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• A linear first order ODE has the general form   

 

 

 where f is linear in y.  Examples include equations with 

constant coefficients, such as those in Chapter 1, 

 
 

 or equations with variable coefficients: 
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Constant Coefficient Case 

• For a first order linear equation with constant coefficients, 

 

 recall that we can use methods of calculus to solve: 
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Variable Coefficient Case:   

Method of Integrating Factors 

• We next consider linear first order ODEs with variable 

coefficients:  

 

 

• The method of integrating factors involves multiplying this 

equation by a function         , chosen so that the resulting 

equation is easily integrated. 
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Example 2:  Integrating Factor   (1 of 2) 

• Consider the following equation: 

 

• Multiplying both sides by        , we obtain 

 

 

• We will choose         so that left side is derivative of known 

quantity. Consider the following, and recall product rule: 

 

 

• Choose         so that 
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Example 2:  General Solution   (2 of 2) 

• With        = et/2, we solve the original equation as follows: 
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Method of Integrating Factors:  

Variable Right Side 

• In general, for variable right side g(t), the solution can be 

found by choosing                : 
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Example 3:  General Solution   (1 of 2) 

• We can solve the following equation 

 
 

 by multiplying by the integrating factor                 : 

 giving us                                  which we can integrate on 

both sides. 

• Integrating by parts, 

 

 

 
 

• Thus 
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Example 3:  Graphs of Solutions   (2 of 2) 

• The graph shows the direction field along with several integral 

curves. If we set c = 0, the exponential term drops out and you 

should notice how the solution in that case, through the point    

(0, -7/4), separates the solutions into those that grow 

exponentially in the positive direction from those that grow 

exponentially in the negative direction.. 
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Method of Integrating Factors for   

General First Order Linear Equation 

• Next, we consider the general first order linear equation 

 

 

• Multiplying both sides by        , we obtain 

 

 

• Next, we want         such that                            , from which 

it will follow that 
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Integrating Factor for  

General First Order Linear Equation 

• Assuming        > 0, it follows that 

 

 

• Choosing k = 0, we then have 

 
  

 and note          > 0 as desired. 
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Solution for 

General First Order Linear Equation 

• Thus we have the following: 

 

 

 

• Then 

 

 

 

 

 

      where t0 is some convenient lower limit of integration. 
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Example 4:  General Solution   (1 of 2) 

• To solve the initial value problem 

 

 first put into standard form: 

 
 

• Then 
 

 and hence  

 

      

     Giving us the solution   
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Example 4:  Particular Solution   (2 of 2) 

• Using the initial condition y(1) = 2 and general solution 
 
 
 
 

 it follows that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
• The graphs below show solution curves for the differential equation, including a particular solution 

whose graph contains the initial point (1,2). 
 

• Notice that when c=0, we get the parabolic solution       and that solution separates the solutions 
into those that are asymptotic to the positive versus 

 negative y-axis. 
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Example 5: A Solution in Integral Form (1 of 2) 

• To solve the initial value problem 

 

 first put into standard form: 

 

• Then 
 

 

 and hence  
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Example 5: A Solution in Integral Form (2 of 2) 

• Notice that this solution must be left in the form of an 

integral, since there is no closed form for the integral. 

 
 

 

• Using software such as Mathematica or Maple, we can 

approximate the solution for the given initial conditions as 

well as for other initial  

 conditions. 

• Several solution curves  

 are shown. 
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• In this section we examine a subclass of linear and nonlinear 
first order equations. Consider the first order equation 

 
 

• We can rewrite this in the form 

 
 

• For example, let M(x,y) = – f (x,y) and N (x,y) = 1. There may 
be other ways as well. In differential form,  

 

• If M is a function of x only and N is a function of y only, then  

 

• In this case, the equation is called separable.  
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Example 1:  Solving a Separable Equation 

• Solve the following first order nonlinear equation: 

 
 

• Separating variables, and using calculus, we obtain  

 

 

 

 

 

• The equation above defines the solution y implicitly.  A graph 

showing the direction field and implicit plots of several 

solution curves for the differential equation is given above.  
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Example 2:   

Implicit and Explicit Solutions (1 of 4) 

• Solve the following first order nonlinear equation: 

 
 

• Separating variables and using calculus, we obtain  

 

 

 

• The equation above defines the solution y implicitly.  An 

explicit expression for the solution can be found in this case: 
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Example 2:  Initial Value Problem (2 of 4) 

• Suppose we seek a solution satisfying y(0) = -1.  Using the 

implicit expression of y, we obtain 

 

 

• Thus the implicit equation defining y is  

 

• Using an explicit expression of y,  

 

 

• It follows that 
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Example 2:  Initial Condition y(0) = 3   (3 of 4) 

• Note that if initial condition is y(0) = 3, then we choose the 

positive sign, instead of negative sign, on the square root 

term: 

 

 

 

• This is indicated on the graph  

     in green. 
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Example 2:  Domain (4 of 4) 

• Thus the solutions to the initial value problem  

 

 

 are given by 

 

 
 

 

• From explicit representation of y, it follows that 

 

 and hence the domain of y is (–2,      ).  Note x = –2 yields y = 1, which 

makes the denominator of dy/dx zero (vertical tangent).  

• Conversely, the domain of y can be estimated by locating vertical tangents 

on the graph (useful for implicitly defined solutions).  
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Example 3: Implicit Solution of an Initial 

Value Problem (1 of 2) 

• Consider the following initial value problem: 

 
 

• Separating variables and using calculus, we obtain  

 

 

 

 

 

• Using the initial condition, y(0)=1, it follows that C = 17. 
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Example 3:  Graph of Solutions (2 of 2) 

•   

 
 

• The graph of this particular solution through (0, 2) is shown in red 

along with the graphs of the direction field and several other 

solution curves for this differential equation, are shown:   

• The points identified with blue  

 dots correspond to the points on 

 the red curve where the tangent 

 line is vertical: 

      but at all 

 points where the line connecting the  

 blue points intersects solution curves 

 the tangent line is vertical. 
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Parametric Equations 

• The differential equation: 

 

 is sometimes easier to solve if x and y are thought of as 

dependent variables of the independent variable t and rewriting 

the single differential equation as the system of differential 

equations: 

 
 

 

 

 

 Chapter 9 is devoted to the solution of systems such as these. 
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• Mathematical models characterize physical systems, often 

using differential equations. 

• Model Construction:  Translating physical situation into 

mathematical terms.  Clearly state physical principles 

believed to govern process.  Differential equation is a 

mathematical model of process, typically an approximation. 

• Analysis of Model:  Solving equations or obtaining 

qualitative understanding of solution.  May simplify  

model, as long as physical essentials are preserved. 

• Comparison with Experiment or Observation:  Verifies 

solution or suggests refinement of model. 



Example 1:  Salt Solution   (1 of 7) 

• At time t = 0, a tank contains Q0 lb of salt dissolved in 100 gal 

of water.  Assume that water containing ¼ lb of salt/gal is 

entering tank at rate of r gal/min, and leaves at same rate.  

(a)  Set up IVP that describes this salt solution flow process. 

(b)  Find amount of salt Q(t) in tank at any given time t. 

