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* A second order ordinary differential equation has the

general form d_zj/ . dy
> =S| L)
dt dt
where f1s some given function.
* This equation 1s said to be linear 1f f1s linear in y and y".
y'+p()y'+q(t)y =g(t)
Otherwise the equation 1s said to be nonlinear.
* A second order linear equation often appears as
P(r)y"+ 0@)y™+ R(t)y = G(1)
* If g(¢) or G(¢) =0 for all ¢, then the equation is called
homogeneous. Otherwise the equation i1s nonhomogeneous.



Homogeneous Equations, Initial Values

In Sections 3.5 and 3.6, we will see that once a solution to a
homogeneous equation 1s found, then it 1s possible to solve
the corresponding nonhomogeneous equation, or at least
express the solution in terms of an integral.

The focus of this chapter 1s thus on homogeneous equations;
and 1n particular, those with constant coefficients:

ay"+by'+cy=0
We will examine the variable coefficient case in Chapter 5.
Initial conditions typically take the form
y(to) = Vo: yl(to) =Y
Thus solution passes through (¢,, ), and the slope of solution
at (¢y, y,) 1s equal to y,’".



Example 1: Infinitely Many Solutions (1 of 3)

Consider the second order linear differential equation
y'-y=0
Two solutions of this equation are
yl(t) — ets Y, (t) =i
Other solutions include
y,(t) =3¢, vy, (t)=5e", y.(t)=3e"+5e"
Based on these observations, we see that there are infinitely
many solutions of the form
y(t)=ce' +ce™
It will be shown in Section 3.2 that all solutions of the
differential equation above can be expressed in this form.



Example 1: Initial Conditions (2 of 3)

Now consider the following initial value problem for our
equation:

y-y=0, »0)=2, »(0)=-1
We have found a general solution of the form
y(t)=ce' +c,e”
Using the initial equations,
¥0)=¢c tc, =2 1 3
—=>C=7,C =
Y'(0)=¢-¢,=-1 2 2

Thus

1, 3
)==¢ +—
(1) S¢ e



Example 1: Solution Graphs (3 of 3)

 Our initial value problem and solution are . ;

y'-y=0, »0)=2 y'(0)=-1P y(t)=§e’ +§e"

 Graphs of both y(t) and y'(t) are given below. Observe that
both initial conditions are satisfied.
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Characteristic Equation

To solve the 2" order equation with constant coefficients,
ay'+by'+cy=0,

we begin by assuming a solution of the form y = e'.

Substituting this into the differential equation, we obtain

ar’e™ +bre" +ce" =0

Simplifying,
e"(ar®+br+c)=0
and hence
ar’ +br+c=0

This last equation Is called the characteristic equation of
the differential equation.

We then solve for r by factoring or using quadratic formula.



General Solution

Using the quadratic formula on the characteristic equation
ar’ +br+c=0,
we obtain two solutions, r; and r..

There are three possible results:
— Therootsry, r, are real and ry # r,,. —b+ \/b2 —4ac
— Therootsry, r, arereal and r, = r,. = 23
— Theroots ry, r, are complex.

In this section, we will assume ry, r, are real and ry # r,,.
In this case, the general solution has the form

W(t) = ce® +ce”



Initial Conditions

 For the initial value problem

ay"+by'+cy=0, y(ty) =y, ¥'(te) =¥,
we use the general solution
y(t) =ce™ +c,e?

together with the initial conditions to find c, and c,. That is,

il 4 nly — I '
¢ € C,€ Yo } _ VYoo Vo> o il o _ Yo~ Vo o 2o
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tho —

Vlto 1
che” tonett =y,

* Since we are assuming r, # r,, it follows that a solution of the
form y = e" to the above initial value problem will always
exist, for any set of initial conditions.



Example 2 (General Solution)

Consider the linear differential equation

y'+5y'+6y=0
Assuming an exponential solution leads to the characteristic
equation:

yt)=e" = r’+5r+6=0 < (r+2)r+3)=0

Factoring the characteristic equation yields two solutions:
rp=—2andr,=-3
Therefore, the general solution to this differential equation
has the form

y(t)=ce* +c,e™



Example 3 (Particular Solution)

Consider the initial value problem
y"+ 5y'+ 6y =0, y(O) =2, y'(O) =3

From the preceding example, we know the general solution
has the form: y(t)=ce? +c,e™

With derivative: y'(t) = —2C19_2t —3C26_3t
Using the initial conditions:

c,+¢C, =1

}:>01:9, C, =~/
—2¢, -3¢, =3

Thus y(t) — Qe _ 773




Example 4: Initial Value Problem

Consider the initial value problem

[ 1] 1 1 1
4y"- 8y+3y=0, y(0)=2, y'(0)=7
Then
yt)=e" = 4r°-8r+3=0 < 3(2r—3)(2r—%):0
Factoring yields two solutions, r, =— and r», = —
The general solution has the form
y(t) =, e3t/2 +c, et/2 .
Using initial conditions: L e
¢, tc, =2 | .
§C1'|'£C2 :1 (zass E, “ :E
2 3) .
Thus W) =- =& +=¢”




Example 5. Find Maximum Value

 For the initial value problem in Example 3,
to find the maximum value attained by the
solution, we set y'(t) = 0 and solve for t:

y(t)=9e* - 7e™
yi(t)=-18e %" +21e™ =0
I
e'=7/6
t=1In(7/6)
t »0.1542

y(t) =% —7e™
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* Letp, g be continuous functions on an interval / =(a, b)
which could be infinite. For any function y that is twice
differentiable on I, define the differential operator L by

Lly|=y"+py'+qy
* Note that L[y] is a function on |, with output value

L[y](2) = y"(t) + p(t)y'(£) + q(t) y(t)
* For example,

p(t) =t?, q(t) =e*, y(t) =sin(t), 1 =(0,2r)
L[y](t) = —sin(t) +t cos(t) + 2e* sin(t)



Differential Operator Notation

In this section we will discuss the second order linear
homogeneous equation L[y](t) = 0, along with initial
conditions as indicated below:

L[y|=y"+p(t)y+q()y=0
J’(to) — Vo y'(to) -
We would like to know if there are solutions to this initial

value problem, and if so, are they unique.

Also, we would like to know what can be said about the form
and structure of solutions that might be helpful in finding
solutions to particular problems.

These questions are addressed in the theorems of this section.



Theorem 3.2.1 (Existence and Unigueness)

Consider the initial value problem
y'+pt)y+q(t)y=g(t)
W) =20, ¥' (&) =%

e where p, g, and g are continuous on an open interval | that
contains t,. Then there exists a unique solution y =7 (¢)on I.

* Note: While this theorem says that a solution to the initial
value problem above exists, it is often not possible to write
down a useful expression for the solution. This Is a major
difference between first and second order linear equations.



y'+pM)y'+a(t)y=g()
y(to) = Yo y’(to) =Y

Consider the second order linear initial value problem
(2- 3"+ (¢ +3)y=0,y(1)=2, y'(1)=1
Writing the differential equation in the form :

y +p(t)y'+ q(t)f; g(?)
p(t)=— 3, q(t) = (-3 and g(#)=0
The only pomts of discontinuity for these coefficients are
t=0and t = 3. So the longest open interval containing the
Initial point t =1 in which all the coefficients are continuous
ISO<t<3

Therefore, the longest interval in which Theorem 3.2.1
guarantees the existence of the solutionis0 <t <3

Example 1




Example 2

« Consider the second order linear initial value problem

y"+ p()y'+q(1)y =0, »(0)=0, y'(0)=0
where p, q are continuous on an open interval | containing t,.

* In light of the Initial conditions, note that y = 0 Is a solution
to this homogeneous initial value problem.

 Since the hypotheses of Theorem 3.2.1 are satisfied, it
follows that y = 0 is the only solution of this problem.



Theorem 3.2.2 (Principle of Superposition)

If y,and y, are solutions to the equation

LIy]=y"+p(6)y'+4(t)y =0
then the linear combination c,y; + Y,C, Is also a solution, for
all constants ¢, and c,.

To prove this theorem, substitute c,y, + y,C, In for y in the
equation above, and use the fact that y, and y, are solutions.

Thus for any two solutions y, and y,, we can construct an
Infinite family of solutions, each of the formy =c,y; + ¢, V..

Can all solutions can be written this way, or do some
solutions have a different form altogether? To answer this
question, we use the Wronskian determinant.



The Wronskian Determinant (1 of 3)

Suppose y, and y, are solutions to the equation

LIy]=y"+p(#)y'+4(t)y =0
From Theorem 3.2.2, we know thaty =c,y, + C,y, IS a
solution to this equation.

