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• Finding the general solution of a linear differential equation 
depends on determining a fundamental set of solutions of the 
homogeneous equation.  

• So far, we have a systematic procedure for constructing 
fundamental solutions if equation has constant coefficients.  

• For a larger class of equations with variable coefficients, we 
must search for solutions beyond the familiar elementary 
functions of calculus.  

• The principal tool we need is the representation of a given 
function by a power series.   

• Then, similar to the undetermined coefficients method, we 
assume the solutions have power series representations, and 
then determine the coefficients so as to satisfy the equation.  



Convergent Power Series 

• A power series about the point x0 has the form   

 
 and is said to converge at a point x if  

 
 exists for that x.   

• Note that the series converges for x = x0.  It may converge for 

all x, or it may converge for some values of x and not others. 
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Absolute Convergence 

• A power series about the point x0 

 
 is said to converge absolutely at a point x if the series  

 
 converges.   

• If a series converges absolutely, then the series also converges.  

The converse, however, is not necessarily true.  
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Ratio Test 

• One of the most useful tests for the absolute convergence of a 

power series 

 
  is the ratio test.  If an ≠ 0, and if, for a fixed value of x, 

 

 

 then the power series converges absolutely at that value of x if 

|x – x0|L < 1 and diverges if |x – x0|L > 1.  The test is 

inconclusive if |x – x0|L = 1.  
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Example 1 

 

 

• Find which values of x does power series below converge. 

 
 

• Using the ratio test, we obtain 

 

 

• At x = 1 and x = 3, the corresponding series are, respectively, 

 

 

• Both series diverge, since the nth terms do not approach zero. 

• Therefore the interval of convergence is (1, 3). 
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Radius of Convergence 

• There is a nonnegative number   , called the radius of 

convergence, such that                   converges absolutely for all 

x satisfying |x - x0| <     and diverges for |x - x0| >    .   

• For a series that converges only at x0, we define    to be zero. 

• For a series that converges for all x, we say that    is infinite. 

• If     > 0, then |x - x0| <     is called the interval of 

convergence.   

• The series may either converge or diverge when |x - x0| =    .  
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Example 2 

 

 

• Find the radius of convergence for the power series below. 
 

 

 

 

 

• Using the ratio test, we obtain 

 

 

• At x = –3 and x = 1, the corresponding series are, respectively, 

 

 

• The alternating series on the left is convergent but not absolutely 

convergent. The series on the right, called the harmonic series is 

divergent. Therefore the interval of convergence is  [–3, 1), and 

hence the radius of convergence is     = 2.   
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Taylor Series 

• Suppose that                     converges to f (x) for |x - x0| <    .  

• Then the value of an is given by  

 

 

 and the series is called the Taylor series for f about x = x0.   

• Also, if  

 

 

 then f is continuous and has derivatives of all orders on the 

interval of convergence.  Further, the derivatives of f can be 

computed by differentiating the relevant series term by term.  
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Analytic Functions 

• A function f that has a Taylor series expansion about x = x0    

 

  

 with a radius of convergence     > 0, is said to be analytic at x0.  

• All of the familiar functions of calculus are analytic.  

• For example, sin x and ex are analytic everywhere, while 1/x is 

analytic except at x = 0, and tan x is analytic except at odd 

multiples of     /2. 

• If f and g are analytic at x0, then so are f ± g,  fg, and f /g ; see 

text for details on these arithmetic combinations of series.   
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Series Equality 

• If two power series are equal, that is, 

 
 for each x in some open interval with center x0, then an = bn for 

n = 0, 1, 2, 3,… 

• In particular, if  

 
 then an = 0 for n = 0, 1, 2, 3,… 
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Shifting Index of Summation 

• The index of summation in an infinite series is a dummy 

parameter just as the integration variable in a definite integral 

is a dummy variable.  

• Thus it is immaterial which letter is used for the index of 

summation: 

 

 

• Just as we make changes in the variable of integration in a 

definite integral, we find it convenient to make changes of 

summation in calculating series solutions of differential 

equations. 
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Example 3:  Shifting Index of Summation 

• We are asked to rewrite the series below as one starting with 

the index n = 0.  
 

 

 

 By letting m = n – 2 in this series. n = 2 corresponds to     

     m = 0, and hence 

 

 

• Replacing the dummy index m with n, we obtain 

 

 

 as desired. 
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Example 4:  Rewriting Generic Term 

• We can write the following series  

 
 as a sum whose generic term involves          by  

     letting m = n – 2.  Then n = 2 corresponds to m = 0. 

• It follows that 

 

 

• Replacing the dummy index m with n, we obtain 

 

 

 as desired. 
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Example 5: Rewriting Generic Term 

 

 

• We can write the following series 

 
 

 

 as a series whose generic term involves  

• Begin by taking     inside the summation and letting m = n+1 

 

 

• Replacing the dummy index m with n, we obtain the desired 

result: 
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Example 6: Determining Coefficients (1 of 2) 

• Assume that 

 
 

 

• Determine what this implies about the coefficients. 

• Begin by writing both series with the same powers of x. As 

before, for the series on the left, let m = n – 1, then replace m 

by as we have been doing. The above equality becomes: 

 

 

 for n = 0, 1, 2, 3, … 
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Example 6: Determining Coefficients (2 of 2) 

• Using the recurrence relationship just derived: 
 

 

• we can solve for the coefficients successively by letting     

n = 0, 1, 2,… 

 
 

 

• Using these coefficients in the original series, we get a 

recognizable Taylor series: 
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Boyce/DiPrima/Meade 11th ed, Ch 5.2:  Series Solutions 

Near an Ordinary Point, Part I 
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Wiley & Sons, Inc. 

• In Chapter 3, we examined methods of solving second order 

linear differential equations with constant coefficients.   

• We now consider the case where the coefficients are functions 

of the independent variable, which we will denote by x.  