(c)  Find limiting amount QL of salt Q(t) in tank after a very long time. 

(d)  If r = 3 & Q0 = 2QL , find time T after which salt is within 2% of QL .  

(e)  Find flow rate r required if T is not to exceed 45 min.  

 



Example 1:  (a) Initial Value Problem  (2 of 7) 

• At time t = 0, a tank contains Q0 lb of salt dissolved in 100 

gal of water.  Assume water containing ¼ lb of salt/gal enters 

tank at rate of r gal/min, and leaves at same rate. 

• Assume salt is neither created or destroyed in tank, and 

distribution of salt in tank is uniform (stirred).  Then  

 

• Rate in: (1/4 lb salt/gal)(r gal/min) = (r/4) lb/min 

• Rate out:  If there is Q(t) lbs salt in tank at time t, then 

concentration of salt is Q(t) lb/100 gal, and it flows out at 

rate of [Q(t)r/100] lb/min.  

• Thus our IVP is 
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Example 1:  (b) Find Solution Q(t)   (3 of 7) 

• To find amount of salt Q(t) in tank at any given time t, we 

need to solve the initial value problem 

 

 

• To solve, we use the method of integrating factors: 
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Example 1:  

(c) Find Limiting Amount QL   (4 of 7) 

• Next, we find the limiting amount QL of salt Q(t) in tank 

after a very long time: 

 
• This result makes sense, since over time the incoming salt 

solution will replace original salt solution in tank.  Since 

incoming solution contains 0.25 lb salt / gal, and tank is 100 

gal, eventually tank will contain 25 lb salt. 

• The graph shows integral curves 

 for r = 3 and different values of Q0.  
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Example 1:  (d)  Find Time T    (5 of 7) 

• Suppose r = 3 and Q0 = 2QL .  To find time T after which 

Q(t) is within 2% of QL , first note Q0 = 2QL  = 50 lb, hence 

 

• Next, 2% of 25 lb is 0.5 lb, and thus we solve 

Q(t) = 25 + (Q0 - 25)e-rt /100 = 25 + 25e-0.03t

min 4.130
03.0

)02.0ln(

03.0)02.0ln(

02.0

25255.25

03.0

03.0
















T

T

e

e

T

T



Example 1:  (e)  Find Flow Rate   (6 of 7) 

• To find flow rate r required if T is not to exceed 45 minutes, 

recall from part (d) that Q0 = 2QL = 50 lb, with 

 

 and solution curves decrease from 50 to 25.5.   

• Thus we solve 
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Example 1:  Discussion   (7 of 7) 

• Since this situation is hypothetical, the model is valid.  

• As long as flow rates are accurate, and concentration of salt 

in tank is uniform, then differential equation is accurate 

description of the flow process. 

• Models of this kind are often used for pollution in lake, drug 

concentration in organ, etc.  Flow rates may be harder to 

determine, or may be variable, and concentration may not be 

uniform.  Also, rates of inflow and outflow may not be same, 

so variation in amount of liquid must be taken into account. 

 



Example 2: Compound Interest (1 of 3) 

• If a sum of money is deposited in a bank that pays interest 
at an annual rate, r, compounded continuously, the 
amount of money (S) at any time in the fund will satisty 
the differential equation: 

 
 

 

• The solution to this differential equation, found by 
separating the variables and solving for S, becomes: 

 

• Thus, with continuous compounding, the amount in the 
account grows exponentially over time. 
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Example 2: Compound Interest (2 of 3) 

• In general, if interest in an account is to be compounded m 

times a year, rather than continuously, the equation 

describing the amount in the account for any time t, 

measured in years, becomes: 

• The relationship between these two results is clarified if 

we recall from calculus that 
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Growth of Capital at a Return Rate of r = 8%  

For Several Modes of Compounding: S(t)/S(0)  

 

A comparison of the 

accumulation of funds for 

quarterly, daily, and 

continuous compounding is 

shown for short-term and 

long-term periods. 

t m = 4 m = 365 exp(rt) 

Years Compounded  
Quarterly 

Compounded 
Daily 

Compounded 
Continuously 

1 1.082432 1.083278 1.083287 

2 1.171659 1.17349 1.173511 

5 1.485947 1.491759 1.491825 

10 2.20804 2.225346 2.225541 

20 4.875439 4.952164 4.953032 

30 10.76516 11.02028 11.02318 

40 23.76991 24.52393 24.53253 



Example 2: Deposits and Withdrawals (3 of 3) 

• Returning now to the case of continuous compounding, let us 
suppose that there may be deposits or withdrawals in addition to 
the accrual of interest, dividends, or capital gains. If we assume 
that the deposits or withdrawals take place at a constant rate k, 
this is described by the differential equation: 
 

 

 

 

 where k is positive for deposits and negative for withdrawals. 

• We can solve this as a general linear equation to arrive at the 
solution: 

• To apply this equation, suppose that one opens an IRA at age 25 
and makes annual investments of $2000 thereafter with r = 8%.  

• At age 65,  
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Example 3: Pond Pollution   (1 of 7) 

• Consider a pond that initially contains 10 million gallons of 

fresh water.  Water containing toxic waste flows into the 

pond at the rate of 5 million gal/year, and exits at same rate.  

The concentration c(t) of toxic waste in the incoming water 

varies periodically with time: 

    c(t) = 2 + sin(2t) g/gal 

 (a) Construct a mathematical model of this flow process and 

determine amount Q(t) of toxic waste in pond at time t. 

 (b)  Plot solution and describe in words the effect of the 

variation in the incoming concentration.  



Example 3:  (a) Initial Value Problem  (2 of 7) 

• Pond initially contains 10 million gallons of fresh water.  

Water containing toxic waste flows into pond at rate of 5 

million gal/year, and exits pond at same rate. Concentration 

is c(t) = 2 + sin 2t g/gal of toxic waste in incoming water. 

• Assume toxic waste is neither created or destroyed in pond, 

and distribution of toxic waste in pond is uniform (stirred). 

• Then  

• Rate in:  (2 + sin(2t))g/gal(             )gal/year 

• If there is Q(t) g of toxic waste in pond at time t, then 

concentration of salt is Q(t) lb/107 gal, thus 

• Rate out: 

out rate -in  rate / dtdQ

5 ´106

(5 ´106 )gal/year(Q(t) /107 )g/gal = Q(t) / 2 g/yr



Example 3:   

(a) Initial Value Problem, Scaling  (3 of 7) 

• Recall from previous slide that 

– Rate in:   (2 + sin 2t g/gal)(5 x 106 gal/year) 

– Rate out:  (Q(t) g/107 gal)(5 x 106 gal/year) = Q(t)/2 g/yr. 

• Then initial value problem is 

 
 

 

• Change of variable (scaling):  Let q(t) = Q(t)/106.  Then 
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Example 3:   

(a) Solve Initial Value Problem  (4 of 7) 

• To solve the initial value problem 

 

 we use the method of integrating factors: 

 

 
 

• Using integration by parts (see next slide for details) and the 

initial condition, we obtain after simplifying, 

  



 dtteetq

eet

tt

tat

2sin510)(

)(

2/2/

2/

0)0(,2sin5102/  qtqq

q(t) = e- t /2 20et /2 -
40

17
et /2 cos(2t) +

10

17
et /2 sin(2t) + c

é

ëê
ù

ûú

q(t) = 20 -
40

17
cos(2t)+

10

17
sin(2t) -

300

17
e-t /2



Example 3: (a) Integration by Parts  (5 of 7) 
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Example 3: (b) Analysis of solution    (6 of 7) 

• Thus our initial value problem and solution is 

 

 

 
 

• A graph of solution along with direction field for differential 

equation is given below.   