Next, find coefficients such thaty = c,y, + c, Y, satisfies the
Initial conditions

W) =10, ¥ (&)=Y

To do so, we need to solve the following equations:
e (to) + 6,05 (2) = s
ey (fo) T ey, (8) =)'



Clyl(to) +GC, Y, (to) =Y

. _ Clyll(to)*‘czy;(to) — y6
The Wronskian Determinant (2 of 3)

 Solving the equations, we obtain
_ YoYa(t) = YoYa(ty)
Y. (t) Y2 (t) — Yi(te) Y, (t)
_ — Yo Y1 (to) + Yo Yi (L)
Y:(t) Y2 (te) = Vi) Y, (L)

* In terms of determinants:

1

2

AR
yi(t) Yo
yi(ty) Y, (t)
yi(ty)  Ya(ty)

yO y2 (tO)
Yo Yal(to)
Y (L) Y, (1)
yi(te) Y5 (t,)

C = y Uy —




The Wronskian Determinant (3 of 3)

* |n order for these formulas to be valid, the determinant W in
the denominator cannot be zero:

Yo VYa(ty) AR
Yoo Ya(to) ) Yo
“= W SR W

Yi(t) Y2 (o)
Yi(t) Y2 (o)

« W is called the Wronskian determinant, or more simply,
the Wronskian of the solutions y,and y,. \We will sometimes

use the notation
W (y,, ¥, Xt

— Y1(t0)y; (to) — yl’(tO)yZ (to)




Theorem 3.2.3

» Suppose y, and y, are solutions to the equation
LIy]=y"+ p(#)y'+q(t)y =0
with the initial conditions
Y(to) = Yo y'(to) — y(’)
Then it is always possible to choose constants c,, ¢, so that
y = C1Y, (1) +C2Y,(t)

satisfies the differential equation and initial conditions if and
ony if the Wronskian

W =Vy,Y> = 1Y,
IS not zero at the point t,



Example 3

* In Example 2 of Section 3.1, we found that
y,(t) =e'and y,(t) =e™
were solutions to the differential equation
y'+5y'+6y=0
* The Wronskian of these two functions is
e- 2t e- 3t
—2e-2t —3e-3

W =

—_e—5t

* Since W is nonzero for all values of t, the functions
can be used to construct solutions of the differential Y:andy:
equation with initial conditions at any value of t



Theorem 3.2.4 (Fundamental Solutions)

» Suppose y, and y, are solutions to the equation

Lly]=y"+ p(t)y'+4q(t)y =0.
Then the family of solutions
Yy=CYy, ¥ G,
with arbitrary coefficients c,, ¢, includes every solution to
the differential equation if an only if there is a point t, such

that W(y,,y,)(t,) # 0, .

» The expressiony = c,y, + C,Y, Is called the general solution
of the differential equation above, and in this case y, and Y,
are said to form a fundamental set of solutions to the

differential equation.



Example 4

Consider the general second order linear equation below,
with the two solutions indicated:

y'+p)y+at)y=0
Suppose the functions below are solutions to this equation:
Y1 = erlt’ Y, = eth’ L=

The Wronskian of y,and y, Is

Yo Yo |€°
Vi Yol |re™ re®
Thus y,and y, form a fundamental set of solutions to the

equation, and can be used to construct all of its solutions.

The general solution is

nt ot

e

W = = (r, —r """ 20 forallt.

y=ce™ +c,e"”



Example 5: Solutions (1 of 2)

Consider the following differential equation:
2t°y"+3ty'- y=0, t >0
Show that the functions below are fundamental solutions:
1/2 -1
y,=t"°,y, =t
To show this, first substitute y, into the equation:

4302 ~1/2
2t2( t4 J+3t(t2 ]—t1’2=(—;+‘;’—1jt1’2=0

Thus y, Is a indeed a solution of the differential equation.
Similarly, y, is also a solution:

2t2(2t2 )43t (-t 2 )t = (4-3-1)t* =0



Example 5: Fundamental Solutions (2 of 2)

 Recall that

» To show that y, and y, form a fundamental set of solutions,
we evaluate the Wronskian of y, and y.:

1/2 -1

t t

= 1 =t
S22

2

N W
w e

-32 Et-slz — Et-slz
2 2

W =

« Since W#0 fort>0,y, and y, form a fundamental set of
solutions for the differential equation

2t°y"+3ty'- y=0, t >0



Theorem 3.2.5: Existence of Fundamental Set
of Solutions

« Consider the differential equation below, whose coefficients
p and g are continuous on some open interval I:

LIy]=y"+ p(t)y'+q(t)y =0
* Lett,beapointin I, andy, and y, solutions of the equation
with y, satisfying initial conditions
n(t)=1y4(@)=0
and y, satisfying initial conditions
Yo%) =0, 3,() =1
« Theny, and y, form a fundamental set of solutions to the
given differential equation.



Example 6: Apply Theorem 3.2.5 (1 of 3)

Find the fundamental set specified by Theorem 3.2.5 for the
differential equation and initial point

y-y=0, £,=0
In Section 3.1, we found two solutions of this equation:

Y1 =€, Y, =e"

The Wronskian of these solutions is W(y,, ¥,)(t;) =—2 # 0 so
they form a fundamental set of solutions.
But these two solutions do not satisfy the initial conditions
stated in Theorem 3.2.5, and thus they do not form the
fundamental set of solutions mentioned in that theorem.
Let y;and y, be the fundamental solutions of Thm 3.2.5.

y;(0) =1, y;(0)=0; vy,(0)=0, y,(0)=1



Example 6: General Solution (2 of 3)

Since y, and y, form a fundamental set of solutions,
Y; = Clet + Cze_t’ Ys (O) =1, yg (O) =0
Yo = dlet + dze_t’ Ya (O) =0, yé’l (O) =1
Solving each equation, we obtain
y,(t) = %et +%et =cosh(t), vy,({t)= %et —%et =sinh(t)

The Wronskian of y;and y, IS
Y, VY, |cosht sinht
Y, VY, [sinht cosht
Thus y,, y, form the fundamental set of solutions indicated in
Theorem 3.2.5, with general solution in this case

y(t) =k, cosh(t) + k., sinh(t)

W = —cosh®t—sinh®t=1%0




Example 6:
Many Fundamental Solution Sets (3 of3)

* Thus
s, ={e',e}, S,={cosht,sinht]

both form fundamental solution sets to the differential
equation and initial point

y-y=0, ,=0

 In general, a differential equation will have infinitely many
different fundamental solution sets. Typically, we pick the
one that is most convenient or useful.



Theorem 3.2.6

Consider again the equation (2):

LIy]=y"+ p(t)y'+q(t)y =0
where p and g are continuous real-valued functions.

If y = u(t) + iv(t) Is a complex-valued solution of Eqg. (2), then its
real part u and its imaginary part v are also solutions of this
equation.



Theorem 3.2.7 (Abel’s Theorem)

» Suppose y, and y, are solutions to the equation
LIy]=y"+ p(t)y'+q(t)y=0
where p and g are continuous on some open interval I. Then
the W[y,,y,](t) is given by

Wy, 1(0) =ce O

where c is a constant that depends on y, and y, but not on t.

» Note that W[y,,y,](t) is either zero for all t in | (if c = 0) or else
IS never zero in | (if ¢ # 0).



Example 7 Apply Abel’s Theorem

Recall the following differential equation and its solutions:
262"+ 3t y'- y=0, £ >0 with solutions y, =t¥2,y =t

We computed the Wronskian for these solutions to be

W: yl y2 __§t3/2

g 2 2P
Writing the diﬁerenti%I equatilon In the standard form
+— =0, >0
3 Yo" 2T
So p(t) = o and the Wronsklan glven by Thm.3.2.6 is

4 —Int

W[yliyz](t) —ce Oz_dt = ce ? =ct 3/2

This is the Wronskian for any pair of fundamental solutions. For
the solutions given above, we must let ¢ = -3/2



Summary

To find a general solution of the differential equation

y'+plt)y+q()y=0, a<t<b
we first find two solutions y, and y..

Then make sure there is a point t, in the interval such that

WIy1, y,](to) # 0.

It follows that y, and y, form a fundamental set of solutions
to the equation, with general solutiony = c,y, + C, Y,.

If initial conditions are prescribed at a point t, in the interval
where W # 0, then ¢, and ¢, can be chosen to satisfy those
conditions.
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Recall our discussion of the equation
ay"+by' +cy =0
where a, b and c are constants.
Assuming an exponential soln leads to characteristic equation:
yt)=e" = ar’+br+c=0
Quadratic formula (or factoring) yields two solutions, r, and r,:

r_—bi\/b2—4ac
2a
If b2 — 4ac <0, then complex roots: =/ +imand r,=/-in

Thus

Vu(t) =8,y () =et



Euler’s Formula; Complex Valued Solutions

 Substituting it into Taylor series for e!, we obtain Euler’s

formula:
1 —1 2n—1

Z(;(I:]), Z(;((l);zn Z(Zn—) = cost +isint

=1l

* Generalizing Euler’s formula, we obtain
™ =cosm+isinm
 Then
& = ™ = ¢! [cos m+isin m] = ¢’ cos m+ie' sin m
* Therefore |
y, (t) = et = e* cos 4t +ie* sin st
y, (t) = et — e cos ut —ie?' sin st



Real VValued Solutions

Our two solutions thus far are complex-valued functions:
y, (t) = e*' cos ut +ie*' sin st
y, (t) =e*' cos ut —ie* sin ut

We would prefer to have real-valued solutions, since our
differential equation has real coefficients.

