for
First Solution (9 of 13)

Thus if we omit a,, one solution of our differential equation is

o0 ( 1)nxn
%X = ){“Z 3.5.7-- (2n+1))n!}’ x>0

To determine the radius of convergence, use the ratio test:

- an+l n+1 - (357(2”"‘1)) |( 1)n+1 n+1
lim =lim
> a X" | 1>#(3-5-7---(2n+1)(2n+3))(n +1)1(=1)" X"
= lim i -0<1
= (2n+3)(n +1)

Thus the radius of convergence is infinite, and hence the series
converges for all x.



Example 1: Second Root (10 of 13)

* Recall that

d
=" : , forn>1, ,=landr, =1/2
T R(rn)-[ren)—q o TS

a

* When r; = 1/2, this recursion becomes

= an—l an -1 an—l

=

2@/ 2+n)-1[@/2+n)-1] 2n(h-1/2) n(2n-1) n>1
* Thus

—-2 Ay =——2 = _ % etc
H 35 (1.2-3)1.3-5)’
a, =— % B (_1)na0

2.3 (1.2)21.3) a, ((1_3.5)”_(2n_1))n!,n21



Example 1: Second Solution (11 of 13)

« Thus we have an expression for the n-th term:

_ (=D"a,
= (1.3-5---(2n-2))n!’ n=1

* Hence for x > 0, a second solution to our equation is

1.3-5---(2n-1))n!




Example 1: Radius of Convergence for
Second Solution (12 of 13)

Thus if we omit a,, the second solution is

1/2 < (=D)"x"
Vo (X) =X {“Z 1.3.5.. (2n—1))n!}

To determine the radius of convergence for this series, we can
use the ratio test:

n+1

(1-3-5---(2n=1))n!(-1)"* x""*

n+1

li =i

woa a X' | e (1-3-5--(2n—1)2n + 1)) (n+ 1) (=1)" X"
im o1
n—= (2n+1)n

Thus the radius of convergence is infinite, and hence the series
converges for all x.



Example 1: General Solution (13 of 13)

« The two solutions to our differential equation are

- 0 ( l)nxn
yl(x)_){“ (3-5-7-- (2n+1))n!}

L2 (=D"x"
V() =x {“2(13 5.. (2n—1))n!}

« Since the leading terms of y, and y, are x and x%?, respectively,
It follows that y, and y, are linearly independent, and hence
form a fundamental set of solutions for differential equation.

« Therefore the general solution of the differential equation is
Y(X) — Clyl(x) +C Y, (X)’ x>0,
where y, and y, are as given above.

8




Shifted Expansions & Discussion

 For the analysis given in this section, we focused on x = 0 as
the regular singular point. In the more general case of a
singular point at X = X,, our series solution will have the form

Y00 = (x=% ) Y, (xx, )

 If the roots ry, r, of the indicial equation are equal or differ by
an integer, then the second solution y, normally has a more
complicated structure. These cases are discussed in Section 5.7.

« |If the roots of the indicial equation are complex, then there are
always two solutions with the above form. These solutions are
complex valued, but we can obtain real-valued solutions from
the real and imaginary parts of the complex solutions.



Boyce/DiPrima/Meade 11" ed, Ch 5.6: Series Solutions
Near a Regular Singular Point, Part I1

Elementary Differential Equations and Boundary Value Problems, 11t edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc.

» Recall from Section 5.5 (Part I): The point x,= 0 Is a regular
singular point of
X2y" + XDy +|x*a(x)y =0
with
xp(x)=> p,x", x’q(x) = > q,x", convergent on|x < p
n=0 n=0

and corresponding Euler Equation
2.,/

Xy + poxy’+q0y:0
* \We assume solutions have the form

y(x)=g(r, x)= ianx””, fora, #0, x>0
n=0



X2y"+ X[ xp(x) |y’ + [XZCI(X)]Y =0
Substitute Derivatives into ODE

« Taking derivatives, we have

y(X) _ i a‘an+n’ yr(x) _ i an (r n r])Xr+n—1’
n=0 n=0

y"(X)= i a,(r+n)r+n-1)x""?

n=0
 Substituting these derivatives into the differential equation,
we obtain
> a,(r+n)r+n-1)x""+

n=0

oo g e

n=0



Multiplying Series

oo | S e Zor [

=[Py + poxt e+ pxX" o] fagrx +ay (F )X ek (r )X ]

[q0+qlx+---+qnx”+---][aoxr+a1xr+1+..,+anxr+n+..-]
=[p0r+q0a0]xr+[p0a1(r+1)+ Pl +0ga, +Q,a ]Xr+1+ -+
[poa”(r+n) +Pa ”1(r+n 1)+ + Phdl +4a, + 0,8, +---+0,a O]X

r+n

r+1

= [ (por + 0 X" +[a (pur + 0, )+ a, (P ( +2)+ g )] X +
[a,(p,r+a, )+ +a, ,(p(r+n-21)+aq,)+a,(p,(r+ n)+ qo)]xr+n .