• Note that exponential term is  

 important for small t, but decays 

 away for large t.  Also, y = 20  

 would be equilibrium solution  

 if not for sin(2t) term.  
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Example 3:  

(b) Analysis of Assumptions    (7 of 7) 

• Amount of water in pond controlled entirely by rates of flow, 

and none is lost by evaporation or seepage into ground, or 

gained by rainfall, etc. 

• Amount of pollution in pond controlled entirely by rates of 

flow, and none is lost by evaporation, seepage into ground, 

diluted by rainfall, absorbed by fish, plants or other 

organisms, etc. 

• Distribution of pollution throughout pond is uniform. 



Example 4:  Escape Velocity (1 of 2) 

• A body of mass m is projected away from the earth in a 

direction perpendicular to the earth’s surface with initial 

velocity v0  and no air resistance. Taking into account the 

variation of the earth’s gravitational field with distance, 

the gravitational force acting on the mass is 

 
 

 R is the radius of the earth and g is the acceleration due to 

gravity at the earth’s surface. Using Newton’s law F = ma, 

 

• Since    and cancelling the m’s, the differential 

equation becomes 

w(x) = -
mgR2

(R + x)2
  where x is the distance above the earth's surface

m
dv

dt
= -

mgR2

(R + x)2
, v(0) = v0

v
dx

dv

dt

dx

dx

dv

dt

dv


v
dv

dx
= -

gR2

(R + x)2
, since x = 0  when t  =  0, v(0) = v0



Example 4:  Escape Velocity (2 of 2) 

• We can solve the differential equation by separating the 

variables and integrating to arrive at: 

 
 

 

• The maximum height (altitude) will be reached when the 

velocity is zero. Calling that maximum height Amax, we have 
 

 

 

 

• We can now find the initial velocity required to lift a body to a 

height Amax :               

 

• and, taking the limit as Amax→∞, we get 

     the escape velocity. 

• Notice that this does not depend on the mass of the body. 
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Boyce/DiPrima/Meade 11th ed, Ch 2.4: Differences Between 

Linear and Nonlinear Equations 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc. 

• Recall that a first order ODE has the form y' = f (t, y), and is 
linear if f is linear in y, and nonlinear if f is nonlinear in y.  

• Examples:  y' = t y - e 
t,   y' = t y2.    

• In this section, we will see that first order linear and 
nonlinear equations differ in a number of ways, including: 

– The theory describing existence and uniqueness of solutions, and 
corresponding domains, are different.   

– Solutions to linear equations can be expressed in terms of a general 
solution, which is not usually the case for nonlinear equations.   

– Linear equations have explicitly defined solutions while nonlinear 
equations typically do not, and nonlinear equations may or may not 
have implicitly defined solutions.  

• For both types of equations, numerical and graphical 
construction of solutions are important. 



Theorem 2.4.1 

• Consider the linear first order initial value problem: 

 

 

 If the functions p and g are continuous on an open interval 

                       containing the point t = t0, then there exists a 

unique function              that satisfies the IVP for each t in I. 

      

• Proof outline:  Use Ch 2.1 discussion and results: 
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Theorem 2.4.2 

• Consider the nonlinear first order initial value problem: 

 

• Let the functions f and             be continuous in some 
rectangle                               containing the point (t0, y0).  

• Then in some interval t0 – h < t < t0 + h in the rectangle there 
is a unique solution              of the initial value problem.     

•           

• Proof discussion:  Since there is no general formula for the 
solution of arbitrary nonlinear first order IVPs, this proof is 
difficult, and is beyond the scope of this course.   

• It turns out that conditions stated in Thm 2.4.2 are sufficient 
but not necessary to guarantee existence of a solution, and 
continuity of f ensures existence but not uniqueness of              
. 
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Example 1:  Linear IVP 

• Recall the initial value problem from Chapter 2.1 slides: 

 

• The solution to this initial value problem is defined for  

 t > 0, the interval on which p(t) = 2/t is continuous.  

• If the initial condition is y(–1) = 2, then the solution is 

given by same expression as above, but is defined on t < 0. 

• In either case, Theorem 2.4.1  

 guarantees that solution is unique 

 on corresponding interval. 
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Example 2:  Nonlinear IVP  (1 of 2) 

• Consider nonlinear initial value problem from Ch 2.2: 

 

 

• The functions f and             are given by 

 

 

 and are continuous except on line y = 1. 

• Thus we can draw an open rectangle about (0, –1) in which f 

and             are continuous, as long as it doesn’t cover y = 1.  

• How wide is the rectangle?  Recall solution defined for x > –2, 

with 
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Example 2:  Change Initial Condition  (2 of 2) 

• Our nonlinear initial value problem is 

 

 

 with 

 

 

 which are continuous except on line y = 1. 

• If we change initial condition to y(0) = 1, then Theorem 2.4.2 

is not satisfied.  Solving this new IVP, we obtain 

 

• Thus a solution exists but is not unique. 
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Example 3:  Nonlinear IVP 

• Consider nonlinear initial value problem 

 

• The functions f and             are given by 

 

 

• Thus f continuous everywhere, but             doesn’t exist at 

     y = 0, and hence Theorem 2.4.2 does not apply. Solutions exist      
but are not unique. Separating variables and solving, we obtain 

 

 

• If initial condition is not on t-axis, then Theorem 2.4.2 does 
guarantee existence and uniqueness. 
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Example 4:  Nonlinear IVP 

• Consider nonlinear initial value problem 

 

• The functions f and             are given by 

 
 

• Thus f and             are continuous at t = 0, so Theorem 2.4.2 

guarantees that solutions exist and are unique.  

• Separating variables and solving, we obtain 

 
 

• The solution y(t) is defined on (      , 1). Note that the 

singularity at t = 1 is not obvious from original IVP statement.  
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Interval of Existence:  Linear Equations 

• By Theorem 2.4.1, the solution of a linear initial value 

problem 

 

 exists throughout any interval about t = t0 on which p and g 

are continuous.   

• Vertical asymptotes or other discontinuities of solution can 

only occur at points of discontinuity of p or g.  

• However, solution may be differentiable at points of 

discontinuity of p or g.  See Chapter 2.1: Example 3 of text. 

• Compare these comments with Example 1 and with previous 

linear equations in Chapter 1 and Chapter 2.  
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Interval of Existence:  Nonlinear Equations 

• In the nonlinear case, the interval on which a solution exists 

may be difficult to determine.   

• The solution             exists as long as              remains within a 

rectangular region indicated in Theorem 2.4.2.  This is what 

determines the value of h in that theorem. Since        is usually 

not known, it may be impossible to determine this region. 

• In any case, the interval on which a solution exists may have 

no simple relationship to the function f in the differential 

equation y' = f (t, y), in contrast with linear equations.  