To achieve this, recall that linear combinations of solutions
are themselves solutions:

Y1 (t)+ Y, (t) = 2e! cos ut

v, (1) =y, (t) = 2ie?" sin ut
Ignoring constants, we obtain the two solutions

y.(t) =e* cos ut, y,(t) =e* sin ut
3 4



Real Valued Solutions: The Wronskian

Thus we have the following real-valued functions:
V(1) =™ cos s, y,(t) =e* sin s
Checking the Wronskian, we obtain

e’ cos ut e’ sin ut

W =
e™ (A cos pt — psin gt) e™(Asin ut + pcos pit)
= e’ £0

Thus y, and y, form a fundamental solution set for our ODE,
and the general solution can be expressed as

y(t) =c,e* cos ut +c,e*' sin
1 2



Example 1 (10of2)

« Consider the differential equation
y'+y +9.25y=0

 For an exponential solution, the characteristic equation is

1+41-4 —1+43i 1 43

t)=e" = r’+r+l1=0 & r= = 14V

Yo 2 2 2 2

« Therefore, separating the r:eLaI and imaginary components,
[ =-—, m=3

and thus the general solution is
y(t) =ce ? cos(3t)+c,e *sin(3t) =e?(c, cos(3t)+c, sin(3t))



Example 1 (2 of 2)

Using the general solution just determined
y(t) =e?(c, cos(3t)+c, sin(3t))

We can determine the particular solution that satisfies the
initial conditions Yy(0)=2and y'(0)=8

y(0)=¢, =2
>0 1 =>c¢=2,¢,=3
y’(O):- §Cl+3cz :8
Thus the solution of this VP is y(t)=e *(2cos(3t)+ 3sin(3t)

y(t) = e "?(2cos(3t)+3sin(3t))

The solution is a decaying oscillation



Example 2

Consider the initial value problem
16y" —8y'+145y =0, y(0)=-2, y'(0)=1

Then y(t)=e" =16r°-8r+145=0 < r :%iSi
Thus the general solution is y(t) =c,e"* cos(3t)+c,e"*sin(3t)
And y(0)= c1 =-2 | 1
>0 =-2,¢,=
y'(0)=- ¢ +3c, = 1 ‘t
y; y(t) =¢' ( —2cos(3t)+1/2 sin(3t
The solution of the VP Is o /\
— tl4 1 ta L= ¢ /\
Ne)=-2e C-()S(C-Bt)+§e sin(3¢) //\ N\
The solution is displays a ) \/ \/ v
growing oscillation ;




Example 3

Consider the equation
y'+9y =0

Then y(t)=e" = r*+9=0 < r=43i

Therefore 4=0, u=3
and thus the general solution is

y(t) = ¢, cos(3t)+c, sin(3t)
Because 4 =0, there is no exponential . o) o
factor in the solution, so the amplitude
of each oscillation remains constant.
The figure shows the graph of two
typical solutions
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« Recall our 2" order linear homogeneous ODE
ay"+by' +cy =0
* where a, b and c are constants.

« Assuming an exponential solution leads to characteristic
equation:

y(t)=e" = ar’+br+c=0
 Quadratic formula (or factoring) yields two solutions, r, and r,:
. —b++/b? —4ac

2a

« When b?-4ac =0, r, =r, = -b/(2a), since method only gives
one solution:

- btl(2a)

»(t) = ce



Second Solution: Multiplying Factor v(t)

* We know that
y, (t) a solution = vy, (t) =cy, (t) a solution

» Sincey, and y, are linearly dependent, we generalize this

approach and multiply by a function v, and determine
conditions for which y, is a solution:

y, (1) =e " asolution b try y,(t) =v(t)e "
* Then

7 (0)= (D) "

yg(t) = V(T(t)e' btl(2a) _ Z_V(t)e- btl(2a)
a

2

ygtt) — v(ﬂ(t)e' btl(2a) _ zivqt)e- btl(2a) _ Ziv((t)e- btl(2a) + %v(t)e'
a

a a



ay’"+by'+cy=0
Finding Multiplying Factor v(t)

 Substituting derivatives into ODE, we seek a formula for v:

o P1l2a) {a{v”(t) i év’(t) + b—zzv(t)} + b[v’(t) - iv(t)} + cv(t)} =0
a 4a 2a

av'(t)- bv'(t)+ b—v(t) +bv'() - 12)—\/(1) +cv(t)=0
a

2 2
av'(t) + b— L + cj v(t)=0

da 2a
{2 o (e
av'(1)- kbz 4“0]\;():0

V'()=0 = v(t)=kit+k,



General Solution

 To find our general solution, we have:
y(t) — kle- btl(2a) + kzv(t)e- btl(2a)
— kle- btl(2a) +(k3t + k4)e- btl(2a)

-bil(2a) 4 . 4,7 bil(2a)
2

= e le

« Thus the general solution for repeated roots is

W) = ce bil(2a) e te btl(2a)



Wronskian

The general solution is
y(t) — cle- btl/(2a) +CZ
Thus every solution is a linear combination of
— - btl(2a — 4, - btl(2a
n(e)=e ", y, (1) = te "
The Wronskian of the two solutions is

to btl(2a)

e btl(2a) te btl(2a)
W()’l,)b)(t) - _ ie- btl(2a) (1_ ﬁj e btl(2a)
2a 2a

:e-bt/a[l_ ﬂj_l_e-bt/a[ﬁj
2a 2a

=e "1 +0 forall ¢

Thus y, and y, form a fundamental solution set for equation.



Example 1 (10f2)

Consider the initial value problem
y'+4y'+4y =0
Assuming exponential soln leads to characteristic equation:
y)=e" = r’+4r+4=0< (r+2°=0 <r=-2
So one solution is Yi(t)=e™ and a second solution is found:
Y, (t) — V(t)e_Zt
y,(t) =V/'(t)e ™™ —2v(t)e ™
Y, (t) =V'(t)e ™ —4v/(t)e ™ +4v(t)e™
Substituting these into the differential equation and
simplifying yields v"(t) =0, v'(t) =k, v(t) = kit + k;
where c; and c,are arbitrary constants.



Example 1 (20f2)

Letting k,=1and k,=0, v(t) =t and y,(t) =te-2
So the general solution is
y(t)=ce™? +cte™
Note that both y;and y, tend to 0 as t -« regardless of the
values of ¢; and ¢,

Here are three solutions of
this equation with different
sets of initial conditions.

y(0) = 2,y°(0) =1 (top)
y(0) =1, y’(0) =1 (middle)
y(0) =%, y’(0) = 1 (bottom)




Example 2 (10f2)

Consider the initial i/alue problem
y& ye+oy=0, y(0)=2, y0)=
Assuming exponentlal solution leads to charac?ferlstlc equatlon:
yt)=€" = r°- r+Z—O < (r- —) =0 <:>r—5
Thus the general solution is

t/2 v

y(t) =ce' +c,te

Using the initial conditions: i Yty =2 (2 231)
Cl =S 2 2
Ecl aF C2 = 5 3

Thus y(t) _ 26t/2 _%tetIZ



Example 2 (2of2)

« Suppose that the initial slope in the previous problem was

Increased
y(0)=2, y'(0)=2
* The solution of this modified problem is
y(t) =2e"? +te"'?

 Notice that the coefficient of the second
term is now positive. This makes a big
difference in the graph, since the
exponential function is raised to a

red: y(t) =e"?(2+t)
blue: y(t) =e"?(2—2/3t)

ositive power: S N
P P /= % >0 2* \



Reduction of Order

The method used so far in this section also works for
eguations with nonconstant coefficients:

y'+p(t)y +q(t)y=0
That is, given that y, is solution, try y, = v(t)y;:
Y, (1) = v(t)y, (t)
Y, (1) = V(1) y, (t) +v(t) y1(t)
Y, (8) = V(1) Y1 (t) + 2v' (1) y, (1) + V(D) y; (t)
Substituting these into ODE and collecting terms,
YoV +(2y; + Py, V' +(v7 + py; +ay, v =0

Since y, is a solution to the differential equation, this last
equation reduces to a first order equation in v :

y V' +(2y + py, )V =0



Example 3: Reduction of Order (10f3)

 Given the variable coefficient equation and solution y,,
2t°y"+3ty'—y =0, t>0; vy, (t)=t",
use reduction of order method to find a second solution:
Y, (t) — V(t) t
Y, () =Vt —v()t”
yat) =v'(t) t -2V ()t +2v(t) t°
 Substituting these into the ODE and collecting terms,
2t2(v't ™ —2v't 2 + 2vt 2 )+ BVt vt P )—vtt =0
SNt —4V +4vt +3V —3vt T —vt T =0
< 2tv'—-Vv' =0
< 2tu"—u =0, where u(t) =Vv'(t)



Example 3: Finding v(t)  (20f3)

 To solve
2tu'—u =0, u(t)=Vv'(t)

for u, we can use the separation of variables method:

td—u—u 0 < jd—u:jidt = In\u\:JIZ In\t\+C
dt u 2t
1/2

= \u\z\t\mec < u=ct’?, sincet>0.