• It is sufficient to consider the homogeneous equation 

 

 

 since the method for the nonhomogeneous case is similar.  

• We primarily consider the case when P, Q, R are polynomials, 

and hence also continuous.   

• However, as we will see, the method of solution is also 

applicable when P, Q and R are general analytic functions.   
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Ordinary Points  

 

 

• Assume P, Q, R are polynomials with no common factors, and 

that we want to solve the equation below in a neighborhood of 

a point of interest x0: 

 

 

• The point x0 is called an ordinary point if P(x0) ≠ 0.  Since P 

is continuous, P(x) ≠ 0 for all x in some interval about x0.  For 

x in this interval, divide the differential equation by P to get 

 

 

• Since p and q are continuous, Theorem 3.2.1 says there is a 

unique solution, given initial conditions y(x0) = y0, y'(x0) = y0'  
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Singular Points  

 

 

• Suppose we want to solve the equation below in some 

neighborhood of a point of interest x0: 

 

 

• The point x0 is called an singular point if P(x0) = 0.    

• Since P, Q, R are polynomials with no common factors, it 

follows that Q(x0) ≠ 0 or R(x0) ≠ 0, or both.   

• Then at least one of p or q becomes unbounded as x     x0, and 

therefore Theorem 3.2.1 does not apply in this situation.  

• Sections 5.4 through 5.8 deal with finding solutions in the 

neighborhood of a singular point.  
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Series Solutions Near Ordinary Points  

• In order to solve our equation near an ordinary point x0,  

 

 

we will assume a series representation of the unknown solution 

function y: 

 

 

• As long as we are within the interval of convergence, this 

representation of y is continuous and has derivatives of all 

orders.   
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Example 1: Series Solution  (1 of 8) 

• Find a series solution of the equation 

 

• Here, P(x) = 1, Q(x) = 0, R(x) = 1.  Thus every point x is an 

ordinary point.  We will take x0 = 0.  

• Assume a series solution of the form 

 
• Differentiate term by term to obtain 

 

 

• Substituting these expressions into the equation, we obtain 
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Example 1: Combining Series   (2 of 8)  

• Our equation is 

 

 

• Shifting indices, we obtain 
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Example 1: Recurrence Relation (3 of 8)  

• Our equation is 

 

 

• For this equation to be valid for all x, the coefficient of each 

power of x must be zero, and hence 

 
 

 

 

 

• This type of equation is called a recurrence relation. 

• Next, we find the individual coefficients a0, a1, a2, … 
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• To find a2, a4, a6, …., we proceed as follows: 

Example 1: Even Coefficients (4 of 8) 
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• To find a3, a5, a7, …., we proceed as follows: 

Example: Odd Coefficients  (5 of 8) 
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Example 1: Solution    (6 of 8) 

• We now have the following information: 

 

 
 

• Thus 

 

 
 

• Note: a0 and a1 are determined by the initial conditions.  
(Expand series a few terms to see this.) 

• Also, by the ratio test it can be shown that these two series 
converge absolutely on             , and hence the manipulations 
we performed on the series at each step are valid.  
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Example 1: Functions Defined by IVP  (7 of 8) 

• Our solution is 

 

 

• From Calculus, we know this solution is equivalent to 

 

• In hindsight, we see that cos x and sin x are indeed 

fundamental solutions to our original differential equation 

  

• While we are familiar with the properties of cos x and sin x, 

many important functions are defined by the initial value 

problem that they solve.   
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Example 1:  Graphs (8 of 8) 

• The graphs below show the partial sum approximations of 

cos x and sin x.  

• As the number of terms increases, the interval over which 

the approximation is satisfactory becomes longer, and for 

each x in this interval the accuracy improves.  

• However, the truncated power series provides only a local 

approximation in the neighborhood of x = 0.   
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Example 2: Airy’s Equation        (1 of 10) 

• Find a series solution of Airy’s equation about x0 = 0:  

 

• Here, P(x) = 1, Q(x) = 0, R(x) = - x.  Thus every point x is an 

ordinary point.  We will take x0 = 0.  

• Assuming a series solution and differentiating, we obtain 

 

 

• Substituting these expressions into the equation, we obtain 
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Example 2: Combine Series        (2 of 10) 

• Our equation is 

 

 

• Shifting the indices, we obtain 
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Example 2: Recurrence Relation (3 of 10)  

• Our equation is 

 

 

• For this equation to be valid for all x, the coefficient of each 

power of x must be zero; hence a2 = 0 and 
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Example 2: Coefficients      (4 of 10) 

• We have a2 = 0 and 

 
 

 

• For this recurrence relation, note that a2 = a5 = a8 = … = 0. 
 

• Next, we find the coefficients a0, a3, a6, …. 

• We do this by finding a formula a3n, n = 1, 2, 3, … 
 

• After that, we find a1, a4, a7, …, by finding a formula for  

     a3n+1, n = 1, 2, 3, … 
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Example 2:  Find a3n   (5 of 10) 

• Find a3, a6, a9, …. 

 

 
 

• The general formula for this sequence is 
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Example 2:  Find a3n+1    (6 of 10) 

• Find a4, a7, a10, …  

 

 
 

• The general formula for this sequence is 
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Example 2: Series and Coefficients   (7 of 10)  

• We now have the following information: 

 

 
 

 where a0, a1 are arbitrary, and 
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Example 2:  Solution    (8 of 10) 

• Thus our solution is 

 

 
 

 where a0, a1 are arbitrary (determined by initial conditions). 