Combining Terms in ODE

* Our equation then becomes

i (r+n)r+n-1)x""

[3 ot [5mtomegar[gar

ian(wn Nr+n-1)x""

n=0

+[ag(Por + 0 )X+ [ (pyr + 0y )+ a, (py (1 +2)+ g )]+
+[ag(pr+0, )+ +a, 4 (py(r +n-1)+ )+, (po(r +n)+go |x"*" +---=0

= [a,(r(r=1) + p,r+q,)]x" +[a,(p,r +a,)+a,(r(r+1)+ p,(r +1)+q, )]x""* +
+la,(p,r+a,)+-+a ((r+n)r+n-1)+ p,(r+n)+q,)|x*" +---=0



Rewriting ODE

* Define F(r) by
F(r)=r(r-1)+ por+a,
* \We can then rewrite our equation

[ao(r(r_1)+ por"‘qo)]xr +[ao(p1r+q1)+ al(r(r -|—1)+ po(r +1)-|- qo)]x”l
+-+[ag(p,r+a, )+ --+a,((r+n)r+n=21)+p,(r+n)+q,)|x*" +---=0

In more compact form:

0 n-1
a,F(r)x’ +Z{anF(r+ n)+ > a,(r+k)p,, +qk]}x”” Y
n=1 k=0



Indicial Equation

Thus our equation is
o0 n-1

a,F(r)x’ +Z{anF(r+ n)+ > a,(r+k)p,, +qk]}x”” ~0
n=1 k=0

Since a, # 0, we must have

F(r)=r(r-1)+ p,r+q,=0
This indicial equation is the same one obtained when
seeking solutions y = x" to the corresponding Euler Equation.

Note that F(r) is quadratic in r, and hence has two roots,
rpandr,. If rpandr, are real, then assume r, > r.,.

These roots are called the exponents at the singularity, and
they determine behavior of solution near singular point.



Recurrence Relation

From our equation,
00 n-1
a,F(r)x’ +Z{anF(r+ n)+ > a,[(r+k)p,., +qk]}x”” ~0
n=1 k=0
the recurrence relation iIs

n—1
a,F(r+n)+> a[(r+k)p, +a.]=0
k=0

This recurrence relation shows that in general, a,, depends on
r and the previous coefficients a,, a,, ..., 8, 4.

Note that we must haver =r,orr =r,.



Recurrence Relation & First Solution

With the recurrence relation
n-1
anF(r+n)+Zak[(r+k) Doy +0 ]=0,
k=0

we can compute a,, ..., a,, In terms of a,, p,, and q,,,
provided F(r + 1), F(r +2), ..., F(r + n), ... are not zero.
Recall r = ryor r =r,, and these are the only roots of F(r).
Sincer, >r,,wehaver,+n #r;andr,+n #r,forn>1.
Thus F(r, + n) #0 for n > 1, and at least one solution exists:

y; (X) = x* {1+Zan(r1)xn} a, =1 x>0
n=1

where the notation a.(r,) indicates that a, has been
determined using r = r,.



Recurrence Relation & Second Solution
* Now consider r = r,. Using the recurrence relation

n-1
anF(r+n)+Zak[(r+k) Prk +CI|<]ZO’
k=0

we compute a,, ..., a, 4 In terms of a,, p,, and q,,, provided
F(r,+ 1), F(r,+2), ..., F(r,+ n), ... are not zero.

e Ifr,#r,andr,—r, #nforn>1,thenr,+n #r,
forn>1.

* Thus F(r,+ n) #0 for n> 1, and a second solution exists:

yz(x)zxr{1+2an(r2)x”}, a, =1 x>0
n=1

where the notation a.(r,) indicates that a, has been
determined using r = r,,.



Convergence of Solutions

If the restrictions on r, are satisfied, we have two solutions

y,(X) = xr{ljtia (r)x“}, Y,(X) = xr{l+2a (r)x}

where a,=1 and x > 0. The series converge for |x| < and

f(x):1+2an(r1)x and g(x):1+2an(r2)x
define analytie functions within theirsadii of convergence.