* Thus
V' = ct12

and hence 5
v(t) = gct3’2 +k



Example 3: General Solution (3 of 3)

Since  y(¢) = gczsfz +k

y,(t) = gct3’2 +k] £t = %ct”z +ktt
Recall y,(t)=t™
So we can neglect the second term of y, to obtain
y,(t) =t¥2
The Wronskian of Y, (t) and y,(t) can be computed
Wy, ya(t) = gt 210, >0
Hence the general solution to the differential equation is

y(t) =ct™ +c,t¥2



Boyce/DiPrima/Meade 11" ed, Ch 3.5: Nonhomogeneous
Equations; Method of Undetermined Coefficients
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* Recall the nonhomogeneous equation
y'+p)y' +a(t)y=g(t)
where p, g, g are continuous functions on an open interval |.
» The associated homogeneous equation is
y'+pt)y' +q(t)y=0
* In this section we will learn the method of undetermined

coefficients to solve the nonhomogeneous equation, which
relies on knowing solutions to the homogeneous equation.



Theorem 3.5.1

« IfY,and Y, are solutions of the nonhomogeneous equation
y'+p@y +a®)y=g(t)
then Y, — Y, is a solution of the homogeneous equation
y'+p@®)y +at)y=0

 If, in addition, {y,, y,} forms a fundamental solution set of
the homogeneous equation, then there exist constants c, and
C, such that

Y1 (t) _Yz (t) =Gy (t) +G Y, (t)



Theorem 3.5.2 (General Solution)

» To solve the nonhomogeneous equation
y'+p@)y +a(t)y=9(t)
we need to do three things:

1. Find the general solution c,y,(t) + c,y,(t) of the
corresponding homogeneous equation. This is called the
complementary solution and may be denoted by y,(t).

2. Find any solution Y(t) of the nonhomogeneous equation.
This is often referred to as a particular solution.

3. Form the sum of the functions found in steps 1 and 2.
Y(t) =Gy (t) +C Y, (t) +Y (t)



Method of Undetermined Coefficients

* Recall the nonhomogeneous equation
y'+p@Oy +a®)y=9g(t)

with general solution
Y(t) =Gy (t) +C Y, (t) +Y (t)

* In this section we use the method of undetermined
coefficients to find a particular solution Y to the
nonhomogeneous equation, assuming we can find solutions
Y1, Y, for the homogeneous case.

* The method of undetermined coefficients is usually limited
to when p and g are constant, and g(t) is a polynomial,
exponential, sine or cosine function.



Example 1: Exponential g(t)

Consider the nonhomogeneous equation

yrr _3yr _4y — BeZt
We seek Y satisfying this equation. Since exponentials
replicate through differentiation, a good start for Y is:

Y(t)=Ae® = Y/(t) =2Ae”, Y'(t) =4Ae”
Substituting these derivatives into the differential equation,
AAe” —6Ae” —4Ae” =36
< —6Ae” =3 o A=-1/2
Thus a particular solution to the nonhomogeneous ODE is

1
Y(t)=—=¢e"
(t) >



Example 2: Sine g(t), First Attempt (10f2)

« Consider the nonhomogeneous equation
y"'—3y'—4y =2sint

» \We seek Y satisfying this equation. Since sines replicate
through differentiation, a good start for Y Is:

Y(t)=Asint=Y’(t) = Acost, Y"(t) = —Asint
 Substituting these derivatives into the differential equation,
— Asint —3Acost —4Asint = 2sint
< (2+5A)sint +3Acost =0
< ¢, sint+c,cost=0

 Since sin(x) and cos(x) are not multiples of each other, we
must have c,= ¢, = 0, and hence 2 + 5A = 3A = 0, which is
Impossible.



y'—3y'—4y =2sint
Example 2: Sine g(t), Particular Solution (2 of 2)

e Our next attempt at findinga Y is

Y (t) = Asint + B cost
=Y'(t) = Acost —Bsint, Y"(t) =—Asint — Bcost

 Substituting these derivatives into ODE, we obtain
(- 4sint- Bcost)- 3(Acost- Bsint)- 4(Asint + Bcost) = 2sint
< (-54+3B)sint +(- 34 - 5B)cost = 2sin¢
< -54+3B=2, - 34- 5B=0
<> A=- > B :i

17" iL7 . .
« Thus a particular solution to the nonhomogeneous ODE Is

Y (1) = _—55int+icost
17 17



Example 3: Product g(t)

« Consider the nonhomogeneous equation
y@&- 3y¢ 4y =-8¢ cos(2t)

« \We seek Y satisfying this equation, as follows:
Y () = Ae' cos(2t) + Be' sin(2t)

Y&t) = Ae' cos(2t) - 2A4e' sin(2t) + Be' sin(2t) +2 Be' cos(2t)
=(4+2B)e cos(2t)+(- 24 + B)e'sin(2¢)
Y®¢)=(A4+2B)e cos(2t)- 2(A+2B)e sin(2¢) +(- 24 + B) ' sin(2t)
+2(-24+ B)e' cos(2t)
=(-34+4B)e cos(2t)+(-44- 3B)e' sin(21)

 Substituting these into the ODE and solving for A and B:
_10 2 _10 , 2,
A= T B= T b Y(t)= 13@ cos(2t)+13e sin(2t)



Discussion: Sum g(t)

Consider again our general nonhomogeneous equation
y'+pt)y' +a(t)y =g(t)
Suppose that g(t) is sum of functions:
g(t) = 9,(t) + 9,(t)
IfY,, Y, are solutions of
y'+ POy +a(t)y = g,(t)
y'+ POy +a(t)y = g,(t)

respectively, then Y, + Y, is a solution of the
nonhomogeneous equation above.



Example 4: Sum g(t)

« Consider the equation
y" -3y’ —4y =3e” +2sint —8e' cos 2t
 Our equations to solve individually are

i)

yrr_3yr_4y:362t . |
52 04 06 ' 0B 1 12 1.4
y'—3y'—4y =2sint

y" -3y’ —4y =—8e' cos 2t

do &n = (A o
i 1 : i

 Our particular solution is then

Y (t) :—Ee2t +icost—£sint+get coS 2t+£et sin 2t
2 17 17 13 13



Example 5: First Attempt (1 of 3)

Consider the nonhomogeneous equation
y'—3y'—4y=2e"!
We seek Y satisfying this equation. We begin with
YH)=Ae" =Y'(t)=-Ae™, Y'(t) = Ae™
Substituting these derivatives into differential equation,
(A+3A-4Ae-t=2e"!
Since the left side of the above equation is always 0, no

value of A can be found to make Y (t) = Ae™ a solution to the
nonhomogeneous equation.

To understand why this happens, we will look at the solution
of the corresponding homogeneous differential equation



Example 5: Homogeneous Solution (2 of 3)

To solve the corresponding homogeneous equation:
y'—3y' -4y =0
We use the technigues from Section 3.1 and get
y,(t) =e"'and v, (t) =e*

Thus our assumed particular solution Y (t) = Ae™ solves
the homogeneous equation instead of the nonhomogeneous

equation.

So we need another form for Y(t) to arrive at the general
solution of the form:

y(t) =ce-t+ce*+Y(t)



—4y =2e-t

. "—-3y
Example 5: Particular Solu¥|on (3'0f 3)

« Our next attempt at finding a Y(t) Is:

Y (t) = Ate -t
Y'(t) = Ae-t— Ate -t

Y't)=—Ae-t—Ae-t+ Ate -t=Ate 1—2Ae !

* Substituting these into the ODE,

Ate -t —2Ae-t—-3Ae 1+ 3Ate -4 Ate t=2e-t
0-Ate '—5Ate t=-5Ate t=2e-!

= A=-2/5
:>Y(t):—§te-t

 So the general solution to the VP Is

2
y()=ce "+c,et - Ete' ’

vt
a0

"Y(t) =4e-t+enZ25te -t



Summary — Undetermined Coefficients (1 of 2)

 For the differential equation
ay”+by"+cy =g(t)

where a, b, and c are constants, if g(t) belongs to the class
of functions discussed in this section (involves nothing
more than exponential functions, sines, cosines,
polynomials, or sums or products of these), the method of
undetermined coefficients may be used to find a particular
solution to the nonhomogeneous equation.

« The first step is to find the general solution for the
corresponding homogeneous equation with g(t) = 0.

Ye(t) =cy; (1) +C, Y, (t)



Summary — Undetermined Coefficients (2 of 2)

« The second step Is to select an appropriate form for the
particular solution, Y(t), to the nonhomogeneous equation and
determine the derivatives of that function.

