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• A second order ordinary differential equation has the 

general form  

 

 where f is some given function. 

• This equation is said to be linear if f is linear in y and y': 

 

 Otherwise the equation is said to be nonlinear.  

• A second order linear equation often appears as 

 

• If g(t) or G(t) = 0 for all t, then the equation is called 

homogeneous.  Otherwise the equation is nonhomogeneous.  
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y ''+ p(t)y '+ q(t)y = g(t)

P(t)y ''+Q(t)y '+ R(t)y =G(t)



Homogeneous Equations, Initial Values 

• In Sections 3.5 and 3.6, we will see that once a solution to a 

homogeneous equation is found, then it is possible to solve 

the corresponding nonhomogeneous equation, or at least 

express the solution in terms of an integral.  

• The focus of this chapter is thus on homogeneous equations; 

and in particular, those with constant coefficients: 

 

 We will examine the variable coefficient case in Chapter 5. 

• Initial conditions typically take the form 

 

• Thus solution passes through (t0, y0), and the slope of solution 

at (t0, y0) is equal to y0'. 

ay ''+by '+ cy = 0

y t0( ) = y0, y ' t0( ) = y '0



Example 1: Infinitely Many Solutions   (1 of 3) 

• Consider the second order linear differential equation 

 

• Two solutions of this equation are 

 

• Other solutions include 

 

• Based on these observations, we see that there are infinitely 

many solutions of the form 

 

• It will be shown in Section 3.2 that all solutions of the 

differential equation above can be expressed in this form. 
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Example 1:  Initial Conditions  (2 of 3) 

• Now consider the following initial value problem for our 
equation: 

 

• We have found a general solution of the form 

 

• Using the initial equations,  

 

 
 

• Thus 

y ''- y = 0, y(0) = 2,   y '(0) = -1
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Example 1:  Solution Graphs  (3 of 3) 

• Our initial value problem and solution are 

 

• Graphs of both y(t) and y’(t) are given below. Observe that 

both initial conditions are satisfied. 
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Characteristic Equation 

• To solve the 2nd order equation with constant coefficients, 

 

 we begin by assuming a solution of the form y = ert.   

• Substituting this into the differential equation, we obtain 

 

• Simplifying,  

 

 and hence  

 

• This last equation is called the characteristic equation of 
the differential equation.   

• We then solve for r by factoring or using quadratic formula. 

ay ''+by '+ cy = 0,

02  rtrtrt cebreear

0)( 2  cbrarert

02  cbrar



General Solution 

• Using the quadratic formula on the characteristic equation 

 

 we obtain two solutions, r1 and r2.   

• There are three possible results: 

– The roots r1, r2  are real and r1 ≠ r2.  

– The roots r1, r2  are real and r1 = r2.  

– The roots r1, r2  are complex.   

• In this section, we will assume r1, r2  are real and r1 ≠ r2.  

• In this case, the general solution has the form 
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Initial Conditions  

• For the initial value problem 

 

 we use the general solution   

 

 together with the initial conditions to find c1 and c2.  That is, 

 

 
 

• Since we are assuming r1 ≠ r2, it follows that a solution of the 

form y = ert to the above initial value problem will always 

exist, for any set of initial conditions.  

ay ''+by '+ cy = 0, y(t0 ) = y0, y '(t0 ) = y '0,
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Example 2  (General Solution) 

• Consider the linear differential equation 

 

• Assuming an exponential solution leads to the characteristic 

equation: 

 

• Factoring the characteristic equation yields two solutions:   

r1 = –2 and r2 = –3 

• Therefore, the general solution to this differential  equation 

has the form 

 

 

 

 

y ''+ 5y '+ 6y = 0
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Example 3  (Particular Solution) 

• Consider the initial value problem 

 
 

• From the preceding example, we know the general solution 
has the form: 
 

• With derivative: 
 

• Using the initial conditions:   

 

 

 

• Thus 

y ''+ 5y '+ 6y = 0, y 0( ) = 2, y ' 0( ) = 3
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Example 4:  Initial Value Problem 

• Consider the initial value problem  

 

• Then 

 

• Factoring yields two solutions,  

• The general solution has the form 

 

• Using initial conditions: 

 

 

• Thus 

4y ''- 8y '+ 3y = 0, y 0( ) = 2, y ' 0( ) =
1
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Example 5:  Find Maximum Value 

• For the initial value problem in Example 3, 

to find the maximum value attained by the 

solution, we set y’(t) = 0 and solve for t: 

 

 

y(t) = 9e-2 t - 7e-3t

y '(t) = -18e-2 t + 21e-3t =
set

0

6e-2 t = 7e-3t

e t = 7 / 6

t = ln(7 / 6)
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Boyce/DiPrima/Meade 11th ed, Ch 3.2:  Fundamental Solutions of 

Linear Homogeneous Equations 
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• Let p, q be continuous functions on an interval                 

which could be infinite.  For any function y that is twice 

differentiable on I, define the differential operator L by 

 
 

• Note that L[y] is a function on I, with output value 

 
 

• For example,    

L y[ ] = y ''+ py '+ qy

L y[ ](t) = y ''(t)+ p(t)y '(t)+ q(t)y(t)
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Differential Operator Notation 

• In this section we will discuss the second order linear 

homogeneous equation L[y](t) = 0, along with initial 

conditions as indicated below:   

 

 
 

• We would like to know if there are solutions to this initial 

value problem, and if so, are they unique.   

• Also, we would like to know what can be said about the form 

and structure of solutions that might be helpful in finding 

solutions to particular problems.    

• These questions are addressed in the theorems of this section. 

L y[ ] = y ''+ p(t)y '+ q(t)y = 0

y(t0 ) = y0 , y '(t0 ) = y1



Theorem 3.2.1 (Existence and Uniqueness) 

• Consider the initial value problem 

 

 
 

• where p, q, and g are continuous on an open interval I that 

contains t0. Then there exists a unique solution              on I. 

 

• Note:  While this theorem says that a solution to the initial 

value problem above exists, it is often not possible to write 

down a useful expression for the solution.  This is a major 

difference between first and second order linear equations.   

y ''+ p(t)y '+ q(t)y = g(t)

y(t0 ) = y0 , y '(t0 ) = y '0

y = f(t)



   Example 1 

• Consider the second order linear initial value problem 

 

• Writing the differential equation in the form : 

 
 

 

• The only points of discontinuity for these coefficients are       

t = 0 and t = 3. So the longest open interval containing the 

initial point t =1 in which all the coefficients are continuous 

is 0 < t < 3 

• Therefore, the longest interval in which Theorem 3.2.1 

guarantees the existence of the solution is 0 < t < 3            

y ''+ p(t)y '+ q(t)y = g(t)

(t 2 - 3t)y ''+ ty '- (t + 3)y = 0, y 1( ) = 2, y ' 1( ) =1
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Example 2 

• Consider the second order linear initial value problem 

 

 where p, q are continuous on an open interval I containing t0.  