• Consider the two cases  

      (1) a0 =1,  a1 = 0   and   y(0) = 1, y'(0) = 0 

      (2) a0 =0,  a1 = 1   and   y(0) = 0, y'(0) = 1 

• The corresponding solutions y1(x), y2(x) are linearly 

independent, since W(y1, y2)(0) =1 ≠ 0, where  
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Example 2: Fundamental Solutions   (9 of 10) 

• Our solution: 

 

 
 

• For the cases  

      (1) a0 =1,  a1 = 0   and   y(0) = 1, y'(0) = 0 

      (2) a0 =0,  a1 = 1   and   y(0) = 0, y'(0) = 1, 

 the corresponding solutions y1(x), y2(x) are linearly 

independent, and thus are fundamental solutions for Airy’s 

equation, with general solution   

    y (x) = c1 y1(x) + c1 y2(x)  
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Example 2: Graphs    (10 of 10) 

• Thus given the initial conditions  

  y(0) = 1, y'(0) = 0   and  y(0) = 0, y'(0) = 1 

 the solutions are, respectively, 

 

 

• The graphs of y1 and y2 are given below.  Note the approximate 

intervals of accuracy for each partial sum  
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Example 3: Airy’s Equation        (1 of 7) 

• Find a series solution of Airy’s equation in powers of  x – 1 

(i.e. about x0 = 1):  

 

• Here, P(x) = 1, Q(x) = 0, R(x) = - x.  Thus every point x is an 

ordinary point.  We will take x0 = 1.  

• Assuming a series solution and differentiating, we obtain 

 

 

• Substituting these into ODE & shifting indices, we obtain 
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Example 3: Rewriting Series Equation    (2 of 7) 

• Our equation is 

 

 

• The x on right side can be written as 1 + (x – 1); and thus 
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Example 3: Recurrence Relation     (3 of 7) 

• Thus our equation becomes 

 
 

• Thus the recurrence relation is  

 

• Equating like powers of x – 1, we obtain 
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Example 3: Solution     (4 of 7) 

• We now have the following information: 

 

 
 

 and 
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Example 3: Solution and Recursion   (5 of 7) 

• Our solution: 

 

 
 

 

 

• The recursion has three terms,  

  

 and determining a general formula for the coefficients an can 

be difficult or impossible. 

• However, we can generate as many coefficients as we like, 

preferably with the help of a computer algebra system.   
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Example 3: Solution and Convergence   (6 of 7) 

• Our solution: 

 

 
 

 

 

• Since we don’t have a general formula for the an, we cannot 
use a convergence test (i.e., ratio test) on our power series 

 
 

 

• This means our manipulations of the power series to arrive at 
our solution are suspect.  However, the results of Section 5.3 
will confirm the convergence of our solution.   
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Example 3: Fundamental Solutions   (7 of 7) 

• Our solution: 

 

 

 

 

 or 

 

• It can be shown that the solutions y3(x), y4(x) are linearly 

independent, and thus are fundamental solutions for Airy’s 

equation, with general solution  
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Boyce/DiPrima/Meade 11th ed, Ch 5.3:  Series Solutions 

Near an Ordinary Point, Part II 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John 

Wiley & Sons, Inc. 

• A function p is analytic at x0 if it has a Taylor series 
expansion that converges to p in some interval about x0 

 

 

• The point x0 is an ordinary point of the equation  

 

 

 if p(x) = Q(x)/P(x)  and q(x)= R(x)/P(x) are analytic at x0. 
Otherwise x0 is a singular point. 

• If x0 is an ordinary point, then p and q are analytic and have 
derivatives of all orders at x0, and this enables us to solve for 
an in the solution expansion                              .  See text. 
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Theorem 5.3.1  

 

 

• If x0 is an ordinary point of the differential equation 

 

 

then the general solution for this equation is  

 

 

 where a0 and a1 are arbitrary, and y1, y2 are linearly 

independent series solutions that are analytic at x0.  

• Further, the radius of convergence for each of the series 

solutions y1 and y2 is at least as large as the minimum of the 

radii of convergence of the series for p and q.   
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Radius of Convergence  

 

 

• Thus if x0 is an ordinary point of the differential equation, 

then there exists a series solution                              .  

• Further, the radius of convergence of the series solution is at 

least as large as the minimum of the radii of convergence of 

the series for p and q.   

• These radii of convergence can be found in two ways:  

 
1.  Find the series for p and q, and then determine their radii of 

convergence using a convergence test. 

2.  If P, Q and R are polynomials with no common factors, then it can 

be shown that Q/P and R/P are analytic at x0 if P(x0) ≠ 0, and the 

radius of convergence of the power series for Q/P and R/P about x0 is 

the distance to the nearest zero of P (including complex zeros).    
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Example 1   (1 of 2) 

• Let                be a solution of the initial value problem: 

 

 

• Determine 

 

• To find           , evaluate the equation when x = 0:  

 

     so   

  

y = f(x)

(1+ x2 )y ''+ 2xy '+ 4x2y = 0,  y '(0) =1

f ''(0),  f '''(0),  and f(4)(0)

f ''(0)

(1+ 02 )y ''+ 2(0)y '+ 4(0)2 y = 0

f ''(0) = 0



Example 1   (2 of 2) 

• To find          , differentiate the equation with respect to x:  

 

 

• Then evaluate at x = 0: 

 

• Thus 

• Differentiating the equation above with respect to x:  

 

 

• And evaluating using  

     gives us                   . 

  

(1+ x2 )f '''(x)+ 2xf ''(x)+ 2xf ''(x)+ 2f '(x)+ 4x2f '(x)+ 8xf(x) = 0

f '''(0)

f '''(0)+ 2f '(0) = 0

f '''(0) = -2f '(0) = 0

(1+ x2 )f (4)(x)+ 2xf '''(x)+ 4xf '''(x)+ 4f ''(x)+ (4x2 + 2)f ''(x)

             + 8xf '(x)+ 8xf '(x)+ 8f(x) = 0
f(0) =1,  f '(0) = f ''(0) = f '''(0) = 0

f (4)(0) = –8



Example 2  

• Let f (x) = (1 + x2)–1.  Find the radius of convergence of the 

Taylor series of f about x0 = 0. 