 After substituting Y(t), Y'(t), and Y”(t) into the nonhomo-
geneous differential equation, if the form for Y(t) is correct, all
the coefficients in Y(t) can be determined.

 Finally, the general solution to the nonhomogeneous
differential equation can be written as

Ygen (t) — YC(t) +Y (t) =CY; (t) +GC, Y, (t) +Y (t)



Boyce/DiPrima/Meade 11% ed, Ch 3.6:
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* Recall the nonhomogeneous equation
y'+p()y +a(t)y =g(t)
where p, g, g are continuous functions on an open interval I.
« The associated homogeneous equation is

y"+p(t)y +q(t)y=0

 In this section we will learn the variation of parameters
method to solve the nonhomogeneous equation. As with the
method of undetermined coefficients, this procedure relies on
knowing solutions to the homogeneous equation.

 Variation of parameters is a general method, and requires no
detailed assumptions about solution form. However, certain
Integrals need to be evaluated, and this can present difficulties.



Example 1: Variation of Parameters (1 of6)

» \We seek a particular solution to the equation below.
y@+4y=8tant, - pl2<t<pl/2

* \We cannot use the undetermined coefficients method since
g(t) iIs a quotient of sint or cost, instead of a sum or product.

 Recall that the solution to the homogeneous equation is
V() = ¢, cos(2¢) + ¢, sin(2¢)
 To find a particular solution to the nonhomogeneous
equation, we begin with the form
(t) = u,(¢)cos(2¢) +u, (z)sin(2¢)
 Then
y&t) =ulkr)cos(2¢t) - 2u,(¢)sin(2t) + usMz)sin(2¢t) + 2u, (¢) cos(2¢)

. yocét) = - 2u,()sIn(2t) + 2u, (¢) cos(2¢) +ufkt) cos(2¢) + uf(¢)sin(2¢)



Example 1: Derivatives, 2" Equation (2 of 6)

e From the previous slide,
y&t) = - 2u,(2)sSIn(2¢) + 2u, () cos(2¢t) + ufkt) cos(2t) + usl¢)sin(2¢)
 Note that we need two equations to solve for u, and u,. The
first equation is the differential equation. To get a second
equation, we will require
ufkt)cos(2¢) +ufMt)sin(2¢) =0
« Then
y&t) = - 2u,(t)sIin(2¢) + 2u, (¢) cos(2¢)
* Next,

y®&t) = - 2ufr)sin(2t) - 4u,(t)cos(2¢) +2uMt)cos(2¢) - 4u,(¢)sin(2t)



Example 1: Two Equations (3 of 6)

Recall that our differential equation is
y@+ 4y =38tant
Substituting y" and y into this equation, we obtain
- 2uft)sin(2¢) - 4u,(t)cos(2t) + 2uMMt)cos(2t) - 4u,(¢)sin(2¢)
+ 4 (u, (£)cos(2¢) +u, (£)sin(2¢)) = 8tant
This equation simplifies to
- 2ulkt)sIin(2¢) + 2ufr) cos(2¢) = 8tant
Thus, to solve for u, and u,, we have the two equations:
- 2uft)sin(2¢) + 2uf(¢)cos(2¢) = 8tant
ufkt)cos(2t) +ufMz)sin(2¢) =0



Example 1: Solve for u;" (4 of6)

* To find u, and u, , we first need to solve for u; and u;
- 2uft)sin(2¢) + 2uf(t)cos(2t) = 8tant
ufkt)cos(2¢) +ufr)sin(2¢) =0
* From second equation,
) =)
« Substituting this into the first equation,

- 2u](r)sin(2¢) + 2{' 4 (¢) 2?;((22;))

- 2u/(¢)sin’(2¢) - 2u/(t)cos®(2¢) = 8tantsin(2¢)

}cos(Zt) =8tant

_ 2,,,1'(1)[sin2 (2¢) + cos? (Zt)] = 8{ o

Zsinztcost}

u!(t)=-8sin’t



Example 1: Solve for u; and u, (50f6)

 From the previous slide,

: COS 2¢
ult) =-8sin°t, uft)=- ukt)—
) 00) = - ute) —
* Then
: 2,
u;(t):8sin2tcf)s(2t):4S|m(2COS t 1):4sint[2005t- . j
sin(2¢) COS? COS?

* Thus
u,(t) = ukt)det =4sintcost - 4t +c,

u, (1) = (yM¢)dt =4In(cosr)- 4cos’t +c,



Example 1: General Solution (6 of 6)

 Recall our equation and homogeneous solution y,:
y@+4y=8tant, y.(¢)=c cos(2t)+c,sin(2¢)
 Using the expressions for u, and u, on the previous slide, the
general solution to the differential equation is

y(t) =u,()cos2¢t +u,(¢)sin2t +y.(¢)
= (4sinzcost)cos(2¢) + (4 In(cost) - 4cos”¢)sin(2¢) + ¢, C0S(2t) + ¢, sin(2¢)
=-2sin(2¢) - 4tcos(2t)+ 4 In(cost)sin(2t) + ¢, cos(2¢) + ¢, sin(2t)



y'+p(t)y' +a()y =g(t)
Summary Y =u®y.t)+u,t)y,()

Suppose Y,, Y, are fundamental solutions to the homogeneous
equation associated with the nonhomogeneous equation
above, where we note that the coefficient on y" is 1.

To find u, and u,, we need to solve the equations
up (t) y, (t) + U, (B) Y, (t) =0
up (1) y; (t) + Uz (D) y2 () = 9 (t)
Doing so, and using the Wronskian, we obtain
: y,(H9(t) y:(D)9g(t)
u;(t) =— t) =
O Wy )0 O Wiy )0

AV, _r_yu(®a(t)
u, (t) = W )(t)dt+c uz(t)—j 1y2)(t)dt+c



Theorem 3.6.1

« Consider the equations
y'+p@)y' +a®)y=9@t) @
y'+pt)y' +a(t)y=0 (2)
« |If the functions p, g and g are continuous on an open interval I,

and if y, and y, are fundamental solutions to Eq. (2), then a
particular solution of Eqg. (1) Is

Y(®) =y, )] WY(z ;lt) 32(;()0 dt +y, (1) [ Wy(1 (:) 8520 dt

and the general solution is
y(t) =CY; (t) +GCY, (t) +Y (t)
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« Two important areas of application for second order linear
equations with constant coefficients are in modeling
mechanical and electrical oscillations.

« \We will study the motion of a mass on a spring in detail.

« An understanding of the behavior of this simple system is the
first step in investigation of more complex vibrating systems.

! Resistance R Capacitance C
IL
\ | l+L+u Wy

I\
L 1 (1 % Inductance L
T 1_"]__ )
L 7

u Impressed voltage E(t)




Spring — Mass System

Suppose a mass m hangs from a vertical spring of original
length |. The mass causes an elongation L of the spring.

The force F of gravity pulls the mass down. This force has
magnitude mg, where g is acceleration due to gravity.

The force F¢ of the spring stiffness pulls the mass up. For
small elongations L, this force is proportional to L.

That is, F, = kL (Hooke’s Law).

When the mass is in equilibrium, the forces balance each
other: mg =kL F, - kL T §

I § l+L+u
L
T =3

- i ]
w=mg m
u




LEN

Spring Model prn §1
i o ||+

We will study the motion of a mass when it is acted on by an
external force (forcing function) and/or is initially displaced.

Let u(t) denote the displacement of the mass from its
equilibrium position at time t, measured downward.

Let f be the net force acting on the mass. We will use

Newton’s 2" Law: mu”(t) = f (t)

In determining f, there are four separate forces to consider:
— Weight: W = mg (downward force)

— Spring force:  F,=—-k(L+u) (up or down force, see next slide)
— Damping force: F,(¢) =- gu'(t) (up or down, see following slide)
— External force: F (t) (up or down force, see text)



T -
Spring Model: ?(l § §

Spring Force Details T3 1L

* The spring force F, acts to restore a spring to the natural
position, and Is proportional to L + u. If L + u >0, then the
spring Is extended and the spring force acts upward. In this
case F, =—k(L+u)

« IfL +u<0,then spring is compressed a distance of |L + ul,
and the spring force acts downward. In this case

F, =KL +u|=Kk[-(L+u)]=-k(L+u)

* In either case,

F. =—k(L+u)



T -
Spring Model: % 1, % §
Damping Force Details 21+ ).

The damping or resistive force F, acts in the opposite direction as
the motion of the mass. This can be complicated to model. F, may
be due to air resistance, internal energy dissipation due to action of
spring, friction between the mass and guides, or a mechanical
device (dashpot) imparting a resistive force to the mass.

We simplify this and assume F, is proportional to the velocity.
In particular, we find that

— If u” >0, then u is increasing, so the mass is moving downward.
Thus F, acts upward and hence F,(z) =- gu®t).