• Furthermore, any singularities in the solution may depend on 

the initial condition as well as the equation.  

• Compare these comments to the preceding examples.  

y = f(t) [t,  f(t)]

f(t)



General Solutions 

• For a first order linear equation, it is possible to obtain a 

solution containing one arbitrary constant, from which all 

solutions follow by specifying values for this constant. 

• For nonlinear equations, such general solutions may not 

exist.  That is, even though a solution containing an arbitrary 

constant may be found, there may be other solutions that 

cannot be obtained by specifying values for this constant.    

• Consider Example 4: The function y = 0 is a solution of the 

differential equation, but it cannot be obtained by specifying 

a value for c in solution found using separation of variables:  

dy

dt
= y2 Þ y = -

1

t + c



Explicit Solutions: Linear Equations  

• By Theorem 2.4.1, a solution of a linear initial value 

problem 

 

 exists throughout any interval about t = t0 on which p and g 

are continuous, and this solution is unique. 

• The solution has an explicit representation, 

 

 

 

 and can be evaluated at any appropriate value of t, as long 

as the necessary integrals can be computed.  
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Explicit Solution Approximation 

• For linear first order equations, an explicit representation 

for the solution can be found, as long as necessary 

integrals can be solved.   

• If integrals can’t be solved, then numerical methods are 

often used to approximate the integrals.   
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Implicit Solutions:  Nonlinear Equations 

• For nonlinear equations, explicit representations of solutions 

may not exist.   

• As we have seen, it may be possible to obtain an equation 

which implicitly defines the solution.  If equation is simple 

enough, an explicit representation can sometimes be found.   

• Otherwise, numerical calculations are necessary in order to 

determine values of y for given values of t.  These values can 

then be plotted in a sketch of the integral curve.  

• Recall the examples from earlier in the 

 chapter and consider the following example 
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Direction Fields 

• In addition to using numerical methods to sketch the 

integral curve, the nonlinear equation itself can provide 

enough information to sketch a direction field.   

• The direction field can often show the qualitative form of 

solutions, and can help identify regions in the ty-plane 

where solutions exhibit interesting features that merit more 

detailed analytical or numerical investigations.  

• Chapter 2.7 and Chapter 8 focus on numerical methods.  



Boyce/DiPrima/Meade 11th ed, Ch 2.5: Autonomous Equations 

and Population Dynamics 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade  ©2017 by John Wiley & Sons, Inc. 

• In this section we examine equations of the form dy/dt = f (y),  

called autonomous equations, where the independent 

variable t does not appear explicitly.  

• The main purpose of this section is to learn how geometric 

methods can be used to obtain qualitative information 

directly from a differential equation without solving it. 

• Example (Exponential Growth): 

 

• Solution: 
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Logistic Growth 

• An exponential model y' = ry, with solution y = ert, predicts 

unlimited growth, with rate r > 0 independent of population.  

• Assuming instead that growth rate depends on population 

size, replace r by a function h(y) to obtain                 .  

• We want to choose growth rate h(y) so that 

– h(y)      r  > 0  when y is small,  

– h(y) decreases as y grows larger, and 

– h(y) < 0 when y is sufficiently large.  

 The simplest such function is h(y) = r – ay, where a > 0.   

• Our differential equation then becomes 

 

• This equation is known as the Verhulst, or logistic, equation. 
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Logistic Equation 

• The logistic equation from the previous slide is 

 

• This equation is often rewritten in the equivalent form 

 

 

 where K = r/a.  The constant r is called the intrinsic growth 

rate, and as we will see, K represents the carrying capacity 

of the population. 

• A direction field for the logistic  

 equation with r = 1 and K = 10 

 is given here.   
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Logistic Equation: Equilibrium Solutions 

• Our logistic equation is  

 

 

• Two equilibrium solutions are clearly present: 

 

• In direction field below, with r = 1, K = 10, note behavior of 

solutions near equilibrium solutions: 

 y = 0 is unstable, 

 y = 10 is asymptotically stable. 
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Autonomous Equations: Equilibrium Solns 

• Equilibrium solutions of a general first order autonomous 

equation y' = f (y) can be found by locating roots of f (y) = 0.   

• These roots of  f (y) are called critical points. 

• For example, the critical points of the logistic equation 

 

 

• are y = 0 and y = K.   

• Thus critical points are constant  

 functions (equilibrium solutions) 

 in this setting.  
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Logistic Equation: Qualitative Analysis and 

Curve Sketching  (1 of 7) 

• To better understand the nature of solutions to autonomous 

equations, we start by graphing  f (y) vs. y.   

• In the case of logistic growth, that means graphing the 

following function and analyzing its graph using calculus. 
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Logistic Equation: Critical Points  (2 of 7) 

• The intercepts of f occur at y = 0 and y = K, corresponding 

to the critical points of logistic equation.  

• The vertex of the parabola is (K/2, rK/4), as shown below. 
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Logistic Solution: Increasing, Decreasing  (3 of 7) 

• Note dy/dt > 0 for 0 < y < K, so y is an increasing function of t 

there (indicate with right arrows along y-axis on 0 < y < K). 

• Similarly, y is a decreasing function of t for y > K (indicate 

with left arrows along y-axis on y > K). 

• In this context the y-axis is often called the phase line.   
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Logistic Solution: Steepness, Flatness   (4 of 7) 

• Note dy/dt  0 when y  0 or y  K, so y is relatively flat there, 

and y gets steep as y moves away from 0 or K. 
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Logistic Solution: Concavity   (5 of 7) 

• Next, to examine concavity of y(t), we find y'': 

 

 

• Thus the graph of y is concave up when f and f ' have same 

sign, which occurs when 0 < y < K/2 and y > K. 

• The graph of y is concave down when f and f ' have opposite 

signs, which occurs when K/2 < y < K. 

• Inflection point occurs at intersection of y and line y = K/2. 
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Logistic Solution: Curve Sketching (6 of 7) 

• Combining the information on the previous slides, we have: 

– Graph of y increasing when 0 < y < K. 

– Graph of y decreasing when y > K. 

– Slope of y approximately zero when y     0 or y     K. 

– Graph of y concave up when 0 < y < K/2 and y > K. 

– Graph of y concave down when K/2 < y < K. 

– Inflection point when y = K/2. 

• Using this information, we can  

 sketch solution curves y for  

 different initial conditions.  

@ @



Logistic Solution:  Discussion (7 of 7) 

• Using only the information present in the differential equation 

and without solving it, we obtained qualitative information 

about the solution y.   

• For example, we know where the graph of y is the steepest, 

and hence where y changes most rapidly.  Also, y tends 

asymptotically to the line y = K, for large t.   

• The value of K is known as the environmental carrying 

capacity, or saturation level, for the species. 

• Note how solution behavior differs  

 from that of exponential equation,  

 and thus the decisive effect of  

 nonlinear term in logistic equation.  