• The Taylor series of f about x0 = 0 is  

 
 

• Using the ratio test, we have 

 

 

• Thus the radius of convergence is     = 1.   

• Alternatively, note that the zeros of 1 + x2 are x = ±i.  Since 

the distance in the complex plane from 0 to i or –i  is 1, we 

see again that     = 1.  
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Example 3  

• Find the radius of convergence of the Taylor series for      

     about x0 = 0 and about x0 = 1. First observe: 

 

• Since the denominator cannot be zero, this establishes the 

bounds over which the function can be defined. 

• In the complex plane, the distance from x0 = 0 to 1 ± i is      , 

so the radius of convergence for the Taylor series expansion 

about x0 = 0 is      =       . 

• In the complex plane, the distance from x0 = 1 to 1 ± i is 1 , 

so the radius of convergence for the Taylor series expansion 

about x0 = 0 is     = 1. 
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Example 4: Legendre Equation   (1 of 2) 

• Determine a lower bound for the radius of convergence of the 

series solution about x0 = 0 for the Legendre equation 

 

• Here, P(x) = 1 – x2, Q(x) = –2x, R(x) =                .   

• Thus x0 = 0 is an ordinary point, since p(x) = –2x/(1 – x2) and  

q(x) =               /(1 – x2) are analytic at  x0 = 0.   

• Also, p and q have singular points at x = ±1. 

• Thus the radius of convergence for the Taylor series 

expansions of p and q about x0 = 0 is      = 1.  

• Therefore, by Theorem 5.3.1, the radius of convergence for 

the series solution about x0 = 0 is at least      = 1.   
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Example 4: Legendre Equation   (2 of 2) 

• Thus, for the Legendre equation 

 

 the radius of convergence for the series solution about 

             x0 = 0 is at least     = 1.   

• It can be shown that if     is a positive integer, then one of the 

series solutions terminates after a finite number of terms, and 

hence converges for all x, not just for |x| < 1.  
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Example 5: Radius of Convergence   (1 of 2) 

• Determine a lower bound for the radius of convergence of the 

series solution about x0 = 0 for the equation 

 

• Here, P(x) = 1 + x2, Q(x) = 2x, R(x) = 4x2.   

• Thus x0 = 0 is an ordinary point, since p(x) = 2x/(1 + x2) and  

q(x) = 4x2 /(1 + x2) are analytic at  x0 = 0.   

• Also, p and q have singular points at x =  ±i. 

• Thus the radius of convergence for the Taylor series 

expansions of p and q about x0 = 0 is     = 1.  

• Therefore, by Theorem 5.3.1, the radius of convergence for 

the series solution about x0 = 0 is at least     = 1.   
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Example 5: Solution Theory   (2 of 2) 

• Thus for the equation 

 

            the radius of convergence for the series solution about 

             x0 = 0 is at least     = 1, by Theorem 5.3.1. 

• Suppose that initial conditions y(0) = y0 and y(0) = y0'  are 

given.  Since 1 + x2 ≠ 0 for all x, there exists a unique solution 

of the initial value problem on               , by Theorem 3.2.1.  

• On the other hand, Theorem 5.3.1 only guarantees a solution 

of the form            for –1 < x < 1, where a0 = y0 and a1 = y0'.  

• Thus the unique solution on               may not have a power 

series about x0 = 0 that converges for all x.  
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Example 6 

• Determine a lower bound for the radius of convergence of the 

series solution about x0 = 0 for the equation 

 

• Here, P(x) = 1, Q(x) = sin x, R(x) = 1 + x2.   

• Note that p(x) = sin x is not a polynomial, but recall that it 

does have a Taylor series about x0 = 0 that converges for all x.  

• Similarly, q(x) = 1 + x2 has a Taylor series about x0 = 0, 

namely1 + x2, which converges for all x.   

• Therefore, by Theorem 5.3.1, the radius of convergence for 

the series solution about x0 = 0 is infinite.   
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Boyce/DiPrima/Meade 11th ed, Ch 5.4: Euler 

Equations; Regular Singular Points 
Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John 

Wiley & Sons, Inc. 

• Recall that the point x0 is an ordinary point of the equation  

 

 

 if p(x) = Q(x)/P(x)  and q(x)= R(x)/P(x) are analytic at at x0. 

Otherwise x0 is a singular point.   
 

• Thus, if P, Q and R are polynomials having no common 

factors, then the singular points of the differential equation 

are the points for which P(x) = 0.  
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Euler Equations 

• A relatively simple differential equation that has a regular 

singular point is the Euler equation, 

 

 where               are constants.   

• Note that x0 = 0 is a regular singular point.  

• The solution of the Euler equation is typical of the solutions of 

all differential equations with regular singular points, and 

hence we examine Euler equations before discussing the more 

general problem.  
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a  and b



Solutions of the Form y = xr  

• In any interval not containing the origin, the general 

solution of the Euler equation has the form 

 

• Suppose x >0, and assume a solution of the form   

      y = xr.  Then 

 

• Substituting these into the differential equation, we obtain 

 
 

 or 
 

 or 
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Quadratic Equation 

• Thus, after substituting y = xr into our differential equation, 

we arrive at 

 

• and hence 

 

 

• Let F(r) be defined by  

 

 

• We now examine the different cases for the roots r1, r2. 
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Real, Distinct Roots 

• If F(r) has real roots r1 ≠ r2, then 

 

 are solutions to the Euler equation.  Note that 

 

 

 

 
 

• Thus y1 and y2 are linearly independent, and the general 

solution to our differential equation is 
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Example 1 

• Consider the equation 

 

• Substituting y = xr into this equation, we obtain 

 

 and 

 

 

 

 

• Thus r1 = 1/2, r2 = –1, and our general solution is 
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Equal Roots 

• If F(r) has equal roots r1 = r2, then we have one solution  

 

• We could use reduction of order to get a second solution; 

instead, we will consider an alternative method.   