— If u’ <0, then u is decreasing, so the mass is moving upward.
Thus F, acts downward and hence F,(¢) = - gur)

— In either case, ’
F () =—yu'(t), »>0



T —
Spring Model: % 1, § §
Differential Equation T} i)

Taking into account these forces, Newton’s Law becomes:
mu”(t) =mg+ F, (t)+ F, (t) + F(t)
=mg —k[L+u(t)]-yu'@t)+F(t)
Recalling that mg = kL, this equation reduces to
mu”(t) + yu'(t) + ku(t) = F(t)
where the constants m, g, and k are positive.
We can prescribe initial conditions also:
u(0) =u,, u’'(0) =y,
It follows from Theorem 3.2.1 that there is a unique solution to

this initial value problem. Physically, if the mass Is set in motion
with a given initial displacement and velocity, then its position is

uniquely determined at all future times.



: .
Example 1: ?\é é

Find Coefficients (1 of 2) T} Eg)

m

A 4 Ib mass stretches a spring 2". The mass is displaced an
additional 6" and then released; and is in a medium that exerts a
viscous resistance of 6 Ib when the mass has a velocity of 3 ft/sec.
Formulate the I'\VP that governs the motion of this mass:

mu”(t) + yu’(t) + ku(t) = F(t), u(0)=u,, u’(0)=v,
Find m:

W 4lb 1 Ibsec?
g 32ft/sec 8 ft
Find g-
yu’:6lb:>7/:3ﬁ6/|b :>7/:2|bseC
. Sec
Find k:
FS:—kL:>k=4—_|b:> k:4—|b:> k:24E
2in 1/6ft ft



: .
Example 1: %\é é

Find IVP (20of2) T} 7.

m

« Thus our differential equation becomes
%u”(t) +2u'(t)+24u(t) =0
and hence the initial value problem can be written as
u”(t)+16u’(t) +192u(t) =0
u(0) =%, u'(0)=0

() = Lo (2c08(8Y2 1) +~/2sin(8Y2 1))

« This problem can be solved using the af 4
methods of Chapter 3.3 and yields |
the solution

u(t) = %e 8(2c0S(8v/2 t)++/25in(8v2 1))

02"~



Spring Model:
Undamped Free Vibrations (1 of 4)

 Recall our differential equation for spring motion:
mu”(t) + yu'(t) + ku(t) = F(t)

« Suppose there is no external driving force and no damping.
Then F(t) =0and 4= 0, and our equation becomes

mu”(t) + ku(t) =0
« The general solution to this equation is

+192u=0, u0=1/2, U(0)=

u(t) = Acos w,t + Bsin at,
where \ /\ /\
w; =k/m : \/ \/




Spring Model:
Undamped Free Vibrations (2 of 4)

 Using trigonometric identities, the solution
u(t) = Acoswyt + Bsinw,t, w; = L3
can be rewritten as follows: "
u(t) = Acos st + Bsinat < u(t) = Rcos(wyt — )
< U(t) = Rcos 6 cos wt + Rsin osin at,
where

A=Rcoss, B=Rsind = R=+A2+B?, tan5:%

* Note that in finding ¢, we must be careful to choose the
correct quadrant. This is done using the signs of cos ¢ and

sin .



Spring Model:
Undamped Free Vibrations (3 of 4)

Thus our solution is
u(t) = Acos m,t + Bsin gt = Rcos(apt — o)

where
@, =~ K/m

The solution is a shifted cosine (or sine) curve, that describes simple
harmonic motion, with period

T :27T=27r\/E
@, K

The circular frequency W, (radians/time) is the natural frequency of
the vibration, R Is the amplitude of the maximum displacement of
mass from equilibrium, and ¢is the phase or phase angle
(dimensionless).



Spring Model:
Undamped Free Vibrations (4 of 4)

Note that our solution
u(t) = Acos mt + Bsin gt = Rcos(at—5), @, =vk/m
IS a shifted cosine (or sine) curve with period

T =27Z'ﬁ
K

Initial conditions determine A & B, hence also the amplitude R.

The system always vibrates with the same frequency w,,
regardless of the initial conditions.

The period T increases as m increases, so larger masses vibrate
more slowly. However, T decreases as k increases, so stiffer
springs cause a system to vibrate more rapidly.



Example 2: FInd IVP (10f3)

A 10 Ib mass stretches a spring 2". The mass is displaced an
additional 2" and then set in motion with an initial upward
velocity of 1 ft/sec. Determine the position of the mass at any
later time, and find the period, amplitude, and phase of the motion.

mu”(t) + ku(t) =0, u(0) =u,, u’(0) =V,

Find m:
W 101b 5 Ibsec”
W=mg =>m=—=m= ~=> M=
g 32ft/sec 16 ft
Find k:
FS:—kL:k:@:k @:k—GOE
21n 1/6ft ft

Thus our IVP IS

%u(n(t) +60u(z) =0, u(0)= %, u€r)=-1



Example 2: Find Solution (2 of 3)

« Simplifying, we obtain
u”(t)+192u(t) =0, u(0)=1/6, u’(0)=-1
 To solve, use methods of Ch 3.3 to obtain

1 1 .
u(t) ==cos~/192 t — Sin+/192 t
(1) 6 \192

or

1 1 ) . W+ 1920=0, U =1
u(t) ==cos8v/3 t————sin8/3 t
(t) 6 8./3 /\ /\




1 1 .
Example 2- u(t)=gcos8\@t—%sm8\@t

Find Period, Amplitude, Phase (30of3)

The natural frequency is
=k /m=+/192 =8/3 =13.856 rad/sec

The period is .
T =27/ w, = 0.45345sec oo FIN e
The amplitude Is \ /\\T /\ /\ /\
R =+ A% +B? ~0.18162 ft
%%

Next, determine the phase ¢
A=Rcoso, B=Rsing, tano=B/A

tans = % = tand = %f — 5 = tanl(_;@j ~ —0.40864 rad

Thusu(t) = 0.182cos(8+/3t + 0.409)



Spring Model: Damped Free Vibrations (1 of 8)

Suppose there is damping but no external driving force F(t):
mu”(t) + yu'(t) +ku(t) =0

What is effect of the damping coefficient g on the system?

The characteristic equation is

_—)/iw/72—4mk_ Y | 44 1_4mk
= 2m 2m| T ¥

Three cases for the solution:

y*—4mk >0: u(t)= Ae" +Be"', wherer, <0, r, <0;
y*—4mk=0: u(t)=(A+Btle ">, where y/2m>0;
4,2
\/4mk " 2o
2m
Note: Inall threecases, lim u(t) =0, as expected from the damping term.

t—>w

y?—4mk <0: u(t)=e7"*"(Acos ut+Bsin ut), u=



Damped Free Vibrations: Small Damping (2 of 8)

« Of the cases for solution form, the last is most important,
which occurs when the damping is small:

> —4mk>0: u(t)=Ae™ +Be"', r,<0,1,<0
7> —4mk =0: u(t)=(A+Btle 7", y/2m>0
y? —4mk <0: u(t) =e7"*™(Acos ut +Bsin ut), u>0
* \We examine this last case. Recall
A=Rcoso, B=Rsino

* Then
u(t) =Re”"*" cos(ut —&5) ] -
and hence RT/‘\ .
—yt/2m : |6 5':*71' @ +I37r o
u(t)| < Re N T
(damped oscillation) T ke




Damped Free Vibrations: Quasi Frequency (3 of 8)

Thus we have damped oscillations:
u(t)=Re7"*"cos(ut—5) = |u(t)|<Re7V"
The amplitude R depends on the initial conditions, since
u(t) =e""*"(Acos ut+Bsin ut), A=Rcoss, B=Rsind
Although the motion is not periodic, the parameter 77
determines the mass oscillation frequency.
Thus 77 is called the quasi frequency.

Recall e

B \/4mk —y° !
— om N\ Z .

(5]
-2
[<— N
(%)
S
+ |
Q
+

7




Damped Free Vibrations: Quasi Period (4 of 8)

« Compare rrwith w,, the frequency of undamped motion:

7, _w/4km—7/2 B \4km—y? _ /4km— 7/

@, ~ 2myk/m _«/4m2«/k/m Jakm 4km
2 4 2
For small I\»;\/l_ y v _ |17 :1 7’
- 4km  64k°m? 8km 8km
4 km

« Thus, small damping reduces oscillation frequency slightly.
* Similarly, the quasi period Is defined as 7, =2p/ n Then

T 2 / 2 -1/2 2 \1 5
IR S A A W 4
T 27z/a)0 U 4km 8km 8km

« Thus, small damping increases quasi period.




Damped Free Vibrations:,

Neglecting Damping for Small Y 5ofs)
4km

« Consider again the comparisons between damped and
undamped frequency and period:

2 1/2 2 -1/2
MY To _[1_7
w, 4km) T 4km

* Thus it turns out that a small g'is not as telling as a small

ratio -2 .

4 km _

« For small 2o, We can neglect the effect of damping when

calculating ﬁ1e quasi frequency and quasi period of motion.
But if we want a detailed description of the motion of the

mass, then we cannot neglect the damping force, no matter
how small it is.