Solving the Logistic Equation  (1 of 3) 

• Provided y ≠ 0 and y ≠ K, we can rewrite the logistic ODE: 

 

 

• Expanding the left side using partial fractions, 

 

 

• Thus the logistic equation can be rewritten as 

 

 

• Integrating the above result, we obtain 
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Solving the Logistic Equation  (2 of 3) 

• We have: 

 

 

• If 0 < y0 < K, then 0 < y < K and hence 

 

 

• Rewriting, using properties of logs: 
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Solution of the Logistic Equation  (3 of 3) 

• We have: 

 

 

 for 0 < y0 < K. 
 

• It can be shown that solution is also valid for y0 > K.  Also, 

this solution contains equilibrium solutions y = 0 and y = K.  

• Hence solution to logistic equation is 
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Logistic Solution: Asymptotic Behavior  

• The solution to logistic ODE is 

 

 

 

• We use limits to confirm asymptotic behavior of solution: 

 

 

• Thus we can conclude that the equilibrium solution y(t) = K 
is asymptotically stable, while equilibrium solution y(t) = 0 
is unstable.   

• The only way to guarantee that the solution remains near 
zero is to make y0 = 0. 
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Example 1:  Pacific Halibut  (1 of 2) 

• Let y be biomass (in kg) of halibut population at time t, with 

r = 0.71/year and K = 80.5 x 106 kg.  If y0 = 0.25K, find  

 (a) biomass 2 years later 

 (b) the time    such that y(   ) = 0.75K.   

(a) For convenience, scale equation: 

 

 

 Then 

 

 

 and hence  
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Example 1:  Pacific Halibut, Part (b)  (2 of 2) 

(b) Find time    for which y(   ) = 0.75K.  

0.75 =
y0 K

y0 K + 1- y0 K( )e-rt
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Critical Threshold Equation  (1 of 2) 

• Consider the following modification of the logistic ODE: 

 

 
 

• The graph of the right hand side f (y) is given below.  
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Critical Threshold Equation: Qualitative 

Analysis and Solution   (2 of 2) 

• Performing an analysis similar to that of the logistic case, we 

obtain a graph of solution curves shown below. 

• T is a threshold level for y0, in that population dies off or 

grows unbounded, depending on which side of T the initial 

value y0 is. 

• See also laminar flow discussion in text. 

• It can be shown that the solution to the threshold equation 
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Logistic Growth with a Threshold  (1 of 2) 

• In order to avoid unbounded growth for y > T as in previous 

setting, consider the following modification of the logistic 

equation: 

 

 
 

• The graph of the right hand side f (y) is given below.  
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Logistic Growth with a Threshold  (2 of 2) 

• Performing an analysis similar to that of the logistic case, we 

obtain a graph of solution curves shown below right. 

• T is threshold value for y0, in that population dies off or 

grows towards K, depending on which side of T y0 is.   

• K is the carrying capacity level. 

• Note: y = 0 and y = K are stable equilibrium solutions,  

 and y = T is an unstable equilibrium solution. 
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• Consider a first order ODE of the form 

 

• Suppose there is a function            such that 

 

 and such that            = c defines y =         implicitly. Then 

 

 

 and hence the original ODE becomes  

 

 

• Thus              = c defines a solution implicitly.   

• In this case, the ODE is said to be an exact differential 
equation.  
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d

dx
y (x,f(x))

d
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y (x,f(x)) = 0

y (x, y)

y (x, y) f(x)
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Example 1:  Exact Equation 

• Consider the equation: 

 

• It is neither linear nor separable, but there is a function φ such 

that  

 

• The function that works is 

• Thinking of y as a function of x and calling upon the chain 

rule, the differential equation and its solution become  

022 2  yxyyx

2x + y2 =
¶y

¶y
 and 2xy =

¶y

¶x

y (x, y) = x2 + xy2

dy

dx
=

d

dx
(x2 + xy2 ) = 0 Þy (x, y) = x2 + xy2 = c



Theorem 2.6.1 

• Suppose an ODE can be written in the form 

 

 where the functions M, N, My and Nx are all continuous in the 

rectangular region R:                                   . Then Eq. (1) is 

an exact differential equation if and only if  

 

• That is, there exists a function     satisfying the conditions 

 

 if and only if M and N satisfy Equation (2).   
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Example 2: Exact Equation   (1 of 3) 

0)1(sin)2cos( 2  yexxxexy yy

1sin),(,2cos),( 2  yy exxyxNxexyyxM

exact is ODE),(2cos),(  yxNxexyxM x

y

y

1sin),(,2cos),( 2  y

y

y

x exxNyxxexyMyx 

• Consider the following differential equation.  

 

• Then  

 

 and hence 

 

• From Theorem 2.6.1,  

 

• Thus  

y (x, y) = y x(x, y)dxò = ycos x + 2xey( )dxò = ysin x + x2ey + h(y)



Example 2: Solution   (2 of 3) 

1sin),(,2cos),( 2  y

y

y

x exxNyxxexyMyx 

• We have  

 

 and  

 

• It follows that 

 

 

• Thus  

 

• By Theorem 2.6.1, the solution is given implicitly by   

y (x, y) = y x(x, y)dxò = ycos x + 2xey( )dxò = ysin x + x2ey + h(y)

y y(x, y) = sin x + x2ey -1 = sin x + x2ey + h '(y)

Þ h '(y) = -1 Þ h(y) = -y + k

kyexxyyx y  2sin),(

cyexxy y  2sin



Example 2:  

Direction Field and Solution Curves (3 of 3)  

• Our differential equation and solutions are given by 

 

 

• A graph of the direction field for this differential equation,  

 along with several solution curves, is given below.   
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Example 3: Non-Exact Equation   (1 of 2) 

• Consider the following differential equation.  

 

• Then  

 

 and hence 

 

• To show that our differential equation cannot be solved by 

this method, let us seek a function    such that 

 

• Thus  
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Example 3: Non-Exact Equation   (2 of 2) 

• We seek     such that  

 

 and  

 

• Then 

 

 

• Because h’(y) depends on x as well as y, there is no such 

function     (x, y) such that   

xyxNyxyxyMyx yx  22 ),(,3),( 
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Integrating Factors 

• It is sometimes possible to convert a differential equation that 
is not exact into an exact equation by multiplying the equation 
by a suitable integrating factor    (x, y):  

 

 

• For this equation to be exact, we need 

 

• This partial differential equation may be difficult to solve.  If                  
is a function of x alone, then       = 0 and hence we solve 

 

 

 provided right side is a function of x only.  Similarly if     is a 
function of y alone.  See text for more details. 
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Example 4: Non-Exact Equation 

• Consider the following non-exact differential equation.  

 

• Seeking an integrating factor, we solve the linear equation 

 

 

• Multiplying our differential equation by     , we obtain the 

exact equation 

 

 which has its solutions given implicitly by 
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• Recall that a first order initial value problem has the form 

 

 

• If f  and             are continuous, then this IVP has a unique 

solution            in some interval about t0.   

• When the differential equation is linear, separable or exact, 

we can find the solution by symbolic manipulations.   

• However, the solutions for most differential equations of 

this form cannot be found by analytical means.  

• Therefore it is important to be able to approach the problem 

in other ways.  
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Direction Fields 

• For the first order initial value problem  

 

 we can sketch a direction field and visualize the behavior of 

solutions.  This has the advantage of being a relatively 

simple process, even for complicated equations.  However, 

direction fields do not lend themselves to quantitative 

computations or comparisons. 
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Numerical Methods 

• For our first order initial value problem 

 

 an alternative is to compute approximate values of the 

solution              at a selected set of t-values.   