• Since F(r) has a double root r1, F(r) = (r - r1)
2, and F'(r1) = 0.   

• This suggests differentiating L[xr] with respect to r and then 

setting r equal to r1, as follows:  
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Equal Roots 

• Thus in the case of equal roots r1 = r2, we have two 

solutions  
 

 

• Now 

 

 

 
 

 

• Thus y1 and y2 are linearly independent, and the general 

solution to our differential equation is 
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Example 2 

• Consider the equation 

 

• Then 

 

 and 

 

 

 

 

• Thus r1 = r2 = –2, our general solution is 

0,0452  xyyxyx
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Complex Roots 

• Suppose F(r) has complex roots    

     Then 

 

 

 

• Thus xr is defined for complex r, and it can be shown that the 

general solution to the differential equation has the form  

 
 

• However, these solutions are complex-valued.  It can be shown that 

the following functions are solutions as well: 
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Complex Roots 

• The following functions are solutions to our equation: 

 

 

• Using the Wronskian, it can be shown that y1 and y2 are 

linearly independent,  

 
 

• and thus the general solution to our differential equation can 

be written as 
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Example 3 

• Consider the equation 

 

• Then 
 

 and 
 

 

 
 

 

• Thus r1 = –i, r2 = i, and our general solution is 

0,02  xyyxyx
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Solution Behavior 

• Recall that the solution to the Euler equation 
 

 

 depends on the roots: 
 

 

 

 

              where                      

• The qualitative behavior of these solutions near the singular 

point x = 0 depends on the nature of r1 and r2.   

• Also, we obtain similar forms of solution when t < 0. Overall 

results are summarized on the next slide.  
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General Solution of the Euler Equation 

• The general solution to the Euler equation 

 

 in any interval not containing the origin is determined by the 

roots r1 and r2 of the equation 

 

 according to the following cases: 

 

 

 
 

 

           where   
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Shifted Equations 

• The solutions to the Euler equation 

 
 

 are similar to the ones given in previous slide: 

 

 

 

 

 

                               where   
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Solution Behavior and Singular Points 

• If we attempt to use the methods of the preceding two 
sections to solve the differential equation in a neighborhood 
of a singular point x0, we will find that these methods fail. 

• This is because the solution may not be analytic at x0, and 
hence will not have a Taylor series expansion about x0. 
Instead, we must use a more general series expansion. 

• A differential equation may only have a few singular points, 
but solution behavior near these singular points is important. 

• For example, solutions often become unbounded or 
experience rapid changes in magnitude near a singular point. 

• Also, geometric singularities in a physical problem, such as 
corners or sharp edges, may lead to singular points in the 
corresponding differential equation.   



Numerical Methods and Singular Points 

• As an alternative to analytical methods, we could consider 

using numerical methods, which are discussed in Chapter 8. 

• However, numerical methods are not well suited for the study 

of solutions near singular points.   

• When a numerical method is used, it helps to combine with it 

the analytical methods of this chapter in order to examine the 

behavior of solutions near singular points.  



Solution Behavior Near Singular Points 

• Thus without more information about Q/P and R/P in the 

neighborhood of a singular point x0, it may be impossible to 

describe solution behavior near x0.   

• It may be that there are two linearly independent solutions 

that remain bounded as x      x0; or there may be only one, 

with the other becoming unbounded as x     x0; or they may 

both become unbounded as x     x0. 

• If a solution becomes unbounded, then we may want to know 

if y         in the same manner as (x – x0)
–1  or |x – x0|

–½, or in 

some other manner. 

®
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Classifying Singular Points 

• Our goal is to extend the method already developed for solving 

 

 near an ordinary point so that it applies to the neighborhood of 

a singular point x0. 

• To do so, we restrict ourselves to cases in which singularities 

in Q/P and R/P at x0 are not too severe, that is, to what might 

be called “weak singularities.” 

• It turns out that the appropriate conditions to distinguish “weak 

singularities” are 
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Regular Singular Points 

• Consider the differential equation 

 

• If P and Q are polynomials, then a regular singular point x0 

is singular point for which   

 

 

• For more general functions than polynomials, x0 is a regular 

singular point if it is a singular point with  

 

 

• Any other singular point x0 is an irregular singular point. 
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Example 4: Legendre Equation 

• Consider the Legendre equation 

 
 

• The point x = 1 is a regular singular point, since both of the 

following limits are finite: 

 

 

 

 

• Similarly, it can be shown that x = –1 is a regular singular 

point. 
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Example 5 

• Consider the equation 

 
 

• The point x = 0 is a regular singular point: 

 

 

 

 
• The point x = 2, however, is an irregular singular point, since the 

following limit does not exist: 
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Example 6: Nonpolynomial Coefficients  (1 of 2) 

• Consider the equation 

 

 

• Note that x =    /2 is the only singular point.   
 

• We will demonstrate that x =    /2 is a regular singular point by 

showing that the following functions are analytic at    /2: 
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Example 6: Regular Singular Point  (2 of 2) 

• Using methods of calculus, we can show that the Taylor series of  
 cos x about     /2 is 

 

 

• Thus 

 

 

 which converges for all x, and hence is analytic at    /2.  

• Similarly, sin x is analytic at    /2, with Taylor series 

 

 

• Thus     /2 is a regular singular point of the differential equation. 
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• We now consider solving the general second order linear 

equation in the neighborhood of a regular singular point x0. 

For convenience, we will take x0 = 0. 

• Recall that the point x0 = 0 is a regular singular point of 
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Transforming the Differential Equation 

• Our differential equation has the form 

 
 

• Dividing by P(x) and multiplying by x2, we obtain 

 
 

• Substituting in the power series representations of p and q, 

 

 

 we obtain 
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Comparison with Euler Equations 

• Our differential equation now has the form 

 
 

• Note that if 

 

 then our differential equation reduces to the Euler Equation  

 

• In any case, our equation is similar to an Euler Equation but 

with power series coefficients.  