2

g9




Damped Free Vibrations:
Frequency, Period (6 of8)

Ratios of damped and undamped frequency, period:

2 1/2 2 -1/2
ﬂ: 1— /4 T_d: 1— Y
w, 4km) T 4km

Thus

im g=0and Ilm T, =0
7/—)2\/% 7/—)2%

The importance of the relationship between gz and 4km is
supported by our previous equations:

> —4mk>0: u(t)=Ae" +Be"', r,<0,r1,<0
7> —4mk=0: u(t)=(A+Btle7"*", »/2m>0
y? —4mk <0: u(t) =e7"*™(Acos ut +Bsin ut), u>0




Damped Free Vibrations:
Critical Damping Value (7 of 8)

Thus the nature of the solution changes as g passes through
the value 2+ km.

This value of g =2+/km is known as the critical damping
value, and for larger values of gthe motion is said to be
overdamped.

Thus for the solutions given by these cases,
y°—4mk >0: u(t)= Ae" +Be"', r,<0,1,<0 @)
7> —4mk =0: u(t)=(A+Bt)e”"*", »/2m>0 (2)
y> —4mk <0: u(t)=e7"*"(Acos ut+Bsinut), x>0  (3)
we see that the mass creeps back to its equilibrium position

for solutions (1) and (2), but does not oscillate about it, as it
does for small g'in solution (3).

Solution (1) is overdamped and (2) is critically damped.



Damped Free Vibrations:
Characterization of Vibration (8of8)

The mass creeps back to the equilibrium position for

solutions (1) & (2), but does not oscillate about it, as it does
for small Jin solution (3).

y°—4mk>0: u(t)=Ae"™ +Be™, <0, r,<0 (Green) D)
y*—4mk=0: u(t)=(A+Bt}e”"”", y/2m>0 (Red,Black) (2)
7* —4mk <0: u(t)=e”"*"(Acos ut+Bsinut)  (Blue) ()

Solution (1) is overdamped and
Solution (2) is critically damped.
Solution (3) is underdamped

2_

1.57

-1_

0.5

0

0.5




Example 3: Initial Value Problem  (10f4)

Suppose that the motion of a spring-mass system is governed by
the initial value pfoblem

ult+—u¢+u =0, u(0)=2, u€0)=0
Find the following:
(a) quasi frequency and quasi period,;
(b) time at which mass passes through equilibrium position;
(c) time £ such that |u(t)| <0.1forallt> [.
For Part (a), using methods of this chapter we obtain:

u(t) =e "% 2cos /29| 2 G204 |_ 32 s —“255t—5
v 255 16

SIn
16 255 16

where

1 .
tand =—— = 0 =0.06254 (recall A=Rcoso, B=RsIino
\/ 255 ( )



Example 3: Quasi Frequency & Period (2 of 4)

» The solution to the initial value problem is:

J255 . 2. \[255 tJ: 32 et,1600{\/12655t_ 5}

t+ sin
16 V255 16 V255

* The graph of this solution, along with solution to the
corresponding undamped problem, is given below.

« The quasi frequency is
11 =~/255/16 = 0.998
and quasi period is
T, =27/ 1=6.295

u(t) = et’lﬁ(z COS

 For the undamped case:
w, =1, T =27=6.283




Example 3: Quasi Frequency & Period (3 of4)

« The damping coefficient is 4 = 0.125 = 1/8, and this is 1/16
of the critical value 2vkm =2

« Thus damping is small relative to mass and spring stiffness.
Nevertheless the oscillation amplitude diminishes quickly.

« Using a solver, we find that |u(t)| < 0.1 for t > ¢ @47.5149 sec

Solution it

A\

it)

u.1f

/ \ L
1. 42) 44 W5 48 5t!3 54 fo8 5% ED
07 \

-0.051 / \/ \/

0.1 -

-0.151



Example 3: Quasi Freqguency & Period (4 of 4)

 To find the time at which the mass first passes through the
equilibrium position, we must solve

0 “255t—5)=0

u(t) = %e”m c s( e

* Or more simply, solve

g 1D 2t' o
V5. VY
——t-5== .

16 2

16 (nx _ :
—=t=—-| —+ [=1.6375seC ’

\/255(2 j \ /\




Electric Circuits

* The flow of current in certain basic electrical circuits i1s
modeled by second order linear ODES with constant
coefficients:

LI"(t)+R1'(t) +é 1(t) = E'(t)

1(0)=1,, 1'(0)=1,
* |t is interesting that the flow of current in this circuit is
mathematically equivalent to motion of spring-mass system.

e For more detalls, see text.

Resistance R Capacitance C

Wy [
(1 % Inductance L

()
-/ v

Impressed voltage E ()



Boyce/DiPrima/Meade 11% ed, Ch 3.8:
Forced Periodic Vibrations
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« \We continue the discussion of the last section, and now
consider the presence of a periodic external force:

mu”(t) + y u'(t) +k u(t) = F, cos ot

Tl —
\l l+L+u

L
T -==3-=

- : ]




Forced Vibrations with Damping

» Consider the equation below for damped motion and external
forcing function £} cos(wz).

mu”(t) + yu'(t) + ku(t) = F, cos mt
« The general solution of this equation has the form
u(t) = c,u, (t) +c,u, (t) + Acos(mt )+ Bsin(mt) = u, (t) +U (t)
where the general solution of the homogeneous equation is
U (t) = Cyu, (t) +C,u, (t)
and the particular solution of the nonhomogeneous equation is

U (t) = Acos(wt )+ Bsin(wt)



Homogeneous Solution

The homogeneous solutions u, and u, depend on the roots r,
and r, of the characteristic equation:

—y+ \/72 —4mk

2m
Since m, g, and k are are all positive constants, it follows that
r, and r, are either real and negative, or complex conjugates
with negative real part. In the first case,

limu (t)—Ilm(ce +c erzt) 0,
while | |n the second case
limug (t) = !im(cle“ cos st +c,e*' sin yt): 0.

mre+yr+kr=0 = r=

Thus In either case,
!im u.(t)=0



Transient and Steady-State Solutions

« Thus for the following equation and its general solution,
mu”(t) + yu'(t) + ku(t) = F, cos mt
u(t) = cu, (t) +c,u, (t) + Acos(wt )+ Bsin(wt),

—

e (t) U (t)

we have
limu (t) = !im(clul(t) +C,U,(t))=0
» Thus uc(t) is called the transient solution. Note however that
U (t) = Acos(wt)+ Bsin(wt)
IS a steady oscillation with same frequency as forcing function.

 For this reason, U(t) is called the steady-state solution, or
forced response.



Transient Solution and Initial Conditions

 For the following equation and its general solution,
mu”(t) + yu'(t) + ku(t) = F, cos mt
u(t) = cu, (t) + c,u, (t) + Acos(mt )+ Bsin(wt)

Ug (t) ut)
the transient solution u.(t) enables us to satisfy whatever initial

conditions might be imposed.

« With increasing time, the energy put into system by initial
displacement and velocity is dissipated through damping force.
The motion then becomes the response U(t) of the system to
the external force F, cos(wz).

« Without damping, the effect of the initial conditions would
persist for all time.




Example 1 (10f2)

Consider a spring-mass system satisfying the differential
equation and initial condition
u Q-+ u¢+§u =3cost, u(0)=2, u€0)=3
Begin by finding the solution to the homogeneous equation
The methods of Chapter 3.3 yield the solution
u-(t) =ce-v2cost+ c,e-Y2sint
A particular solution to the nonhomogeneous equation will

have the form Uﬁtg A cos t + B sin t and substitution gives

A—E and B = —
17 17

U(t) = ECOSt + 4—83int
17 17



u"+u’'+1.25u=0
Example 1 (2of2) u(0)=2 u'(0)=3
The general solution for the nonhomogeneous equation is
: 12 48 .
u(t) =c,e” "2cost + c,e ?sint +-—cost+ —sint
17 17

Applying the initial conditions yields

_ .12 _
u(O)—cl+E—2 99 14
w_, [T
1 — l —
u'(0)=- ¢+ +E— 3)
Therefore, the solution to the IVP is
22 14 ., . 12 48 .
u(t)=—e "? cost+-—e "“sint+—cCost+-—sint
17 17 17 17
'Kl _
The graph breaks the solution A~ fullsoltion
into its steady state (U(t)) /ﬁf;ﬁi?ﬁtate
and transient (U, (t)) NN

components




Rewriting Forced Response

« Using trigonometric identities, it can be shown that
U (t) = Acos(wt )+ Bsin(wt)
can be rewritten as
U (t) = Rcos(wt — o)
|t can also be shown that
|:O

\/mz(wg —0)2)2 +}/2a)2

R =

2 2
COSO = Mm@, — @) i

. SINY =
\/mz(a)oz —a)2)2 +7/2a)2 \/mz(wg —(02)2 +7/2a)2
where u/; :5

m



Amplitude Analysis of Forced Response

« The amplitude R of the steady state solution
|:O

\/mz(a)oz _a)z)z +7/2w2

R =

depends on the driving frequency w. For low-frequency

excitation we have
. . F, F F,
L'E}R:L'E% 2/, 2 212 2 2 - 2 ~ k
\/m (@, —@0°) +y°w~ Moy

where we recall ( ng)? = k/m. Note that F, /k is the static
displacement of the spring produced by force F,.