• Ideally, the approximate solution values will be accompanied 

by error bounds that ensure the level of accuracy.  

• There are many numerical methods that produce numerical 

approximations to solutions of differential equations, some of 

which are discussed in Chapter 8.   

• In this section, we examine the tangent line method, which is 

also called Euler’s Method.   

,)(),,( 00 ytyytfy 

y = f(t)



Euler’s Method: Tangent Line Approximation 

• For the initial value problem  

 

 we begin by approximating solution              at initial point t0.  

• The solution passes through initial point (t0, y0) with slope  

 f (t0, y0). The line tangent to the solution at this initial point is 

 

• The tangent line is a good approximation to solution curve on 

an interval short enough. 

• Thus if t1 is close enough to t0,  

 we can approximate              by  
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Euler’s Formula 

• For a point t2 close to t1, we approximate              using the 

line passing through (t1, y1) with slope f (t1, y1):  

 

• Thus we create a sequence yn of approximations              : 

 

 

 
 

  

 where fn = f (tn, yn).   

• For a uniform step size  tn+1= –tn+ h, Euler’s formula 

becomes 
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Euler Approximation 

• To graph an Euler approximation, we plot the points  

 (t0, y0), (t1, y1),…, (tn, yn), and then connect these points 

with line segments.  
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Example 1:  Euler’s Method    (1 of 3) 

• For the initial value problem 

 

 we can use Euler’s method with h = 0.2 to approximate the 

solution at t = 0.2, 0.4, 0.6, 0.8, and 1.0 as shown below.   
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Example 1:  Exact Solution    (2 of 3) 

• We can find the exact solution to our IVP, as in Chapter 2.1: 
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Example 1:  Error Analysis  (3 of 3) 

• From table below, we see that the errors start small, but 

get larger.  This is most likely due to the fact that the exact 

solution is not linear on [0, 1].  Note:  

t Exact y Approx y Error % Rel Error

0 1 1 0 0

0.2 1.43711 1.5 -0.06 -4.38

0.4 1.7565 1.87 -0.11 -6.46

0..6 1.96936 2.123 -0.15 -7.8

0.8 2.08584 2.2707 -0.18 -8.86

1 2.1151 2.32363 -0.2085 -9.8591083

100 Error  RelativePercent 



exact

approxexact

y

yy
  

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0
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2.5

y

Exact y in red 

Approximate y in blue 



Example 2:  Euler’s Method  (1 of 3) 

• For the initial value problem 

 

 we can use Euler’s method with various 

step sizes to approximate the solution at t = 

1.0, 2.0, 3.0, 4.0, and 5.0 and compare our 

results to the exact solution 

 

 at those values of t. 
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Example 2:  Euler’s Method  (2 of 3) 

• Comparison of exact solution with Euler’s Method 

for h = 0.1, 0.05, 0.25, 0.01  

t h = 0.1 h = 0.05 h = 0.025 h = 0.01 EXACT 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 

1.0 2.2164 2.1651 2.1399 2.1250 2.1151 

2.0 1.3397 1.2780 1.2476 1.2295 1.2176 

3.0 –0.7903 –0.8459 –0.8734 –0.8898 –0.9007 

4.0 –3.6707 –3.7152 –3.7373 –3.7506 –3.7594 

5.0 –7.0003 –7.0337 –7.0504 –7.0604 –7.0671 



Example 2:  Euler’s Method  (3 of 3) 
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Example 3:  Euler’s Method  (1 of 3) 

• For the initial value problem 

 

  

we can use Euler’s method with h = 0.1 to approximate the 
solution at t = 1, 2, 3, and 4, as shown below. 

 

 

 

 

 

• Exact solution (see Chapter 2.1):      
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Example 3:  Error Analysis  (2 of 3) 

• The first ten Euler approximationss are given in table below 

on left.  A table of approximations for t = 0, 1, 2, 3 is given 

on right for h = 0.1.  See text for numerical results with h = 

0.05, 0.025, 0.01. 

• The errors are small initially, but quickly reach an 

unacceptable level.  This suggests a nonlinear solution.  

t Exact y Approx y Error % Rel Error

0.00 1.00 1.00 0.00 0.00

0.10 1.66 1.60 0.06 3.55

0.20 2.45 2.31 0.14 5.81

0.30 3.41 3.15 0.26 7.59

0.40 4.57 4.15 0.42 9.14

0.50 5.98 5.34 0.63 10.58

0.60 7.68 6.76 0.92 11.96

0.70 9.75 8.45 1.30 13.31

0.80 12.27 10.47 1.80 14.64

0.90 15.34 12.89 2.45 15.96

1.00 19.07 15.78 3.29 17.27

t Exact y Approx y Error % Rel Error

0.00 1.00 1.00 0.00 0.00

1.00 19.07 15.78 3.29 17.27

2.00 149.39 104.68 44.72 29.93

3.00 1109.18 652.53 456.64 41.17

4.00 8197.88 4042.12 4155.76 50.69
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Example 3:  Error Analysis & Graphs  (3 of 3) 

• Given below are graphs showing the exact solution (red) 

plotted together with the Euler approximation (blue).    

t Exact y Approx y Error % Rel Error

0.00 1.00 1.00 0.00 0.00

1.00 19.07 15.78 3.29 17.27

2.00 149.39 104.68 44.72 29.93

3.00 1109.18 652.53 456.64 41.17

4.00 8197.88 4042.12 4155.76 50.69
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General Error Analysis Discussion   (1 of 2) 

• Recall that if f  and             are continuous, then our first 

order initial value problem 

 

 has a solution             in some interval about t0.   

• In fact, the equation has infinitely many solutions, each one 

indexed by a constant c determined by the initial condition.  

• Thus       is the member of an infinite family of solutions 

that satisfies               .  

00 )(),,( ytyytf
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General Error Analysis Discussion   (2 of 2) 

• The first step of Euler’s method uses the tangent line to      

at the point (t0, y0) in order to estimate         with y1. 

• The point (t1, y1) is typically not on the graph of     , because 

y1 is an approximation of         . 

• Thus the next iteration of Euler’s method does not use a 

tangent line approximation to    , but rather to a nearby 

solution     that passes through the point (t1, y1).    

• Thus Euler’s method uses a  

 succession of tangent lines  

 to a sequence of different 

 solutions                               of                                               

the differential equation. 

f

f(t1)

f

f(t1)

f

f1

f(t),  f1(t),  f2(t),...



Error Bounds and Numerical Methods 

• In using a numerical procedure, keep in mind the question of 
whether the results are accurate enough to be useful.   

• In our examples, we compared approximations with exact 
solutions.  However, numerical procedures are usually used 
when an exact solution is not available.  What is needed are 
bounds for (or estimates of) errors, which do not require 
knowledge of exact solution. More discussion on these issues 
and other numerical methods is given in Chapter 8. 

• Since numerical approximations ideally reflect behavior of 
solution, a member of a diverging family of solutions is harder 
to approximate than a member of a converging family.   