• Thus our solution method: assume solutions have the form 
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Example 1:  Regular Singular Point   (1 of 13) 

• Consider the differential equation 

 

• This equation can be rewritten as 

 

 

• Since the coefficients are polynomials, it follows that x = 0 is 

a regular singular point, since both limits below are finite: 
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Example 1: Euler Equation   (2 of 13) 

• Now xp(x) = -1/2 and x2q(x) = (1 + x )/2, and thus for 

 

 

 it follows that 

 

• Thus the corresponding Euler Equation is 

 

• As in Section 5.5, we obtain 

 

• We will refer to this result later.  
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Example 1: Differential Equation   (3 of 13) 

• For our differential equation, we assume a solution of the form 

 

 

 

 

• By substitution, our differential equation becomes 

 

 

 or 
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Example 1: Combining Series   (4 of 13) 

• Our equation 

 
 

 

 can next be written as 

 
 

 

• It follows that 

 
 

 and 

     012
1

1

000

 
























n

nr

n

n

nr

n

n

nr

n

n

nr

n xaxaxnraxnrnra

       01)(121)1(2
1

10  








n

nr

nn

r xanrnrnraxrrra

  01)1(20  rrra

    ,2,1,01)(12 1   nanrnrnra nn



Example 1: Indicial Equation   (5 of 13) 

• From the previous slide, we have 

 
 

• The equation 

 
 

 is called the indicial equation, and was obtained earlier when 

we examined the corresponding Euler Equation.   

• The roots r1 = 1, r2 = ½, of the indicial equation are called the 

exponents of the singularity, for regular singular point x = 0.  

• The exponents of the singularity determine the qualitative 

behavior of solution in neighborhood of regular singular point.   
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Example 1: Recursion Relation   (6 of 13) 

• Recall that 

 
 

• We now work with the coefficient on xr+n : 

 
 

• It follows that 
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Example 1: First Root   (7 of 13) 

• We have 

 

 

• Starting with r1 = 1, this recursion becomes 

 

 

• Thus 
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Example 1: First Solution   (8 of 13) 

• Thus we have an expression for the n-th term: 

 

 

• Hence for x > 0, one solution to our differential equation is 
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Example 1: Radius of Convergence for  

First Solution   (9 of 13) 

• Thus if we omit a0, one solution of our differential equation is   

 

 
 

• To determine the radius of convergence, use the ratio test: 

 

 

 

 

• Thus the radius of convergence is infinite, and hence the series 

converges for all x.   
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Example 1: Second Root   (10 of 13) 

• Recall that 

 

 

• When r1 = 1/2, this recursion becomes 

 

 

• Thus 
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Example 1: Second Solution   (11 of 13) 

• Thus we have an expression for the n-th term: 

 

 

• Hence for x > 0, a second solution to our equation is 
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Example 1: Radius of Convergence for 

Second Solution    (12 of 13) 

• Thus if we omit a0, the second solution is 

 

 

• To determine the radius of convergence for this series, we can 

use the ratio test: 

 

 

 

 

• Thus the radius of convergence is infinite, and hence the series 

converges for all x.   
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Example 1: General Solution   (13 of 13) 

• The two solutions to our differential equation are  

 

 

 

 
 

• Since the leading terms of y1 and y2 are x and x1/2, respectively,      

it follows that y1 and y2 are linearly independent, and hence 

form a fundamental set of solutions for differential equation. 

• Therefore the general solution of the differential equation is 

 

 where y1 and y2 are as given above.   
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Shifted Expansions & Discussion 

• For the analysis given in this section, we focused on x = 0 as 

the regular singular point.  In the more general case of a 

singular point at x = x0, our series solution will have the form 

 

 

• If the roots r1, r2  of the indicial equation are equal or differ by 

an integer, then the second solution y2 normally has a more 

complicated structure. These cases are discussed in Section 5.7.   

• If the roots of the indicial equation are complex, then there are 

always two solutions with the above form.  These solutions are 

complex valued, but we can obtain real-valued solutions from 

the real and imaginary parts of the complex solutions.   
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Boyce/DiPrima/Meade 11th ed, Ch 5.6:  Series Solutions 

Near a Regular Singular Point, Part II 
Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• Recall from Section 5.5 (Part I):  The point x0 = 0 is a regular 

singular point of 

 

 with 

 
 

 and corresponding Euler Equation 

 

• We assume solutions have the form  
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Substitute Derivatives into ODE 

• Taking derivatives, we have 

 

 

 

 

• Substituting these derivatives into the differential equation, 

we obtain 
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Multiplying Series 
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Combining Terms in ODE 

• Our equation then becomes 
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Rewriting ODE 

• Define F(r) by 

 
 

• We can then rewrite our equation 

 

 
  

 in more compact form: 
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Indicial Equation 

• Thus our equation is 

 

 

• Since a0 ≠ 0, we must have 

 

• This indicial equation is the same one obtained when 

seeking solutions y = xr to the corresponding Euler Equation.   

• Note that F(r) is quadratic in r, and hence has two roots,       

r1 and r2.  If r1 and r2 are real, then assume r1 ≥ r2.  

• These roots are called the exponents at the singularity, and 

they determine behavior of solution near singular point.  
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Recurrence Relation 

• From our equation, 

 

 

 the recurrence relation is 

 

 

• This recurrence relation shows that in general, an depends on 

r and the previous coefficients a0, a1, …, an-1.  

• Note that we must have r = r1 or r = r2.  
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Recurrence Relation & First Solution 

• With the recurrence relation 

 

 

 we can compute a1, …, an-1 in terms of a0, pm and qm, 

provided F(r + 1), F(r + 2), …, F(r + n), … are not zero.   

• Recall r = r1 or r = r2, and these are the only roots of F(r).  

• Since r1 ≥ r2, we have r1 + n  ≠ r1 and r1 + n  ≠ r2 for n ≥ 1. 