It follows that any singular behavior of solutions y, and y, Is
due to the factors x" and x".

To obtain solutions for x <0, It can be shown that we need
only replace x and x™ by |x"| and |x"| in y, and y, above.

If r, and r, are complex, then they are conjugates and

r,—r;#N for N> 1, and real-valued series solutions can be
found.



Example 1: Singular Points (1 of 5)

Find all regular singular points, determine indicial equation and
exponents of singularity for each regular singular point. Then
discuss nature of solutions near singular points.

2X(L+X)Y"+(B8+X)y ' —xy =0

Solution: The equation can be rewritten as
, 3+X X
y + y - y=0
2X(1+ X) 2X(1+ Xx)

The singular points are x = 0 and x = -1.
Then x = 0 is a regular singular point, since
3+ X 3 —X

Po =lim x == <oo, and g, =lim x’ —0 <o
-0 2X(1+x) 2 x>0 2X(1+ X)




Example 1: Indicial Equation, X =0 (2 of 5)

« The corresponding indicial equation is given by

F(r)=r(r-1)+ p,r+q,=0
or 3
r(r-1)+—-r=0
( )+2

« The exponents at the singularity for x = 0 are found by solving

the indicial equation:
2r(r=1)+3r=0

2r°+r=0
r(2r+1)=0

* Thusr,=0andr,=-1/2, for the regular singular point x = 0.



Example 1: Series Solutions, X =0 (3 of5)

The solutions corresponding to x = 0 have the form

%0 =1+ 2, (X" y“{lZu”

The coefficients a,(0) and a,(—1/2) are determined by the
corresponding recurrence relation.

Both series converge for |x| < 7, where 7 is the smaller radius
of convergence for the series representations about x = 0 for

3+ X X2q(X) =
2X(1+X) : - 2x(1+X)

The smallest 7 can be is 1, which is the distance between the
two singular points x = 0 and x = —1.

Note y, is bounded as x —0, whereas y, unbounded as x —0.

Xp(x) =



Example 1: Indicial Equation, X = -1 (4 of 5)

Next, x = —1 is a regular singular point, since

+
P, = lim (x +1) Stx =-1<wo
x—-1 2x(1+x)
and .
= lim(x+1f —=— =
o H—l( )2x(1+x) .

The indicial equation is given by
r(r-1)—-r=0
and hence the exponents at the singularity for x = -1 are
r’-2r=0 < r(r-2)=0 < r=2,r,=0

Note that r; and r, differ by a positive integer.



Example 1: Series Solutions, X = -1 (5 of 5)

 The first solution corresponding to x = —1 has the form

v (X) = (x+1)° {1+ ian (2)(x +1)”}

n=1

%

 This series converges for at least [x + 1| <1, and y, Is an
analytic function there.

 Since the roots r; = 2 and r, = 0 differ by a positive integer,
there may or may not be a second solution of the form

v,(x) =1+ a, (0)(x +1)



Equal Roots

» Recall that the general indicial equation is given by
F(r)=r(r-1)+p,r+q,=0
 |In the case of equal roots, F(r) simplifies to
F(r)=(r,-1)°

* It can be shown (see text) that the solutions are given by

y1<x):x{1+§an<n)x"} ¥ (1) = () Inx +x2 Y a" ()x

n=1

S



Roots Differing by an Integer

 |f roots of the indicial equation differ by a positive integer, it
can be shown that the ODE solutions are given by

y;(X) = Xrl{l+ian (r1)xn:|’ Y, (x) =ay; () In x+x"? |:1+icn(r2)xn}

where the ¢ (r,) are found by substituting y, into the
differential equation and solving, as usual. Alternatively,

c(r)— [(r r,)a, (N, . n=12,...
and
a=lim|(r—r,)a,(r)],_, . wherer,—r,=N

r-r,

« See Theorem 5.6.1 for a summary of results in this section.
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» Bessel Equation of order 77:
X2yrr+xyr_|_(x2 _VZ)y :O
* Note that x = 0 Is a regular singular point.
 Friedrich Wilhelm Bessel (1784 — 1846) studied disturbances
In planetary motion, which led him in 1824 to make the first
systematic analysis of solutions of this equation. The
solutions became known as Bessel functions.
* In this section, we study the following cases:
— Bessel Equations of order zero: /7=0 1