 

• In light of the initial conditions, note that y = 0 is a solution 

to this homogeneous initial value problem.   

 

• Since the hypotheses of Theorem 3.2.1 are satisfied, it 

follows that y = 0 is the only solution of this problem. 

y ''+ p(t)y '+ q(t)y = 0, y 0( ) = 0, y ' 0( ) = 0



Theorem 3.2.2 (Principle of Superposition) 

• If y1and y2 are solutions to the equation 

 

 then the linear combination c1y1 + y2c2 is also a solution, for 

all constants c1 and c2. 
 

• To prove this theorem, substitute c1y1 + y2c2 in for y in the 

equation above, and use the fact that y1 and y2 are solutions.   

• Thus for any two solutions y1 and y2, we can construct an 

infinite family of solutions, each of the form y = c1y1 + c2 y2.   

• Can all solutions can be written this way, or do some 

solutions have a different form altogether? To answer this 

question, we use the Wronskian determinant. 

L[y] = y ''+ p(t)y '+ q(t)y = 0



The Wronskian Determinant   (1 of 3) 

• Suppose y1 and y2 are solutions to the equation 

 
 

• From Theorem 3.2.2, we know that y = c1y1 + c2 y2 is a 

solution to this equation.   

• Next, find coefficients such that y = c1y1 + c2 y2 satisfies the 

initial conditions  

 

• To do so, we need to solve the following equations: 

L[y] = y ''+ p(t)y '+ q(t)y = 0

y(t0 ) = y0, y '(t0 ) = y '0

c1y1(t0 )+ c2y2(t0 ) = y0

c1y '1(t0 )+ c2y '2 (t0 ) = y '0



 

The Wronskian Determinant   (2 of 3) 

• Solving the equations, we obtain 

 

 

 

 

• In terms of determinants: 
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The Wronskian Determinant   (3 of 3) 

• In order for these formulas to be valid, the determinant W in 

the denominator cannot be zero: 

 

 

 

 

 
 

• W is called the Wronskian determinant, or more simply, 

the Wronskian of the solutions y1and y2.  We will sometimes 

use the notation 
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Theorem 3.2.3 

• Suppose y1 and y2 are solutions to the equation 

 
 

 with the initial conditions 

 

 Then it is always possible to choose constants c1, c2 so that 

 

   satisfies the differential equation and initial conditions if and 

ony if the Wronskian 

  

 is not zero at the point t0 

 

L[y] = y ''+ p(t)y '+ q(t)y = 0

2121 yyyyW 

0000 )(,)( ytyyty 

)()( 2211 tyctycy 



Example 3 

• In Example 2 of Section 3.1, we found that   

  

 were solutions to the differential equation 

 

• The Wronskian of these two functions is 

 
 

• Since W is nonzero for all values of t, the functions 

  can be used to construct solutions of the differential 

equation with initial conditions at any value of t 
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Theorem 3.2.4 (Fundamental Solutions) 

• Suppose y1 and y2 are solutions to the equation 

 

 Then the family of solutions  

    y = c1y1 + c2 y2  

 with arbitrary coefficients c1, c2 includes every solution to 

the differential equation if an only if there is a point t0 such 

that W(y1,y2)(t0) ≠ 0, .  
 

• The expression y = c1y1 + c2 y2 is called the general solution 

of the differential equation above, and in this case y1 and y2 

are said to form a fundamental set of solutions to the 

differential equation.   

L[y] = y ''+ p(t)y '+ q(t)y = 0.



Example 4 

• Consider the general second order linear equation below, 

with the two solutions indicated: 

 

• Suppose the functions below are solutions to this equation:  

 

• The Wronskian of y1and y2 is  

 

 

• Thus y1and y2 form a fundamental set of solutions to the 

equation, and can be used to construct all of its solutions. 

• The general solution is 
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Example 5: Solutions  (1 of 2) 

• Consider the following differential equation: 

 

• Show that the functions below are fundamental solutions:  

 

• To show this, first substitute y1 into the equation: 

 

 

• Thus y1 is a indeed a solution of the differential equation.  

• Similarly, y2 is also a solution:  
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Example 5:  Fundamental Solutions  (2 of 2) 

• Recall that 

 

• To show that y1 and y2 form a fundamental set of solutions, 

we evaluate the Wronskian of y1 and y2:  

 

 

 

• Since W ≠ 0 for t > 0, y1 and y2 form a fundamental set of 

solutions for the differential equation 
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Theorem 3.2.5: Existence of Fundamental Set 

of Solutions 

• Consider the differential equation below, whose coefficients 

p and q are continuous on some open interval I: 

 
 

• Let t0 be a point in I, and y1 and y2 solutions of the equation 

with y1 satisfying initial conditions  

 

 and y2 satisfying initial conditions  

 

• Then y1 and y2 form a fundamental set of solutions to the 

given differential equation. 

L[y] = y ''+ p(t)y '+ q(t)y = 0

y1(t0 ) =1, y '1(t0 ) = 0

y2(t0 ) = 0, y '2(t0 ) =1



Example 6: Apply Theorem 3.2.5 (1 of 3) 

• Find the fundamental set specified by Theorem 3.2.5 for the 

differential equation and initial point 

 

• In Section 3.1, we found two solutions of this equation:  

 

 The Wronskian of these solutions is W(y1, y2)(t0) = –2 ≠ 0 so 

they form a fundamental set of solutions. 

• But these two solutions do not satisfy the initial conditions 

stated in Theorem 3.2.5, and thus they do not form the 

fundamental set of solutions mentioned in that theorem.  

• Let y3 and y4 be the fundamental solutions of Thm 3.2.5. 

tt eyey  21 ,
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Example 6:  General Solution  (2 of 3) 

• Since y1 and y2 form a fundamental set of solutions,  

 

 
• Solving each equation, we obtain  

 
• The Wronskian of y3 and y4 is 

 

 

• Thus y3, y4 form the fundamental set of solutions indicated in 

Theorem 3.2.5, with general solution in this case 
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Example 6:   

Many Fundamental Solution Sets  (3 of 3) 

• Thus 

 

 both form fundamental solution sets to the differential 

equation and initial point 

 

 

• In general, a differential equation will have infinitely many 

different fundamental solution sets. Typically, we pick the 

one that is most convenient or useful.  

   ttSeeS tt sinh,cosh,, 21  
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Theorem 3.2.6 

 

Consider again the equation (2): 

 

  

where p and q are continuous real-valued functions.  

 

If y = u(t) + iv(t) is a complex-valued solution of Eq. (2), then its 
real part u and its imaginary part v are also solutions of this 
equation. 

  

  

L[y] = y ''+ p(t)y '+ q(t)y = 0



Theorem 3.2.7 (Abel’s Theorem) 

• Suppose y1 and y2 are solutions to the equation 

 

 where p and q are continuous on some open interval I.  Then 

the W[y1,y2](t) is given by 

 

  

 where c is a constant that depends on y1 and y2 but not on t.   
 