• Also, direction fields are often a relatively easy first step in 
understanding behavior of solutions.  
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• The purpose of this section is to prove Theorem 2.4.2, the 

fundamental existence and uniqueness theorem for first 

order initial value problems. This theorem states that under 

certain conditions on f(t, y), the initial value problem 

 

 has a unique solution in some interval containing     . 

• First, we note that it is sufficient to consider the problem in 

which the point          is the origin. If some other initial 

point is given, we can always make a preliminary change of 

variables, corresponding to a translation of the coordinate 

axes, that will take the given point into the origin.   

00)(),,(' ytyytfy 

0t

),( 00 yt



Theorem 2.8.1 

• If f and           are continuous in a rectangle R: |t| ≤ a, |y| ≤ b, 

then there is some interval |t| ≤ h ≤ a in which there exists a 

unique solution              of the initial value problem 

 
 

• We will begin the proof by transforming the differential 

equation into an integral equation. If we suppose that there 

is a differentiable function              that satisfies the initial 

value problem, then              is a continuous function of t 

only. Hence we can integrate                                     from 

the initial value t = 0 to an arbitrary value t, obtaining   
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Proving the Theorem for the Integral 

Equation 

• It is more convenient to show that there is a unique solution 

to the integral equation in a certain interval |t| ≤ h than to 

show that there is a unique solution to the corresponding 

differential equation. The integral equation also satisfies the 

initial condition. 

 
 

 

• The same conclusion will then hold for the initial value 

problem 

 

 as holds for the integral equation. 

  

 

 

f(t) = f (s,f(s))ds
0

t

ò Þf(0) = 0 s is a dummy variable( )  
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The Method of Successive Approximations 

• One method of showing that the integral equation has a 

unique solution is known as the method of successive 

approximations or Picard’s iteration method. We begin by 

choosing an initial function that in some way approximates 

the solution. The simplest choice utilizes the initial condition   

 

• The next approximation     is obtained by substituting          

for         into the right side of the integral equation. Thus 
 

 

 

 

 

•  Similarly, 
 

• And in general,           

f0(t) = 0

1

f1(t) = f (s,f0 (s))ds
0

t

ò = f (s,0)ds
0

t

ò  

f2 (t) = f (s,f1(s))ds
0

t

ò  

fn+1(t) = f (s,fn (s))ds
0

t

ò  

f0(s)
f(s)



Examining the Sequence 

• As described on the previous slide, we can generate the 

sequence               with 
 

 

 

 

• Each member of the sequence satisfied the initial condition, 

but in general none satisfies the differential equation. 

However, if for some n = k, we find  , then        

is a solution of the integral equation and hence of the initial 

value problem, and the sequence is terminated.  

• In general, the sequence does not terminate, so we must 

consider the entire infinite sequence. Then to prove the 

theorem, we answer four principal questions. 
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f0 (t) = 0 and fn+1(t) = f (s,fn (s))ds
0

t

ò  

{fn} = f0,f1,f2,...,fn,...
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Four Principal Questions about the 

Sequence 

1. Do all members of the sequence         exist, or may the 

process break down at some stage? 

2. Does the sequence converge? 

3. What are the properties of the limit function? In particular, 

does it satisfy the integral equation and hence the 

corresponding initial value problem? 

4. Is this the only solution or may there be others? 

 

 To gain insight into how these questions can be answered, 

we will begin by considering a relatively simple example. 

 )](,[)(
0

1 

t

nn dsssft 

}{ n



Example 1: An Initial Value Problem  (1 of 6) 

• We will use successive approximations to solve the initial 

value problem 
 

 

• Note first that the corresponding integral equation becomes 

 
 

• The initial approximation                generates the following: 
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f(t) = 2s(1+f(s)])ds
0

t

ò  
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f1(t) = 2s (1+ 0)ds = 2s ds = t 2

0

t

ò
0

t

ò  

f2 (t) = 2s (1+ s2 )ds = (2s + 2s3)ds = t 2 +
t 4

2
0

t

ò
0

t

ò

f3(t) = 2s (1+ s2 + s4/2 )ds = (2s+ 2s3 + s5 )ds =
0

t

ò
0

t

ò t 2 +
t 4

2
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t 6
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Example 1:  An Inductive Proof  (2 of 6) 

• The evolving sequence suggests that  

 

 

• This can be proved true for all n ≥ 1 by mathematical 

induction. It was already established for n =1 and if we 

assume it is true for n = k, we can prove it true for n = k+1: 

 

 

 

 

 

• Thus, the inductive proof is complete. 

 

fn(t) = t 2 +
t 4

2!
+

t 6
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t 2n
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Example 1:  The Limit of the Sequence (3 of 6) 

• A plot of the first five iterates suggests eventual 

convergence to a limit function: 

 

 

 

 

• Taking the limit as n→∞ and recognizing the Taylor series 

and the function to which it converges, we have: 
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Example 1:  The Solution (4 of 6) 

• Now that we have an expression for 

 
 

 

  

 

 

let us examine                for increasing values of k in order to get a sense of the 
interval of convergence: 

 

 

 
 

 

 

 

• The interval of convergence increases as k increases, so the terms of the sequence 
provide a good approximation to the solution about an interval containing t = 0. 
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Example 1:  The Solution Is Unique (5 of 6) 

• To deal with the question of uniqueness, suppose that the IVP 

has two solutions  . Both functions must satisfy the 

integral equation. We will show that their difference is zero: 

 

 

 

 

 

  

 For the last inequality, we restrict t to 0 ≤ t ≤ A/2, where A is 

arbitrary, then 2t  ≤  A. 
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Example 1:  The Solution Is Unique (6 of 6) 

• It is now convenient to define a function U such that 
 

 

 

 

• Notice that U(0) = 0 and U(t) ≥ 0 for t ≥ 0 and U(t) is 

differentiable with         . This gives: 

 

 
• The only way for the function U(t)  to be both greater than 

and less than zero is for it to be identically zero. A similar 

argument applies in the case where t ≤ 0. Thus we can 

conclude that our solution is unique. 
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Theorem 2.8.1:  The First Step in the Proof 

• Returning to the general problem, do all members of the 

sequence exist? In the general case, the continuity of f and 

its partial with respect to y were assumed only in the 

rectangle R: |t| ≤ a, |y| ≤ b. Furthermore, the members of 

the sequence cannot usually be explicitly determined. 

• A theorem from calculus states that a function continuous 

in a closed region is bounded there, so there is some 

positive number M such that |f(t,y) |≤ M for (t, y) in R. 

• Since               , the 

maximum slope for any function in the sequence is M. The 

graphs on page 88 of the text indicate how this may impact 

the interval over which the solution is defined.  
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Theorem 2.8.1:  The Second Step in the 

Proof 
• The terms in the sequence        can be written in the form 

 

 

 

• The convergence of this sequence depends on being able to 

bound the value of            . This can be established 

based on the fact that            is continuous over a closed region 

and hence bounded there. Problems 15 through 18 in the text 

lead you through this validation. 
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Theorem 2.8.1:  The Third Step in the Proof 

• There are details in this proof that are beyond the scope of 

the text. If we assume uniform convergence of our 

sequence over some interval |t| ≤ h ≤ a and the continuity 

of f and its first partial derivative with respect to y for |t| ≤ 

h ≤ a , the following steps can be justified:  

f(t) = lim
n®¥

fn+1(t)= lim
n®¥

f (s,fn (s))ds
0

t

ò  

= lim
n®¥

f (s,fn (s))ds
0

t

ò = f (s, lim
n®¥

fn (s))ds
0

t

ò

= f (s,f(s))ds
0

t
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Theorem 2.8.1:  The Fourth Step in the Proof 

• The steps outlined establish the fact that the function 
 is a solution to the integral equation and hence to the initial 

value problem. To establish its uniqueness, we would 
follow the steps outlined in Example 1. 