 For high frequency excitation,

lim R = lim K

=0
W—>0 W—>0 \/mZ(wg —0)2)2 +7/2602




Maximum Amplitude of Forced Response

Thus _
imR=F,/k, imR=0

w—0 W—>0

« At an intermediate value of v, the amplitude R may have a

maximum value. To find this frequency v, differentiate R and
set the result equal to zero. Solving for w,,.,, we obtain

2 2
O =0~ L = 1L
2m 2mk

where (w,)2 =k /m. Note w...<W, and W... isclose to
0 max 0 max

W, for small 9. The maximum value of R is
|:O

R =
yan[1— (72 /4mk)

m




Maximum Amplitude for Imaginary W,

 We have

2
. =a)§£1— 4 ]
2mk
max FO = FO (1+ 7/2 j
yan1— (7% /4mk) ~ ra,\ 8mk
where the last expression is an approximation for small g. If
g7 /(mk) > 2, then w_., is imaginary.

* In this case the maximum value of R occurs for w=0, and R Is
a monotone decreasing function of W. :
g

 Recall that critical damping occurs when - 4,
m

and
R




Resonance

From the expression

R = K =~ i (1+ 7’ j
" o 1-(y /4mk) yo,\  8mk
we see that R, @—for small g

Thus for lightly damped systems, the amplitude R of the forced
response is large for nearw, w

This is true even for relatively small external forces, and the
smaller the Gthe greater the effect.

This phenomena is known as resonance. Resonance can be
either good or bad, depending on circumstances; for example,
when building bridges or designing seismographs.



Graphical Analysis of Quantities

To get a better understanding of quantitis; we have been
examining, we graph the ratios — versus — for several
values of G= g—k, as shown below/® Wo

Note that the geaks tend to get higher as damping decreases.

As damping decreases to zero, the values of Rk/F, become
asymptotic to W= W,

The graph corresponding to G= 0.015625 |
IS Included because it appears in the next
example.




Analysis of Phase Angle

Recall that the phase angle /given in the forced response
U (t) = Rcos(wt — )
IS characterized by the equations

2 2

m — :

COS S = (@) @) ,sing = i
\/mz(a)oz_wz)2+7/2w2

\/mz(woz —a)2)2 +7/2@2

For wnear zero, cosd @l and sind @D, and they rise and fall
together. Assuming their maxima and minima nearly together.
For w=w,, cosd=0and sind=1 so d= P and response
lags behind the excitation. 2

For very large w, d @u and the response is out of phase. That
IS the response Is a minimum when excitation is a maximum.



Example 2:
Forced Vibrations with Damping (1 of 4)

Consider the initial value problem
u@kz) +%u¢{t) +u(t) = 3coswt, u(0)=2, u€0)=0
Then wy =1, Fy/k = 3, and G=1/64=0.015625

The unforced motion of this system was discussed in Ch 3.7,
with the graph of the solution on the next slide, along with the
graph of the ratios Rk/F vs. w/ w, for different values of



Example 2:
Forced Vibrations with Damping (2 of 4)

» Graphs of the solution, along with the graph of the
ratios Rk/F vs. w/ w,for w=0.3




Example 2:
Forced Vibrations with Damping (3 of 4)

Graphs of the solution, along with the graph of the
ratios Rk/F vs. w/w,for w=1
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Example 2:

Forced Vibrations with Damping

(4 of 4)

along with the graph of the
=2

for w

Wo

« Graphs of the solution
ratios Rk/F vs. w/




Undamped Equation:
General Solution for the Case g =0

« Suppose there is no damping term. Then our equation is
mu@kt) + ku(t) = F, cos(wt)
* Assuming w?! w,, then the method of undetermined
coefficients can be use to show that the general solution is

: F;
u(t) = ¢, cos(w,t) + ¢, sin(w,t) + : cos(wt)

m(Wy - W)



Undamped Equation:
Mass Initially at Rest (1 of 3)

If the mass is initially at rest, then the corresponding initial
value problem is

mu”(t) + ku(t) = F, cos wt, u(0)=0, u’(0)=0
Recall that the general solution to the differential equation Is

: F
u(t) = c, cos a,t + c, Sin w,t + —2——Ccos ot
m(w, —®°)

Using the initial conditions to solve for ¢, and c,, we obtain
|:O
m(e&} —o®)

C,=-

c,=0

Hence

F
u(t) = 0 COS wt — Cos w,t
O= o ot)




Undamped Equation:
Solution to Initial Value Problem (2of3)

 Thus our solution iIs

F
u(t) = 0 CoS wt — Ccos w,t

« To simplify the solution even further, let 4 :%(W0 + W)t
and B=2(w,- wyr. Then A+B=wt and A-"B=wmr
Using the trigonometric identity

cos(A+ B) =cos Acos B+sin Asin B,

It follows that
cos wt =cos Acos B +sin Asin B

Cos w,t = cos Acos B —sin Asin B
and hence
Cos wt —cos w,t =2sin Asin B



Undamped Equation: Beats (30f3)

 Using the results of the previous slide, it follows that
u(t) :{ 22F° —sin (@, _w)t}sin (@, + o)t
m(w, — ") 2 2
* When

w, - w @0, then w, + w Is much greater than |w, + 1.
0 0 0

So sin(%(w0 + w)t) Is oscillating more rapidly than sin(%(w0 - W)i).

« Thus motion is a rapid oscillation with frequency Mo * W ,

but with slowly varying sinusoidal amplitude given
2F, (o0, —a))t‘

2 2

u=277778sin0.1¢
/ u=277778sin0.1tsin0.9¢

3
= <
2 S
,
2= 7
/
v
/
/
1=

sin

» This phenomena is called a beat. /\ A /\ /\ /\ A
 Beats occur with two tuning forks of \/ U \/ U U U \] \/
-2+ \\\\ ////\ \\\\ ////
nearly equal frequency.



Example 3: Undamped Equation,
Mass Initially at Rest (1 0f2)

Consider the initial value problem
utr)+u(z) =0.5c0s0.8¢, u(0)=0, u€0)=0

Then w, =1, w=0.8, and F; :% , and hence the solution is

The displacement of the spring—mass system oscillates with a
frequency of 0.9, slightly less than natural frequency W= 1.

The amplitude variation has a slow
frequency of 0.1 and period of 20 p. | [\/\/ e

A half-period of 10 p corresponds to / mm /\ ﬂ /\ [\[\
a single cycle of increasing and then R [T [ 1| P
decreasing amplitude. EANRZGRN R %




Example 3: Increased Freguency (2 of 2)

Recall our initial value problem

u”(t)+u(t) =0.5c0s0.8t, u(0)=0,u’'(0)=0
If driving frequency wis increased to 0.9, then the slow
frequency is halved to 0.05 with half-period doubled to 20 p.

The multiplier 2.77778 is increased to 5.2632, and the fast
frequency only marginally increased, to 0.095.

uft) = 2.8sin0.14), {red); uft) = 2.8sin{0. 1t)sin{0.91), (blue) uft) = 5. 26sin(0.051), (red); ult) = 5.26sin{0.05t)sin{0.95t), (blue)

AT T

b, o L,




Undamped Equation:
General Solution for the Case W, = W (10of2)

Recall our equation for the undamped case:
mu”(t) + ku(t) = F, cos mt

If forcing frequency equals natural frequency of system, i.e.,

, thenmenhigmogeneous term IS a Bpbas ovy of
homogeneous equation. It can then be shown that

F
u(t) = c, cos m,t + c, Sin @t + ——1tsin w,t
Thus solution u becomes unboungqecﬁD

Note: Model invalid when u gets

large, since we assume small | A A /\ /\ ﬁ
oscillations u. -~ V AL \/ \/ \/ |




Undamped Equation: Resonance (20of2)

« |If forcing frequency equals natural frequency of system, I.e.,
, thenioer gglution is

: F :
u(t) = c, cos w,t + ¢, sin w,t + —2—tsin a,t
2Ma@,

« Motion u remains bounded if damping present. However,

response u to Input £, coswt may be large if damping is
small and W@/I/O, In which case we have resonance.

\ﬁAAﬂﬂf
Bhi|




Example 4

 Solve the initial value problem
ultHu = %COSt, u(0)=0, u§0)=0
And plot the graph of the solution.
The general solution of the differential equation is
u =, C0St+c,sInt +1tsint
And the initial conditions require that ¢, =c, =0. Thus the
solution of the given initial value problem is

[ .
u=-—sSInt
4

5 w=025¢

=10k