— Bessel Equations of order one-half: 7= —
— Bessel Equations of order one: 17=1



Bessel Equation of Order Zero (1 of 12)

The Bessel Equation of order zero Is
2 "

XY +xy' +Xx°y=0
We assume solutions have the form
y(x)=¢(r,x)=> ax"", fora, #0, x>0

n=0
Taking derlvatlves

y(X)= Zax " Y(X)= Za r+n)x™ "

y"(X)= Z a,(r+n)r+n-1)x"?
n=0
Substituting these into the differential equation, we obtain

ian (r+n)r+n-1)x"" + ian(r +n)x"™" + ianxIr+n+2 =0
n=0 n=0 n=0



Indicial Equation (2 of 12)

From the previous slide,
ian(r +n)r+n-1)x"" + ia (r+n)Xx™"+> ax*"? =0
n=0 n=0

Rewriting,
d [r(r -1)+ I’])(r + al[(r +2)r+(r _|_1)]Xr+1
+ i{an [(r+n)r+n=2)+(r+n)]+a_,}x™" =0
or

a,r’x" +a,(r+1°>x™ Z{ (r+ny }x””:o

The indicial equation is r> =0, and hence r, =r, = 0.



Recurrence Relation (30f12)

From the previous slide,

a,r’x" +a,(r+1)°x" +Z{an(r +n) +an_2}xr+n ~0
n=2

Note that a, = O; the recurrence relation is

a
a,=——",n=23,...
(r+n)
We conclude a, =a;=a-;=... = 0, and since r = 0,

Note: Recall dependence of a, on r, which is indicated by
a,(r). Thus we may write a,(0) here instead of a,...



First Solution (4 of 12)

From the previous slide,

a2m—2
= ,m=12,...
M (2m)?
Thus
a a ad ad a
a,=—2 g =—2__%0 _ 0 a.=— 0 |
©o22 4 422 Y2 25(3-2:1)

and in general,

a,

" 22 (mi)

Thus (—1)™ %2

yl(x) a0 |:1+ Z 22m (m I)

_ (D73, m=12...

} x>0



Bessel Function of First Kind,
Order Zero (5of12)

* Our first solution of Bessel’s Equation of order zero 1s

Y, (X) = a{1+z(22i)r:nl)m} x>0

» The series converges for all x, and Is called the Bessel
function of the first kind of order zero, denoted by

( 1) m 2 m .
J X O ) B n =.4 n=8 n=12 n=16 n=20
( ) Z 22m m' 2 :.'II

» The graphs of J, and several \
partial sum approximations A\ VARV o~

. 2 4 6 BQ} x
are given here. \ﬂ \ y = Jofx)
-



Second Solution: Odd Coefficients (6 of 12)

Since indicial equation has repeated roots, recall that the
coefficients in second solution can be found using

a:l (r)‘r:O
Now

a, (r)r’x" +a, (r)(r +1)>x™ + i {an (r)(r+n) +a_, (r)}xr+n =0

Thus o h=0 =a/(0)=0

Also, 2
222 n=23,...

(1) == (r+ny

and hence
a, .(0)=0, m=12,...



Second Solution: Even Coefficients (7 of 12)

« Thus we need only compute derivatives of the even
coefficients, given by

a‘2m—2 (r)

o (=D"a,
Bzn(1) = (r+2m)°

(r+2)---(r+2m)’*

= a,,(r) = m>1

* |t can be shown that

azm—(r):_ZI: 1 + 1 oot 1 :|
a,, (I) r+2 r+4 r+2m
and hence

1 1 1

a.;_m(o) :_2|:E+Z+”'+%:|a2m(o)



Second Solution: Series Representation (s of

12)
e Thus
_ g (DTa
a,. (0) H_ 22’“(m!)2 12,...
where
1 1 1
H =—+—+---4+—
2 4 2m

« Taking a, = 1 and using results of Section 5.7,

400 =3,00I e 35 D™ Hy on 450

22m( )




Bessel Function of Second Kind,
Order Zero (9 of 12)

* Instead of using y,, the second solution is often taken to be a
linear combination Y, of J, and y,, known as the Bessel
function of second kind of order zero. Here, we take

() = 2[5 00 + (= N 2)3, ()]

* The constant g is the Euler-Mascheroni constant, defined by
y =lim(H,_—Inn)=0.5772

N—o0

n

* Substituting the expression for y, from previous slide into
equation for Y, above, we obtain

Y, (x) = ZKﬂIn jJ (x)+z(2213“;““)' x} x>0




General Solution of Bessel’s Equation,
Order Zero (10 of 12)

« The general solution of Bessel’s equation of order zero, x > 0,
IS given by
y(X) = CJo (X)+ C,Yo (%)
where

‘](X) Z(Zzi)m m’

Yo(X)Z%HVH” jJ (X)+Z( 1)m+1H y2m

* Note that J, = 1 as x = 0 while Y, has a Iogarlthmlc
singularity at x = 0. If a solution which is bounded at the
origin is desired, then Y, must be discarded.