• Thus F(r1 + n) ≠ 0 for n ≥ 1, and at least one solution exists:  

 

 

 where the notation an(r1) indicates that an has been 

determined using r = r1.   
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Recurrence Relation & Second Solution 

• Now consider r = r2.  Using the recurrence relation 

 

 

 we compute a1, …, an-1 in terms of a0, pm and qm, provided 

F(r2 + 1), F(r2 + 2), …, F(r2 + n), … are not zero.  

• If r2 ≠ r1, and r2 – r1  ≠ n for n ≥ 1, then r2 + n  ≠ r1  

     for n ≥ 1. 

• Thus F(r2 + n) ≠ 0 for n ≥ 1, and a second solution exists:  

 

 

 where the notation an(r2) indicates that an has been 

determined using r = r2. 
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Convergence of Solutions 

• If the restrictions on r2 are satisfied, we have two solutions 

 

 

 where a0 =1 and x > 0. The series converge for |x| <    , and 

 
 

 define analytic functions within their radii of convergence. 

• It follows that any singular behavior of solutions y1 and y2 is 
due to the factors xr1 and xr2.  

• To obtain solutions for x < 0, it can be shown that we need 
only replace xr1 and xr2 by |xr1| and |xr2| in y1 and y2 above. 

• If r1 and r2 are complex, then they are conjugates and 

    r2 – r1 ≠ N  for N ≥ 1, and real-valued series solutions can be    

     found. 
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Example 1: Singular Points  (1 of 5) 

• Find all regular singular points, determine indicial equation and 

exponents of singularity for each regular singular point.  Then 

discuss nature of solutions near singular points.  

 
 

• Solution:  The equation can be rewritten as 

 
 

 

• The singular points are x = 0 and x = -1.   

• Then x = 0 is a regular singular point, since 
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Example 1: Indicial Equation, x = 0    (2 of 5) 

• The corresponding indicial equation is given by  

 

 or 

 
 

• The exponents at the singularity for x = 0 are found by solving 

the indicial equation: 

 

 

 

• Thus r1 = 0 and r2 = -1/2, for the regular singular point x = 0.   
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Example 1: Series Solutions, x = 0   (3 of 5) 

• The solutions corresponding to x = 0 have the form  

 

 
 

• The coefficients an(0) and an(–1/2) are determined by the 
corresponding recurrence relation.   

• Both series converge for |x| <    , where     is the smaller radius 
of convergence for the series representations about x = 0 for  

 

 

• The smallest     can be is 1, which is the distance between the 
two singular points x = 0 and x = –1.  

• Note y1 is bounded as x     0, whereas y2 unbounded as x     0. 
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Example 1: Indicial Equation, x = –1  (4 of 5) 

• Next, x = –1 is a regular singular point, since 

 
 

 and 

 
 

• The indicial equation is given by 

 

 and hence the exponents at the singularity for x = –1 are 

 
 

• Note that r1 and r2 differ by a positive integer.   
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Example 1: Series Solutions, x = –1   (5 of 5) 

• The first solution corresponding to x = –1 has the form  

 

 
 

• This series converges for at least |x + 1| < 1, and y1 is an  

     analytic function there. 

• Since the roots r1 = 2 and r2 = 0 differ by a positive integer, 

there may or may not be a second solution of the form 
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Equal Roots 

• Recall that the general indicial equation is given by  

 
 

• In the case of equal roots, F(r) simplifies to 

 
 

• It can be shown (see text) that the solutions are given by 
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Roots Differing by an Integer 

• If roots of the indicial equation differ by a positive integer, it 

can be shown that the ODE solutions are given by 

 

 

 where the cn(r1) are found by substituting y2 into the 

differential equation and solving, as usual.  Alternatively, 

 
 

 and 

 
 

• See Theorem 5.6.1 for a summary of results in this section. 
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Boyce/DiPrima/Meade 11th ed, Ch 5.7:   

Bessel’s Equation 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John 

Wiley & Sons, Inc. 

• Bessel Equation of order    : 

 
 

• Note that x = 0 is a regular singular point. 

• Friedrich Wilhelm Bessel (1784 – 1846) studied disturbances 

in planetary motion, which led him in 1824 to make the first 

systematic analysis of solutions of this equation.  The 

solutions became known as Bessel functions.  

• In this section, we study the following cases: 

– Bessel Equations of order zero:      = 0 

– Bessel Equations of order one-half:        

– Bessel Equations of order one:      = 1 
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Bessel Equation of Order Zero  (1 of 12) 

• The Bessel Equation of order zero is 

 

• We assume solutions have the form 

 
 

• Taking derivatives, 

 

 

 
 

• Substituting these into the differential equation, we obtain 
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Indicial Equation    (2 of 12) 

• From the previous slide, 

 

 

• Rewriting, 

 

 

 

• or 

 

 

• The indicial equation is r2 = 0, and hence r1 = r2 = 0.   
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Recurrence Relation     (3 of 12) 

• From the previous slide, 

 

 

• Note that a1 = 0; the recurrence relation is 

 

 

• We conclude a1 = a3 = a5 = … =  0, and since r = 0,  

 

 

• Note: Recall dependence of an on r, which is indicated by 

an(r).  Thus we may write a2m(0) here instead of a2m. 
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First Solution     (4 of 12) 

• From the previous slide, 

 

 

• Thus  

 

 

 and in general,  

 

 

• Thus  
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Bessel Function of First Kind,  

Order Zero  (5 of 12) 

• Our first solution of Bessel’s Equation of order zero is 

 
 

 

• The series converges for all x, and is called the Bessel 

function of the first kind of order zero, denoted by 

 

 
 

• The graphs of J0 and several  

partial sum approximations  

are given here.   
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Second Solution:  Odd Coefficients    (6 of 12) 

• Since indicial equation has repeated roots, recall that the 

coefficients in second solution can be found using  

 