• Note that W[y1,y2](t) is either zero for all t in I (if c = 0) or else 

is never zero in I (if c ≠ 0). 

 

L[y] = y ''+ p(t)y '+ q(t)y = 0

W[y1,y2 ](t) =ce
- p(t )dtò



Example 7  Apply Abel’s Theorem 

• Recall the following differential equation and its solutions: 
with solutions 
 

• We computed the Wronskian for these solutions to be 

 
 

 

• Writing the differential equation in the standard form 

 

 

• So                  and the Wronskian given by Thm.3.2.6 is 

 

 
 

• This is the Wronskian for any pair of fundamental solutions. For 
the solutions given above, we must let c = –3/2 
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Summary 

• To find a general solution of the differential equation 

 

 we first find two solutions y1 and y2. 

• Then make sure there is a point t0 in the interval such that 

W[y1, y2](t0) ≠ 0. 

• It follows that y1 and y2 form a fundamental set of solutions 

to the equation, with general solution y = c1y1 + c2 y2. 

• If initial conditions are prescribed at a point t0 in the interval 

where W ≠ 0, then c1 and c2 can be chosen to satisfy those 

conditions.  

y ''+ p(t)y '+ q(t)y = 0, a < t < b
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• Recall our discussion of the equation  

 

 where a, b and c are constants.  

• Assuming an exponential soln leads to characteristic equation: 

 

• Quadratic formula (or factoring) yields two solutions, r1 and r2: 

 

 

• If b2 – 4ac < 0, then complex roots:   

     Thus 
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Euler’s Formula; Complex Valued Solutions 

• Substituting it into Taylor series for et, we obtain Euler’s 

formula:   

 

 

• Generalizing Euler’s formula, we obtain 

 

• Then 

 
 

• Therefore  
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Real Valued Solutions 

• Our two solutions thus far are complex-valued functions:   
 

 

 

• We would prefer to have real-valued solutions, since our 

differential equation has real coefficients.   

• To achieve this, recall that linear combinations of solutions 

are themselves solutions: 

 

 

• Ignoring constants, we obtain the two solutions 
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Real Valued Solutions: The Wronskian 

• Thus we have the following real-valued functions:   
 

 

• Checking the Wronskian, we obtain 

 

 

 

 

• Thus y3 and y4 form a fundamental solution set for our ODE, 

and the general solution can be expressed as 
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Example 1 (1 of 2) 

• Consider the differential equation 

 

• For an exponential solution, the characteristic equation is 

 
 

 

• Therefore, separating the real and imaginary components,  

 

 and thus the general solution is  
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Example 1 (2 of 2) 

• Using the general solution just determined 

 
 

• We can determine the particular solution that satisfies the 

initial conditions 
 

• So 

 

• Thus the solution of this IVP is 

 
 

 

• The solution is a decaying oscillation 
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Example 2 

• Consider the initial value problem 

 

• Then 
 

• Thus the general solution is 

• And 

 
 

 

• The solution of the IVP is 

 

• The solution is displays a 

 growing oscillation 
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Example 3 

• Consider the equation 

 

• Then 
 

• Therefore  

• and thus the general solution is 

 

• Because        there is no exponential 

 factor in the solution, so the amplitude 

 of each oscillation remains constant. 

 The figure shows the graph of two 

 typical solutions 
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Boyce/DiPrima/Meade 11th ed, Ch 3.4:  

Repeated Roots; Reduction of Order 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• Recall our 2nd order linear homogeneous ODE  

 

• where a, b and c are constants.  

• Assuming an exponential solution leads to characteristic 

equation: 

 

• Quadratic formula (or factoring) yields two solutions, r1 and r2: 

 

 

• When b2 – 4ac = 0, r1 = r2 = –b/(2a), since method only gives 

one solution: 
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y1(t) = ce-bt /(2a)



Second Solution: Multiplying Factor v(t) 

• We know that 

 

• Since y1 and y2 are linearly dependent, we generalize this 

approach and multiply by a function v, and determine 

conditions for which y2 is a solution: 

 

• Then 

solution a )()(solution  a )( 121 tcytyty 

y1(t) = e-bt /(2a)  a solution Þ   try  y2(t) = v(t)e-bt /(2a)

y2(t) = v(t)e-bt /(2a)

¢y2(t) = ¢v (t)e-bt /(2a) -
b

2a
v(t)e-bt /(2a)

¢¢y2(t) = ¢¢v (t)e-bt /(2a) -
b

2a
¢v (t)e-bt /(2a) -

b

2a
¢v (t)e-bt /(2a) +

b2

4a2
v(t)e-bt /(2a)



Finding Multiplying Factor v(t) 

• Substituting derivatives into ODE, we seek a formula for v: 

0 cyybya

e-bt /(2a) a ¢¢v (t) -
b

a
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b2
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v(t)

é
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ú + b ¢v (t) -

b

2a
v(t)

é

ëê
ù

ûú
+ cv(t)

ì
í
î

ü
ý
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= 0

a ¢¢v (t) - b ¢v (t) +
b2

4a
v(t) + b ¢v (t) -

b2

2a
v(t) + cv(t) = 0

a ¢¢v (t) +
b2

4a
-
b2

2a
+ c

æ

èç
ö

ø÷
v(t) = 0

a ¢¢v (t) +
b2

4a
-

2b2

4a
+

4ac

4a

æ

èç
ö

ø÷
v(t) = 0 Û a ¢¢v (t) +

-b2

4a
+

4ac

4a

æ

èç
ö

ø÷
v(t) = 0

a ¢¢v (t) -
b2 - 4ac

4a

æ

èç
ö

ø÷
v(t) = 0

¢¢v (t) = 0 Þ v(t) = k3t + k4



General Solution 

• To find our general solution, we have: 

 

 

 
 

 

• Thus the general solution for repeated roots is  
 

y(t) = k1e
-bt /(2a) + k2v(t)e

-bt /(2a)

= k1e
-bt /(2a) + k3t + k4( )e-bt /(2a)

= c1e
-bt /(2a) + c2te

-bt /(2a)

y(t) = c1e
-bt /(2a) + c2te

-bt /(2a)



Wronskian 

• The general solution is 

 

• Thus every solution is a linear combination of  

 

• The Wronskian of the two solutions is  

 

 

 

 

 

 

• Thus y1 and y2 form a fundamental solution set for equation.  

y(t) = c1e
-bt /(2a) + c2te

-bt /(2a)

y1(t) = e-bt /(2a), y2(t) = te-bt /(2a)

W (y1, y2 )(t) =

e-bt /(2a) te-bt /(2a)

-
b

2a
e-bt /(2a) 1-

bt

2a

æ

èç
ö

ø÷
e-bt /(2a)

= e-bt /a 1-
bt

2a

æ

èç
ö

ø÷
+ e-bt /a bt

2a

æ

èç
ö

ø÷

= e-bt /a ¹ 0   for all t



Example 1  (1 of 2) 

• Consider the initial value problem 

 

• Assuming exponential soln leads to characteristic equation: 

 

• So one solution is     and a second solution is found: 

 

 

 

• Substituting these into the differential equation and 

simplifying yields 

 where      are arbitrary constants. 
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Example 1  (2 of 2) 

• Letting   

• So the general solution is 

 

• Note that both           tend to 0 as regardless of the 
 values of 
 
• Here are three solutions of 
     this equation with different 
     sets of initial conditions.    