Graphs of Bessel Functions,
Order Zero (11 of 12)

» The graphs of J,and Y,are given below.

 Note that the behavior of J,and Y, appear to be similar to sinx
and cosx for large x, except that oscillations of J,and Y, decay
to zero.




Approximation of Bessel Functions,
Order Zero (12 of 12)

* The fact that J,and Y, appear similar to sin x and cos x for
large x may not be surprising, since ODE can be rewritten as

2
xzy”+xy’+(x2 —vz)y -0 & y”+)l(y’+(1—\;2jy =0

» Thus, for large x, our equation can be approximated by

y” + y — O,
whose solns are sin x and cos X. Indeed, it can be shown that
1/2 y
2 )|
JO (X) ; (j COS(X _ zjl aS X % w ‘!.‘ Asymptotic approxmatiom:y:{ZHJra-)l";' cos(x —m/4)
7T X 4 g

7T X

~ 2 1/2 - . | y = ol
Y, (X)=| — | sin X_Z , S X —> o AN S



Bessel Equation of Order One-Half (1 of 8)

The Bessel Equation of order one-half is
Xy" + Xy’+(X2 —%)y =0

We assume solutions have the form
y(x)=g(r, Zaxr+n fora, #0, x>0

Substituting these into the differential equation, we obtain

3 r+n r+n-1)x" ooa r+n)x™"
n
n=0

n=0

+ianxr+n+2 _Eia Xr+n — O



Recurrence Relation (2of8)

Using the results of the previous slide, we obtain

o0 o0

Z[(r +n)r+n-1)+(r+ n)—ﬂ a,x""+> ax"? =0

n=0 n=0

or
2 l r 2 1 r+1 c 2 1 r+n
¥ =7 Jax"+ (r +1) 5 |ax +> 4] (r+n) 5 [Pt X =0
n=2

The roots of the indicial equation are r, =%, r, =- %, and
note that they differ by a positive integer.

The recurrence relation Is

a, (")
n , n:2,3’...
(r+ny-1/4

an (r) -



First Solution: Coefficients (3 of 8)

 Consider first the case r; = %. From the previous slide,

(r?—1/4)a,x’ +[(r +1) —ﬂ X +i{ [(r +nYy —ﬂ a + anz}x”” —0
n=2

« Since r, =%, a, =0, and hence from the recurrence relation,

8, =az=az=...= 0. For the even coefficients, we have
a, =-— azm""z %2 12
(1/2+2mf-1/4  2m(2m+1)
* It follows that I R VO
* 3" 5.4 5177
and o - D

M 2m+1)!



Bessel Function of First Kind,
Order One-Half (4 of8)

* [t follows that the first solution of our equation is, for a, = 1,

Y (X) = x1’2{1+ > (2(m14)rl)l sz} x>0

—1/2 ( 1) X2m+1 X > O
=~ (2m+1)! |

=xY%sinx, x>0

» The Bessel function of the first kind of order one-half, J.,,
IS defined as

Jl,z(x)z(ij y,(X) = [2] sinx, x>0

7T X



Second Solution: Even Coefficients (5 of 8)

* Now consider the case r, = - ¥2. \WWe know that

(r?—1/4)a,x’ +[(r +1) —ﬂ X +i{ [(r +nYy —ﬂ a + anz}x”” —0
n=2

» Sincer,=-%,a, = arbitrary. For the even coefficients,

a2m—2 a2m—2
a, =-— = — . m=12,...
T (-1/2+2m)f-1/4  2m(2m-1)
e |t follows that
aO a2 a'0

T TE e I I TS

and
o (D3
(2m)!

m=12,...



Second Solution: Odd Coefficients (6 of 8)

* For the odd coefficients,

a2m—1 a2m—1 m = 1 2

(C1/2+2m+1P-1/4  2m(2m+1)

a2m+1 _

* |t follows that
a a a
a3:__1,a5:_ 3 — 1,...
3! 5.4 5l

and
_(D)"a
M 2m+)!