• Now 

 
 

• Thus   

 

• Also, 

 
 

 and hence 
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Second Solution:  Even Coefficients   (7 of 12) 

• Thus we need only compute derivatives of the even 

coefficients, given by  

 
 

 

• It can be shown that 

 

 

 and hence 
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Second Solution: Series Representation  (8 of 

12) 

• Thus  

 
 

 where 

 

 

• Taking a0 = 1 and using results of Section 5.7,  
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Bessel Function of Second Kind,  

Order Zero  (9 of 12) 

• Instead of using y2, the second solution is often taken to be a 

linear combination Y0 of J0 and y2, known as the Bessel 

function of second kind of order zero.  Here, we take 

 

 

• The constant     is the Euler-Mascheroni constant, defined by 

 
 

• Substituting the expression for y2 from previous slide into 

equation for Y0 above, we obtain  
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General Solution of Bessel’s Equation,  

Order Zero (10 of 12) 

• The general solution of Bessel’s equation of order zero, x > 0, 

is given by 

 

 where 

 

 

 

 

• Note that J0      1 as x      0 while Y0 has a logarithmic 

singularity at x = 0.  If a solution which is bounded at the 

origin is desired, then Y0 must be discarded.   
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Graphs of Bessel Functions,  

Order Zero (11 of 12) 

• The graphs of J0 and Y0 are given below.  

• Note that the behavior of J0 and Y0 appear to be similar to sin x 

and cos x for large x, except that oscillations of J0 and Y0 decay 

to zero.  



Approximation of Bessel Functions,  

Order Zero    (12 of 12) 

• The fact that J0 and Y0  appear similar to sin x and cos x for 

large x may not be surprising, since ODE can be rewritten as  

 

 

• Thus, for large x, our equation can be approximated by 

 

 whose solns are sin x and cos x.  Indeed, it can be shown that 

  01
1

0
2

2
222 








 y

x

v
y

x
yyvxyxyx







































xx
x

xY

xx
x

xJ

 as,
4

sin
2

)(

 as,
4

cos
2

)(

2/1

0

2/1

0









,0 yy



Bessel Equation of Order One-Half   (1 of 8) 

• The Bessel Equation of order one-half is 

 

 

• We assume solutions have the form 

 
 

• Substituting these into the differential equation, we obtain 
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Recurrence Relation   (2 of 8) 

• Using the results of the previous slide, we obtain 

 

 

 or 

 

 
 

• The roots of the indicial equation are r1 = ½, r2 = - ½ , and 

note that they differ by a positive integer.   

• The recurrence relation is   
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First Solution: Coefficients   (3 of 8) 

• Consider first the case r1 = ½.  From the previous slide,  

 

 

• Since r1 = ½,  a1 = 0, and hence from the recurrence relation, 

a1 = a3 = a5 = … =  0.  For the even coefficients, we have 

 

 

• It follows that 
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Bessel Function of First Kind,  

Order One-Half   (4 of 8) 

• It follows that the first solution of our equation is, for a0 = 1, 

 

 

 

 

 
 

• The Bessel function of the first kind of order one-half, J½, 

is defined as 
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Second Solution: Even Coefficients  (5 of 8) 

• Now consider the case r2 = - ½.  We know that  

 

 

• Since r2 = – ½ , a1 = arbitrary.  For the even coefficients,  

 

 

• It follows that 
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Second Solution: Odd Coefficients (6 of 8) 

• For the odd coefficients,  

 

 

• It follows that 
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Second Solution    (7 of 8) 

• Therefore 

 

 

 
 

• The second solution is usually taken to be the function 

 

 
  

 where a0 = (2/   )½  and a1 = 0.   

• The general solution of Bessel’s equation of order one-half is 
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Graphs of Bessel Functions,  

Order One-Half    (8 of 8) 

• Graphs of J½ , J-½ are given below. Note behavior of J½ , J-½ 

similar to J0 , Y0  for large x, with phase shift of     /4.  
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Bessel Equation of Order One  (1 of 6) 

• The Bessel Equation of order one is 

 

• We assume solutions have the form 

 
 

• Substituting these into the differential equation, we obtain 
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Recurrence Relation   (2 of 6) 

• Using the results of the previous slide, we obtain 

 

 

 or 

 

 

• The roots of indicial equation are r1 = 1, r2 = - 1, and note 

that they differ by a positive integer.   

• The recurrence relation is   
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First Solution: Coefficients   (3 of 6) 

• Consider first the case r1 = 1.  From previous slide,  

 

 

• Since r1 = 1,  a1 = 0, and hence from the recurrence relation, 

a1 = a3 = a5 = … =  0.  For the even coefficients, we have 

 

 

• It follows that 
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Bessel Function of First Kind,  

Order One    (4 of 6) 

• It follows that the first solution of our differential equation is 

 

 

 

• Taking a0 = ½, the Bessel function of the first kind of order 

one, J1, is defined as 

 

 
 

• The series converges for all x and hence J1 is analytic 

everywhere. 
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Second Solution   (5 of 6) 

• For the case r1 = –1, a solution of the form  

 

 

 is guaranteed by Theorem 5.7.1.   

• The coefficients cn are determined by substituting y2 into the 

ODE and obtaining a recurrence relation, etc.  The result is: 

 

 
 

 where Hk is as defined previously.  See text for more details.  

• Note that J1     0 as x      0 and is analytic at x = 0, while y2 is 

unbounded as x      0 in the same manner as 1/x. 
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Bessel Function of Second Kind,  

Order One    (6 of 6) 

• The second solution, the Bessel function of the second kind 

of order one, is usually taken to be the function 

 

 

  where     is the Euler-Mascheroni constant. 

• The general solution of Bessel’s equation of order one is 

 
 

• Note that J1 , Y1 have same  

behavior at x = 0 as observed  

on previous slide for J1 and y2.  
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