• y(0) = 2, y’(0) = 1 (top) 

• y(0) = 1, y’(0) = 1 (middle) 

• y(0) = ½, y’(0) = 1 (bottom) 
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Example 2  (1 of 2) 

• Consider the initial value problem 

 

• Assuming exponential solution leads to characteristic equation: 

 

• Thus the general solution is 

 

• Using the initial conditions: 

 

 
 

• Thus 

¢¢y - ¢y +
1

4
y = 0, y 0( ) = 2, ¢y 0( ) =
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Example 2  (2 of 2) 

• Suppose that the initial slope in the previous problem was 

increased 
 

 

• The solution of this modified problem is 

 
 

• Notice that the coefficient of the second  

 term is now positive. This makes a big 

 difference in the graph, since the 

 exponential function is raised to a 

 positive power: 
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Reduction of Order 

• The method used so far in this section also works for 

equations with nonconstant coefficients: 

 

• That is, given that y1 is solution, try y2 = v(t)y1:  

 

 

 

• Substituting these into ODE and collecting terms, 

 

• Since y1 is a solution to the differential equation, this last 

equation reduces to a first order equation in v : 

0)()(  ytqytpy

)()()()(2)()()(

)()()()()(

)()()(

1112

112

12

tytvtytvtytvty

tytvtytvty

tytvty







    02 111111  vqyypyvpyyvy

  02 111  vpyyvy



Example 3:  Reduction of Order     (1 of 3) 

• Given the variable coefficient equation and solution y1,  

 

 use reduction of order method to find a second solution: 

 

 

 

• Substituting these into the ODE and collecting terms, 
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Example 3: Finding v(t)       (2 of 3) 

• To solve  

 

 for u, we can use the separation of variables method: 

 

 

 
 

• Thus  

 

 and hence 
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Example 3: General Solution       (3 of 3) 

• Since 

 
 

 

• Recall 

• So we can neglect the second term of y2 to obtain 

 

• The Wronskian of              can be computed 

 

• Hence the general solution to the differential equation is 

y2(t) =
2

3
ct 3/ 2 + k
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Boyce/DiPrima/Meade 11th ed, Ch 3.5: Nonhomogeneous 

Equations; Method of Undetermined Coefficients 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, , and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• Recall the nonhomogeneous equation  

 

 where p, q, g are continuous functions on an open interval I. 

• The associated homogeneous equation is 

 

• In this section we will learn the method of undetermined 

coefficients to solve the nonhomogeneous equation, which 

relies on knowing solutions to the homogeneous equation. 
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Theorem 3.5.1 

• If Y1 and Y2 are solutions of the nonhomogeneous equation 

 

 then Y1 – Y2 is a solution of the homogeneous equation 

 

• If, in addition, {y1, y2} forms a fundamental solution set of 

the homogeneous equation, then there exist constants c1 and 

c2  such that 

 )()()()( 221121 tyctyctYtY 
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Theorem 3.5.2  (General Solution) 

• To solve the nonhomogeneous equation 

 

 we need to do three things: 

1. Find the general solution c1y1(t) + c2y2(t) of the 

corresponding homogeneous equation. This is called the 

complementary solution and may be denoted by yc(t). 

2. Find any solution Y(t) of the nonhomogeneous equation. 

This is often referred to as a particular solution. 

3. Form the sum of the functions found in steps 1 and 2. 

 

 

)()()()( 2211 tYtyctycty 

)()()( tgytqytpy 



Method of Undetermined Coefficients 

• Recall the nonhomogeneous equation  

 

 with general solution 

 

• In this section we use the method of undetermined 

coefficients to find a particular solution Y to the 

nonhomogeneous equation, assuming we can find solutions 

y1, y2 for the homogeneous case.  

• The method of undetermined coefficients is usually limited 

to when p and q are constant, and g(t) is a polynomial, 

exponential, sine or cosine function.  
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Example 1: Exponential g(t)  

• Consider the nonhomogeneous equation 

 

• We seek Y satisfying this equation.  Since exponentials 

replicate through differentiation, a good start for Y is: 

 

• Substituting these derivatives into the differential equation, 

 

 

• Thus a particular solution to the nonhomogeneous ODE is 
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Example 2:  Sine g(t), First Attempt    (1 of 2) 

• Consider the nonhomogeneous equation 

 

• We seek Y satisfying this equation.  Since sines replicate 
through differentiation, a good start for Y is: 

 

• Substituting these derivatives into the differential equation, 

 

 

 
 

• Since sin(x) and cos(x) are not multiples of each other, we 
must have c1= c2 = 0, and hence 2 + 5A = 3A = 0, which is 

impossible.  
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Example 2: Sine g(t), Particular Solution  (2 of 2) 

• Our next attempt at finding a Y is 

 

 

• Substituting these derivatives into ODE, we obtain 

 

 

 

 

• Thus a particular solution to the nonhomogeneous ODE is 
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-Asin t - Bcos t( ) - 3 Acos t - Bsin t( ) - 4 Asin t + Bcos t( ) = 2sin t

Û -5A + 3B( )sin t + -3A - 5B( )cost = 2sin t

Û - 5A + 3B = 2, - 3A - 5B = 0

Û A = -
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17
, B =

3

17
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Example 3:  Product g(t) 

• Consider the nonhomogeneous equation 

 

• We seek Y satisfying this equation, as follows: 

 

 

 

 

 

 

• Substituting these into the ODE and solving for A and B: 

¢¢y - 3 ¢y - 4y = -8et cos(2t)

Y (t) = Aet cos(2t) + Bet sin(2t)

¢Y (t) = Aet cos(2t) - 2Aet sin(2t) + Bet sin(2t) +2Bet cos(2t)

= A +2B( )et cos(2t) + -2A + B( )et sin(2t)

¢¢Y (t) = A +2B( )et cos(2t) - 2 A +2B( )et sin(2t) + -2A + B( )et sin(2t)

+ 2 -2A + B( )et cos(2t)

= -3A + 4B( )et cos(2t) + -4A - 3B( )et sin(2t)

A =
10

13
, B =

2

13
ÞY (t) =

10

13
et cos(2t)+

2

13
et sin(2t)



Discussion: Sum g(t) 

• Consider again our general nonhomogeneous equation 

 

• Suppose that g(t) is sum of functions: 

 
 

• If Y1, Y2 are solutions of  

 

 
 

 respectively, then  Y1 + Y2 is a solution of the 

nonhomogeneous equation above.    
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Example 4: Sum g(t) 

• Consider the equation 

 

• Our equations to solve individually are 

 

 
 

 

 

• Our particular solution is then 
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Example 5:  First Attempt (1 of 3) 

• Consider the nonhomogeneous equation 

 

• We seek Y satisfying this equation.  We begin with 

 

• Substituting these derivatives into differential equation, 
 

 

• Since the left side of the above equation is always 0, no 

value of A can be found to make     a solution to the 

nonhomogeneous equation. 