Second Solution (7 of 8)

Therefore

o ( m 2m ( m 2m+1
Y200 =X mZ; (2m)| Z (2m+1)' } x>0

_ b2 a,cosx+a sinx], x>0

The second solution is usually taken to be the function

2 1/2
J »,(X)= ( j cosX, x>0
7T X

where a, = (2/p)” and a, = 0.
The general solution of Bessel’s equation of order one-half is
y(X) =¢,dy,(X) +C,Jd 45 (X)



Graphs of Bessel Functions,
Order One-Half (80f8)

* GraphsofJ,,, J., are given below. Note behavior of J,,, J..,
similar to J,, Y, for large x, with phase shift of p/4.

2 1/2 2 1/2
Jl,z(x):[j COS X, Jl,z(x)z[j sin x

T X T X

1/2 1/2
2 T 2 i T
J.(X)=| — cos| X—— 1|, Y,(X)=| — SINf X—— |, aS X —> ©
0( ) (ﬂ'Xj ( 4) 0( ) (ﬂ'Xj ( 4)

¥
1

‘}J:Jl.f-_‘x' 05

. j2lx)
J J ml m_
6 8\>1&//12 1IN *

V&

05 -0.5




Bessel Equation of Order One (1 of 6)

» The Bessel Equation of order one is
Xy + Xy’ + (x2 —1)y =0
* \We assume solutlons have the form
y(x)=¢(r, Za X" fora, #0, x>0

 Substituting these into the differential equation, we obtain
ian(r +n)r+n-1)x"" + ian(r +n)x""
n=0 n=0
+ i aan+n+2 . i aan+n _
n=0 n=0



Recurrence Relation (2of6)

Using the results of the previous slide, we obtain

i[ (r+n)r+n-1)+(r+n)-1Ja x™" + ianx”“+2 ~0
1= n=0
or
(r* —1)ayx" +[(r +1)> —1]a,x + i{[(r +n) —1]an + an_z}x”“ —0
n=2

The roots of indicial equationarer, = 1, r, = - 1, and note
that they differ by a positive integer.

The recurrence relation Is

an (r) — a‘n—2 (r)

, N=2,3,...
(r+ny -1 !




First Solution: Coefficients (3 of 6)

Consider first the case r; = 1. From previous slide,
(r2 ~1)agx" + [(r +1)° —1] a,x"™ +i{[(r +n) —1] a + an_z}x”” =0
n=2

Sincer, =1, a, =0, and hence from the recurrence relation,
8, =az=az=...= 0. For the even coefficients, we have

a2 -2 a‘2m—2
a,, =— — = — , m=12,...
T (1+2mf-1 2*(m+1)m
It follows that
aO a‘2 a‘O
a, = — , A, =— = booe
© 2221 % 22.3.2 243121
and - (D"a,
M 22M(m+1)Im!’




Bessel Function of First Kind,
Order One (4 of 6)

It follows that the first solution of our differential equation is

Y1 (X) = a,x {1+i 0l sz} x>0

&~ 2°™"(m+1)Im!

Taking a, = %2, the Bessel function of the first kind of order
one, Jy, Is defined as

_X|x (-1)" 2m
Jl(x)_§|:222m(m+1)!m!x :|, x>0

m=0

The series converges for all x and hence J, is analytic
everywhere.



Second Solution (5 of 6)

 For the case r, = -1, a solution of the form
y,(X) =aJ; (X)Inx+ x1{1+ chxzn} x>0
n=1

IS guaranteed by Theorem 5.7.1.

* The coefficients c, are determined by substituting y, into the
ODE and obtaining a recurrence relation, etc. The result is:

Y, (X) = —Jl(X) In x + X1|:l— i: (_;'Z: Snl_: ?r:_l_::-;wl—l )in:|, x>0

where H, Is as defined previously. See text for more detalls.

* Note that J;—0 as x —0 and is analytic at x = 0, while y, Is
unbounded as x — 0 In the same manner as 1/x.



Bessel Function of Second Kind,
Order One (60f6)

 The second solution, the Bessel function of the second kind
of order one, iIs usually taken to be the function

%00 = 1,09+ (r-In2)3,(9], x>0

where g is the Euler-Mascheroni constant.
* The general solution of Bessel’s equation of order one 1s
y(X) =¢,J;(X) +C,Y;(x), x>0
* Note that J,, Y, have same

behavior at x = 0 as observed | e
on previous slide for J, and y,.

Yi(x)

\, O\,
/ 4\w l[\Wx