• To understand why this happens, we will look at the solution 

of the corresponding homogeneous differential equation 
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Example 5: Homogeneous Solution   (2 of 3) 

• To solve the corresponding homogeneous equation: 

 

• We use the techniques from Section 3.1 and get  

 

• Thus our assumed particular solution   solves 

the homogeneous equation instead of the nonhomogeneous 

equation. 

• So we need another form for Y(t) to arrive at the general 

solution of the form: 

)()( 4
21 tYececty tt  

043  yyy

tAetY )(

tt etyety 4

21 )(and)(  



Example 5: Particular Solution   (3 of 3) 

• Our next attempt at finding a Y(t) is: 

 

 

 

• Substituting these into the ODE,  

 

 

 

 

• So the general solution to the IVP is 
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Summary – Undetermined Coefficients  (1 of 2) 

• For the differential equation 

 

 where a, b, and c are constants, if g(t) belongs to the class 

of functions discussed in this section (involves nothing 

more than exponential functions, sines, cosines, 

polynomials, or sums or products of these), the method of 

undetermined coefficients may be used to find a particular 

solution to the nonhomogeneous equation. 

• The first step is to find the general solution for the 

corresponding homogeneous equation with g(t) = 0. 
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Summary – Undetermined Coefficients  (2 of 2) 

• The second step is to select an appropriate form for the 

particular solution, Y(t), to the nonhomogeneous equation and 

determine the derivatives of that function. 

• After substituting Y(t), Y’(t), and Y”(t) into the nonhomo-

geneous differential equation, if the form for Y(t) is correct, all 

the coefficients in Y(t) can be determined. 

• Finally, the general solution to the nonhomogeneous 

differential equation can be written as  
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Boyce/DiPrima/Meade 11th ed, Ch 3.6:  

Variation of Parameters  
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade  ©2017 by John Wiley 

& Sons, Inc 

• Recall the nonhomogeneous equation  

 

 where p, q, g are continuous functions on an open interval I. 

• The associated homogeneous equation is 

 
 

• In this section we will learn the variation of parameters 
method to solve the nonhomogeneous equation.  As with the 
method of undetermined coefficients, this procedure relies on 
knowing solutions to the homogeneous equation. 
 

• Variation of parameters is a general method, and requires no 
detailed assumptions about solution form.  However, certain 
integrals need to be evaluated, and this can present difficulties. 
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Example 1: Variation of Parameters   (1 of 6) 

• We seek a particular solution to the equation below.   

 

• We cannot use the undetermined coefficients method since 
g(t) is a quotient of sin t or cos t, instead of a sum or product.  

• Recall that the solution to the homogeneous equation is  

 

• To find a particular solution to the nonhomogeneous 
equation, we begin with the form 

 
• Then 

 
• or 

¢¢y + 4y = 8 tant,    -p / 2 < t < p / 2

yC (t) = c1 cos(2t)+ c2 sin(2t)

y(t) = u1(t)cos(2t)+u2(t)sin(2t)

¢y (t) = ¢u1(t)cos(2t)- 2u1(t)sin(2t)+ ¢u2(t)sin(2t)+ 2u2(t)cos(2t)

¢y (t) = -2u1(t)sin(2t)+ 2u2(t)cos(2t)+ ¢u1(t)cos(2t)+ ¢u2(t)sin(2t)



Example 1: Derivatives, 2nd Equation  (2 of 6) 

• From the previous slide, 

 
• Note that we need two equations to solve for u1 and u2.  The 

first equation is the differential equation. To get a second 

equation, we will require 

 

• Then 

 

• Next,  

¢y (t) = -2u1(t)sin(2t)+ 2u2(t)cos(2t)+ ¢u1(t)cos(2t)+ ¢u2(t)sin(2t)

¢u1(t)cos(2t)+ ¢u2(t)sin(2t) = 0

¢y (t) = -2u1(t)sin(2t)+ 2u2(t)cos(2t)

¢¢y (t) = -2 ¢u1(t)sin(2t)- 4u1(t)cos(2t)+ 2 ¢u2(t)cos(2t)- 4u2(t)sin(2t)



Example 1: Two Equations   (3 of 6) 

• Recall that our differential equation is 

 

• Substituting y'' and y into this equation, we obtain 

 

 

• This equation simplifies to 

 

• Thus, to solve for u1 and u2, we have the two equations: 

-2 ¢u1(t)sin(2t)- 4u1(t)cos(2t)+ 2 ¢u2 (t)cos(2t)- 4u2(t)sin(2t)

+ 4 u1(t)cos(2t)+ u2(t)sin(2t)( ) = 8 tant

-2 ¢u1(t)sin(2t)+ 2 ¢u2 (t)cos(2t) = 8 tan t

¢u1(t)cos(2t)+ ¢u2 (t)sin(2t) = 0

-2 ¢u1(t)sin(2t)+ 2 ¢u2(t)cos(2t) = 8tant

¢¢y + 4y = 8 tant



Example 1: Solve for u1'      (4 of 6) 

• To find u1 and u2 , we first need to solve for  

 

 

• From second equation, 

 
 

• Substituting this into the first equation, 

t

t
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-2 ¢u1(t)sin(2t) + 2 - ¢u1(t)
cos(2t)

sin(2t)

é

ë
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ù

û
úcos(2t) = 8 tan t

-2 ¢u1(t)sin2 2t( ) - 2 ¢u1(t)cos2 2t( ) = 8 tan t sin(2t)

-2 ¢u1(t) sin2 2t( ) + cos2 2t( )éë ùû = 8
2sin2 t cos t

cos t

é

ë
ê

ù

û
ú

¢u1(t) = -8sin2 t

-2 ¢u1(t)sin(2t)+ 2 ¢u2 (t)cos(2t) = 8 tan t

¢u1(t)cos(2t)+ ¢u2 (t)sin(2t) = 0
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Example 1: Solve for u1 and u2    (5 of 6) 

• From the previous slide, 

 
 

• Then 

 

 
 

• Thus 

¢u2(t) = 8sin2 t
cos(2t)

sin(2t)
= 4

sint(2cos2 t -1)

cost
= 4sint 2cost -

1

cos t

æ

èç
ö

ø÷

u1(t) = ¢u1(t)dt =ò 4sin t cos t - 4t + c1

u2(t) = ¢u2 (t)dt =ò 4 ln(cost)- 4 cos2 t + c2

¢u1(t) = -8sin2 t, ¢u2(t) = - ¢u1(t)
cos2t

sin2t



Example 1: General Solution    (6 of 6) 

• Recall our equation and homogeneous solution yC: 

 

• Using the expressions for u1 and u2 on the previous slide, the 

general solution to the differential equation is  

y(t) = u1(t)cos2t + u2 (t)sin2t + yC (t)

= (4sin t cost)cos(2t)+ (4 ln(cost)- 4 cos2 t)sin(2t)+ c1 cos(2t)+ c2 sin(2t)

= -2sin(2t)- 4t cos(2t)+ 4 ln(cos t)sin(2t)+ c1 cos(2t)+ c2 sin(2t)

¢¢y + 4y = 8 tant, yC (t) = c1 cos(2t)+ c2 sin(2t)



   Summary 

• Suppose y1, y2 are fundamental solutions to the homogeneous 

equation associated with the nonhomogeneous equation 

above, where we note that the coefficient on y''  is 1. 

• To find u1 and u2, we need to solve the equations  

 

 

• Doing so, and using the Wronskian, we obtain 

 

 

• Thus  
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Theorem 3.6.1 

• Consider the equations  

 

 

• If the functions p, q and g are continuous on an open interval I, 

and if y1 and y2 are fundamental solutions to Eq. (2), then a 

particular solution of Eq. (1) is  

 

 
 

 and the general solution is 
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• Two important areas of application for second order linear 

equations with constant coefficients are in modeling 

mechanical and electrical oscillations. 

• We will study the motion of a mass on a spring in detail. 

• An understanding of the behavior of this simple system is the 

first step in investigation of more complex vibrating systems. 



Spring – Mass System 

• Suppose a mass m hangs from a vertical spring of original 

length l.  The mass causes an elongation L of the spring.  

• The force FG  of gravity pulls the mass down. This force has 

magnitude mg, where g is acceleration due to gravity.  

• The force FS  of the spring stiffness pulls the mass up. For 

small elongations L, this force is proportional to L.   

 That is, Fs  = kL (Hooke’s Law).  

• When the mass is in equilibrium, the forces balance each 

other:  kLmg 



  Spring Model  

• We will study the motion of a mass when it is acted on by an 

external force (forcing function) and/or is initially displaced. 

• Let u(t) denote the displacement of the mass from its 

equilibrium position at time t, measured downward.  

• Let  f  be the net force acting on the mass. We will use 

Newton’s 2nd Law: 

• In determining f, there are four separate forces to consider: 

– Weight:              w = mg                (downward force) 

– Spring force:      Fs  = – k(L+ u)     (up or down force, see next slide) 

– Damping force:                              (up or down, see following slide) 

– External force:  F (t)                                   (up or down force, see text) 

)()( tftum 

Fd (t) = -g u '(t)



  Spring Model:   

 Spring Force Details 

• The spring force Fs  acts to restore a spring to the natural 

position, and is proportional to L + u.  If L + u > 0, then the 

spring is extended and the spring force acts upward.  In this 

case 

• If L + u < 0, then spring is compressed a distance of |L + u|, 

and the spring force acts downward.  In this case 

 

• In either case, 

)( uLkFs 

    uLkuLkuLkFs 

)( uLkFs 



   Spring Model:   

  Damping Force Details 

• The damping or resistive force Fd  acts in the opposite direction as 

the motion of the mass. This can be complicated to model. Fd  may 

be due to air resistance, internal energy dissipation due to action of 

spring, friction between the mass and guides, or a mechanical 

device (dashpot) imparting a resistive force to the mass.  

• We simplify this and assume Fd  is proportional to the velocity.  

• In particular, we find that 

– If u’ > 0, then u is increasing, so the mass is moving downward. 

Thus Fd  acts upward and hence                          . 

– If u’ < 0, then u is decreasing, so the mass is moving upward. 

Thus Fd  acts downward and hence  

– In either case, 
0),()(   tutFd

Fd (t) = -g ¢u (t)

Fd (t) = -g ¢u (t)



   Spring Model:   

  Differential Equation 

• Taking into account these forces, Newton’s Law becomes: 

 

 

• Recalling that mg = kL, this equation reduces to 

 

 where the constants m,     , and k are positive.   

• We can prescribe initial conditions also: 

 

• It follows from Theorem 3.2.1 that there is a unique solution to 

this initial value problem.  Physically, if the mass is set in motion 

with a given initial displacement and velocity, then its position is 

uniquely determined at all future times.  
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   Example 1:  

  Find Coefficients (1 of 2) 

• A 4 lb mass stretches a spring 2".  The mass is displaced an 

additional 6" and then released; and is in a medium that exerts a 

viscous resistance of 6 lb when the mass has a velocity of 3 ft/sec. 

Formulate the IVP that governs the motion of this mass: 

 

• Find m: 

 

• Find    : 

 

• Find k:  
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Example 1:  

Find IVP  (2 of 2) 

• Thus our differential equation becomes 

 
 

 

 and hence the initial value problem can be written as 

 

 

 

• This problem can be solved using the 

 methods of Chapter 3.3 and yields  

 the solution 
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Spring Model:  

Undamped Free Vibrations   (1 of 4) 

• Recall our differential equation for spring motion: 

 

• Suppose there is no external driving force and no damping. 

Then F(t) = 0 and      = 0, and our equation becomes 

 

• The general solution to this equation is 
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Spring Model:  

Undamped Free Vibrations   (2 of 4) 

• Using trigonometric identities, the solution 

 

 can be rewritten as follows: 

 

 

 where 

 

• Note that in finding    , we must be careful to choose the 

correct quadrant.  This is done using the signs of cos      and 

sin    . 

u(t) = Acosw0t + Bsinw0t, w 0
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Spring Model:  

Undamped Free Vibrations   (3 of 4) 

• Thus our solution is 

 

 where  

 

• The solution is a shifted cosine (or sine) curve, that describes simple 

harmonic motion, with period 

 

 

• The circular frequency       (radians/time) is the natural frequency of 

the vibration, R is the amplitude of the maximum displacement of 

mass from equilibrium, and     is the phase or phase angle 

(dimensionless).  
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Spring Model:  

Undamped Free Vibrations   (4 of 4) 

• Note that our solution 

 

 is a shifted cosine (or sine) curve with period 

 

 

• Initial conditions determine A & B, hence also the amplitude R.   

• The system always vibrates with the same frequency      , 

regardless of the initial conditions.   

• The period T increases as m increases, so larger masses vibrate 

more slowly.  However, T decreases as k increases, so stiffer 

springs cause a system to vibrate more rapidly.  
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Example 2:  Find IVP  (1 of 3) 

• A 10 lb mass stretches a spring 2".  The mass is displaced an 

additional 2" and then set in motion with an initial upward 

velocity of 1 ft/sec.  Determine the position of the mass at any 

later time, and find the period, amplitude, and phase of the motion. 

 

• Find m: 

 

 

• Find k:  

 

• Thus our IVP is 
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Example 2: Find Solution  (2 of 3) 

• Simplifying, we obtain 

 
 

• To solve, use methods of Ch 3.3 to obtain 
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Example 2:  

Find Period, Amplitude, Phase  (3 of 3) 

• The natural frequency is 

 

• The period is 

 

• The amplitude is 

 

• Next, determine the phase     : 
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Spring Model: Damped Free Vibrations  (1 of 8) 

• Suppose there is damping but no external driving force F(t): 

 

• What is effect of the damping coefficient      on the system?  

• The characteristic equation is 

 

 

• Three cases for the solution: 
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Damped Free Vibrations: Small Damping  (2 of 8) 

• Of the cases for solution form, the last is most important, 

which occurs when the damping is small: 

 

 

 

• We examine this last case.  Recall 
 

• Then 

 

 and hence 

 

 (damped oscillation) 
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Damped Free Vibrations: Quasi Frequency  (3 of 8) 

• Thus we have damped oscillations: 

 
 

• The amplitude R depends on the initial conditions, since 

 
 

• Although the motion is not periodic, the parameter  

determines the mass oscillation frequency. 

• Thus     is called the quasi frequency. 

• Recall 
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Damped Free Vibrations: Quasi Period  (4 of 8) 

• Compare     with      , the frequency of undamped motion: 

 

 

 

 

• Thus, small damping reduces oscillation frequency slightly.   

• Similarly, the quasi period is defined as                .  Then 

 

 
 

• Thus, small damping increases quasi period. 
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Damped Free Vibrations:  

Neglecting Damping for Small         (5 of 8) 

• Consider again the comparisons between damped and 

undamped frequency and period: 

 

 

• Thus it turns out that a small     is not as telling as a small 

ratio          .  

• For small        , we can neglect the effect of damping when 

calculating the quasi frequency and quasi period of motion.  

But if we want a detailed description of the motion of the 

mass, then we cannot neglect the damping force, no matter 

how small it is.  
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Damped Free Vibrations:  

Frequency, Period   (6 of 8) 

• Ratios of damped and undamped frequency, period: 

 

 

• Thus 

 

• The importance of the relationship between       and 4km is 

supported by our previous equations:   
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Damped Free Vibrations:  

Critical Damping Value  (7 of 8) 

• Thus the nature of the solution changes as      passes through 
the value   

• This value of                   is known as the critical damping 
value, and for larger values of     the motion is said to be 
overdamped.  

• Thus for the solutions given by these cases,  

 

 

 

 we see that the mass creeps back to its equilibrium position 
for solutions (1) and (2), but does not oscillate about it, as it 
does for small     in solution (3).  

• Solution (1) is overdamped and (2) is critically damped. 
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Damped Free Vibrations:  

Characterization of Vibration  (8 of 8) 

• The mass creeps back to the equilibrium position for 

solutions (1) & (2), but does not oscillate about it, as it does 

for small    in solution (3). 

 

 

 

 

• Solution (1) is overdamped and  

• Solution (2) is critically damped. 

• Solution (3) is underdamped 
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Example 3:  Initial Value Problem     (1 of 4) 

• Suppose that the motion of a spring-mass system is governed by 
the initial value problem   

 

• Find the following: 

(a) quasi frequency and quasi period; 

(b) time at which mass passes through equilibrium position; 

(c) time      such that |u(t)| < 0.1 for all t >    .    

• For Part (a), using methods of this chapter we obtain: 
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Example 3: Quasi Frequency & Period   (2 of 4) 

• The solution to the initial value problem is: 

 

 

• The graph of this solution, along with solution to the 

corresponding undamped problem, is given below.  

• The quasi frequency is 

 

 and quasi period is 

 

• For the undamped case: 
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Example 3: Quasi Frequency & Period   (3 of 4) 

• The damping coefficient is      = 0.125 = 1/8, and this is 1/16 

of the critical value 

• Thus damping is small relative to mass and spring stiffness.  

Nevertheless the oscillation amplitude diminishes quickly.  

• Using a solver, we find that |u(t)| < 0.1 for t >                     sec 

22 km

g
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Example 3: Quasi Frequency & Period   (4 of 4) 

• To find the time at which the mass first passes through the 

equilibrium position, we must solve 

 

 

• Or more simply, solve 
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Electric Circuits 

• The flow of current in certain basic electrical circuits is 

modeled by second order linear ODEs with constant 

coefficients:  

 

 
 

• It is interesting that the flow of current in this circuit is 

mathematically equivalent to motion of spring-mass system. 

• For more details, see text. 
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• We continue the discussion of the last section, and now 

consider the presence of a periodic external force: 

tFtuktutum  cos)()()( 0



Forced Vibrations with Damping 

• Consider the equation below for damped motion and external 

forcing function                  .  

 

• The general solution of this equation has the form 

 

 where the general solution of the homogeneous equation is 

 

 and the particular solution of the nonhomogeneous equation is 
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Homogeneous Solution 

• The homogeneous solutions u1 and u2 depend on the roots r1 

and r2 of the characteristic equation:  

 

  

• Since m,     , and k are are all positive constants, it follows that 

r1 and r2 are either real and negative, or complex conjugates 

with negative real part.  In the first case, 

 

 while in the second case  

 

• Thus in either case,  
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Transient and Steady-State Solutions 

• Thus for the following equation and its general solution, 

 

  

  

 we have 

 
• Thus uC(t) is called the transient solution.  Note however that 

 

 is a steady oscillation with same frequency as forcing function.  

• For this reason, U(t) is called the steady-state solution, or 

forced response. 
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Transient Solution and Initial Conditions 

• For the following equation and its general solution, 

 

  

  

 the transient solution uC(t) enables us to satisfy whatever initial 

conditions might be imposed.   

• With increasing time, the energy put into system by initial 

displacement and velocity is dissipated through damping force.  

The motion then becomes the response U(t) of the system to 

the external force                  .           

• Without damping, the effect of the initial conditions would 

persist for all time.  
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Example 1  (1 of 2) 

• Consider a spring-mass system satisfying the differential 

equation and initial condition 

 

• Begin by finding the solution to the homogeneous equation 

• The methods of Chapter 3.3 yield the solution 

 

• A particular solution to the nonhomogeneous equation will 

have the form U(t) = A cos t + B sin t and substitution gives  

                                   . So 
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   Example 1  (2 of 2) 

• The general solution for the nonhomogeneous equation is 

 
 
 

• Applying the initial conditions yields 
 
 
 
 

 
 

• Therefore, the solution to the IVP is 
 
 

 
 

 
• The graph breaks the solution 
 into its steady state (U(t)) 
 and transient (        )  
 components 
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Rewriting Forced Response 

• Using trigonometric identities, it can be shown that 

 

 can be rewritten as 

 

• It can also be shown that 
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Amplitude Analysis of Forced Response 

• The amplitude R of the steady state solution  

 

 

 depends on the driving frequency     .  For low-frequency 

excitation we have 

 

 

 where we recall (    0)
2 = k /m.  Note that F0 /k is the static 

displacement of the spring produced by force F0.    

• For high frequency excitation, 
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Maximum Amplitude of Forced Response 

• Thus  

 

• At an intermediate value of     , the amplitude R may have a 

maximum value. To find this frequency      , differentiate R and 

set the result equal to zero.  Solving for     max, we obtain 

 

 

 where (    0)
2 = k /m.  Note      max <    0, and      max  is close to 

         0 for small    .  The maximum value of R is 
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Maximum Amplitude for Imaginary     max  

• We have 

 

 and  

 

 

 where the last expression is an approximation for small     .  If  

       2 /(mk) > 2, then     max is imaginary.   

• In this case the maximum value of R occurs for     = 0, and R is 

a monotone decreasing function of     .  

• Recall that critical damping occurs when            .  
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Resonance 

• From the expression  

 

 

 we see that Rmax           for small   .    

• Thus for lightly damped systems, the amplitude R of the forced 

response is large for     near     0. 

• This is true even for relatively small external forces, and the 

smaller the     the greater the effect. 

• This phenomena is known as resonance.  Resonance can be 

either good or bad, depending on circumstances; for example, 

when building bridges or designing seismographs. 
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Graphical Analysis of Quantities  

• To get a better understanding of the quantities we have been 

examining, we graph the ratios                         for several 

values of           , as shown below. 

• Note that the peaks tend to get higher as damping decreases.  

• As damping decreases to zero, the values of Rk/F0 become 

asymptotic to     =    0.   

• The graph corresponding to    = 0.015625 

     is included because it appears in the next  

     example. 
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Analysis of Phase Angle 

• Recall that the phase angle     given in the forced response  

 

 is characterized by the equations  

 

 

 

• For      near zero,                                      , and they rise and fall 

together. Assuming their maxima and minima nearly together. 

• For             ,                                     , so            and response 

lags behind the excitation. 

• For very large    ,          , and the response is out of phase. That 

is the response is a minimum when excitation is a maximum.       
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Example 2:   

Forced Vibrations with Damping     (1 of 4) 

• Consider the initial value problem  

 

• Then    0 = 1, F0/k = 3, and  

• The unforced motion of this system was discussed in Ch 3.7, 

with the graph of the solution on the next slide, along with the 

graph of the ratios Rk/F vs.            for different values of    .  

¢¢u (t)+
1

8
¢u (t)+ u(t) = 3cosw t, u(0) = 2, ¢u (0) = 0

w G =1/64 = 0.015625

w /w0 w



Example 2:   

Forced Vibrations with Damping     (2 of 4) 

• Graphs of the solution, along with the graph of the                

ratios Rk/F  vs.            for          .  w /w0 w = 0.3



Example 2:   

Forced Vibrations with Damping     (3 of 4) 

• Graphs of the solution, along with the graph of the                

ratios Rk/F  vs.            for          .  w /w0 w = 1



Example 2:   

Forced Vibrations with Damping     (4 of 4) 

• Graphs of the solution, along with the graph of the                

ratios Rk/F  vs.            for          .  w /w0 w = 2



Undamped Equation:  

General Solution for the Case 

• Suppose there is no damping term.  Then our equation is 

 

• Assuming              , then the method of undetermined 

coefficients can be use to show that the general solution is 

m ¢¢u (t)+ ku(t) = F0 cos(w t)

u(t) = c1 cos(w0t)+ c2 sin(w0t)+
F0

m(w0

2 -w 2 )
cos(w t)

g = 0

w ¹ w0



Undamped Equation:  

Mass Initially at Rest  (1 of 3) 

• If the mass is initially at rest, then the corresponding initial 

value problem is 

 

• Recall that the general solution to the differential equation is 

 

 

• Using the initial conditions to solve for c1 and c2, we obtain 

 

 

• Hence  
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Undamped Equation:  

Solution to Initial Value Problem    (2 of 3) 

• Thus our solution is 

 

 

• To simplify the solution even further, let                               

and                    . .  Then                                             .          

Using the trigonometric identity 

 

 it follows that 

 

 

 and hence 

 tt
m

F
tu 022

0

0 coscos
)(

)( 







,sinsincoscos)cos( BABABA 

BABAt

BABAt

sinsincoscoscos

sinsincoscoscos

0 







BAtt sinsin2coscos 0  

A =
1

2
(w 0 +w)t

B =
1

2
(w 0 -w)t A+ B = w0t  and A- B = wt



Undamped Equation: Beats    (3 of 3) 

• Using the results of the previous slide, it follows that 

 

 

• When                       

 

 

 

• Thus motion is a rapid oscillation with frequency              , 
but with slowly varying sinusoidal amplitude given by 

 

 
• This phenomena is called a beat.   

• Beats occur with two tuning forks of  

 nearly equal frequency. 
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w0 -w @ 0,  then w 0 +w  is much greater than w 0 +w .

So sin(
1

2
(w0 +w)t) is oscillating more rapidly than sin(

1

2
(w0 -w)t). 

w 0 +w

2



Example 3:  Undamped Equation, 

Mass Initially at Rest      (1 of 2) 

• Consider the initial value problem  

 

• Then                                         , and hence the solution is 

 

• The displacement of the spring–mass system oscillates with a  

 frequency of 0.9, slightly less than natural frequency       = 1. 

• The amplitude variation has a slow  

frequency of 0.1 and period of 20    .   

• A half-period of 10    corresponds to  

a single cycle of increasing and then  

decreasing amplitude. 

¢¢u (t)+u(t) = 0.5cos0.8t, u(0) = 0, ¢u (0) = 0

w0 = 1,  w = 0.8,  and F0 =
1

2

w 0

p

p



Example 3:  Increased Frequency          (2 of 2) 

•  Recall our initial value problem 

 
• If driving frequency     is increased to 0.9, then the slow 

frequency is halved to 0.05 with half-period doubled to 20   .   

• The multiplier 2.77778 is increased to 5.2632, and the fast 

frequency only marginally increased, to 0.095. 

0)0(,0)0(,8.0cos5.0)()(  uuttutu

p

w
p



Undamped Equation:  

General Solution for the Case                 (1 of 2) 

• Recall our equation for the undamped case: 

 

• If forcing frequency equals natural frequency of system, i.e.,               

, then nonhomogeneous term                is a solution of 

homogeneous equation.  It can then be shown that 

 
 

• Thus solution u becomes unbounded.   

• Note:  Model invalid when u gets 

large, since we assume small  

oscillations u. 
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Undamped Equation: Resonance    (2 of 2) 

• If forcing frequency equals natural frequency of system, i.e.,              

, then our solution is 

 
 

• Motion u remains bounded if damping present.  However, 

response u to input                may be large if damping is 

small and              , in which case we have resonance.  
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   Example 4 

• Solve the initial value problem  

 

And plot the graph of the solution.  

The general solution of the differential equation is 

 

And the initial conditions require that                  . Thus the 

solution of the given initial value problem is  

¢¢u + u =
1

2
cost, u(0) = 0, ¢u (0) = 0

u = c1 cost + c2 sint +
1

4
t sint

021  cc

u =
t

4
sin t