• We conjecture that the IVP has two solutions:     .    
Both functions have to satisfy the integral equation and we 
show that their difference is zero using the inequality: 

 
• If the assumptions of this theorem are not satisfied, you 

cannot be guaranteed a unique solution to the IVP. There 
may be no solution or there may be more than one solution. 
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Boyce/DiPrima/Meade 11th ed, Ch 2.9:  

First Order Difference Equations 
 

Elementary Differential Equations and Boundary Value Problems, 11th edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017  by John Wiley & Sons, 

Inc. 

• Although a continuous model leading to a differential equation 

is reasonable and attractive for many problems, there are some 

cases in which a discrete model may be more appropriate. 

Examples of this include accounts where interest is paid or 

charged monthly rather than continuously, applications 

involving drug dosages, and certain population growth 

problems where the population one year depends on the 

population in the previous year. For example, 

 

• Notice here that the independent variable n is discrete. Such 

equations are classified according to order, as linear or 

nonlinear, as homogeneous or nonhomogeneous. There is 

frequently an initial condition describing the first term       . 
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Difference Equation and Equilibrium 

Solution 

• Assume for now that the state at year n +1 depends only on the 

state at year n, and not on the value of n itself 

 

• Then 

 

• This procedure is referred to as iterating the difference and it is 

often of interest to determine the behavior of        as n →∞.   

• An equilibrium solution exists when 

 

 and this is often of special interest, just as it is in differential 

equations. 

)( nn yfy 

ny

yn+1 = f (n,yn ),       n = 0,  1, 2, ...

y1 = f (y0 ),  y2 = f (y1) = f ( f (y0 )),  y3 = f (y2 ) = f 3(y0 ),..., yn = f n(y0 )



Linear Homogeneous Difference Equations 

• Suppose that the population of a certain species in a region in 

year n +1 is a positive multiple of the population in year n: 

 

• Notice that the reproduction rate may differ from year to year. 

 

• If the reproduction rate has the same value ρ for all n: 

 

• If the initial value      is zero, then the equilibrium solution = 0 

• Otherwise 
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Adding/Subtracting a Term to the Equation 

• Suppose we have a net increase in population each year: 

 

• Then iterating this: 

 

 

 

 

 
 

• If the migration is constant (b) each year:  

 

• And as long as ρ ≠ 1, we can use the geometric series formula to get: 
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yn+1 = ryn + bn,    n = 0,  1, 2, ...

y1 = ry0 + b0 ,

y2 = ry1 + b1 = r(ry0 + b0 ) = r 2y0 + rb0 + b1,

y3 = ry2 + b2 = r(r 2y0 + rb0 + b1) + b2 = r 3y0 + r 2b0 + rb1 + b2 ,...
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Conditions for an Equilibrium 

• Letting n →∞  in the equation for      we get: 

 

 

• Recall that ρ ≠ 1. If it were, the sequence would become: 

 

• If |ρ| < 1,                  , so                , an equilibrium solution. 
 

• If |ρ| > 1 or if ρ = –1,            does not exist, so the             

fails to exist unless  
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Example 1: Extending the Model 

• If we have a $10,000 car loan at an annual interest rate of 12%, and we 

wish to pay it off in four years by making monthly payments (–b), we can 

adapt the previous result as follows: 

 

 

 

 
 

• To pay the loan off in four years, we set               and solve for b: 

 

 
• The total amount paid on the loan is 48(263.34)=$12,640.32, so the amount 

of interest paid is $2640.32. 
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yn = loan balance ($) in the n th  month, y0 = 10,000

r = 1+
0.12

12
= 1.01, 1- r = -0.01,
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Nonlinear Difference Equations 

• As is the case with differential equations, nonlinear difference 

equations are much more complicated and have much more varied 

solutions than linear equations. 

• We will analyze only the logistic equation, which is similar to the 

logistic differential equation discussed in 2.5. 

 
  

• Seeking the equilibrium solution yields: 

 

 

 

• Are either of these equilibrium solutions asymptotically stable? 

yn+1 = r yn (1-
yn

k
), n = 0,1,2, ...

Letting  un = yn / k   , un+1 = r un (1- un )
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Examining Points Near Equilibrium Solutions 

• For the first equilibrium solution of zero, the quadratic term ≈ 0:  

 

• We have already examined this equation and concluded that for  |ρ| < 1, 

the solution is asymptotically stable. 

• We will now consider solutions near the second equilibrium: 

 

 

 

 

• From our previous discussion, we can conclude that              provided 

     |2 – ρ| < 1 or 1 < ρ < 3. So, for these values of ρ, we can conclude that 

      the solution is asymptotically stable.   

Near un = 0,  un+1 = run - run

2 » run Þ un+1 = run

vn ® 0

Let  un =
r -1

r
+ vn where vn  is assumed to be small so quadratic term » 0,

Þ vn+1 = (2 - r)vn - r vn

2 » (2 - r)vn after simplifying un+1 expression( )
Þ vn+1 = (2 - r)vn
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Solutions for Varying Initial States and 

Parameter Values Between 0 and 3 (1 of 2) 

  
n un 

 

0 0.3 

1 0.168 

2 0.111821 

3 0.079454 

4 0.058513 

5 0.044071 

6 0.033703 

7 0.026054 

8 0.0203 

9 0.01591 

10 0.012526 
 

0

0.05
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0.35
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un+1=0.8un(1-un)

n un 

 

0 0.8 

1 0.24 

2 0.2736 

3 0.298115 

4 0.313863 

5 0.32303 

6 0.328022 

7 0.330636 

8 0.331974 

9 0.332651 

10 0.332991 
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un+1=1.5un(1-un)

 0u1 n 

3

1

5.1

5.01
u31 n 









8.0,3.0y0  

5.1,8.0y0  



Solutions for Varying Initial States and 

Parameter Values Between 0 and 3 (2 of 2) 

  n un 

 

0 0.3 

1 0.588 

2 0.678317 

3 0.610969 

4 0.665521 

5 0.623288 

6 0.65744 

7 0.630595 

8 0.652246 

9 0.6351 

10 0.648895 
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n un 

 

0 0.9 

1 0.252 

2 0.527789 

3 0.697838 

4 0.590409 

5 0.677114 

6 0.612166 

7 0.664773 

8 0.62398 

9 0.656961 

10 0.631017 
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Summary of Asymptotic Stability Intervals 

• We found that the difference equation                            has two 

equilibrium solutions:  
 

• Considering nonnegative values of the parameter ρ, the first 

equilibrium solution required that 0 ≤ ρ <1, while the second 

equilibrium solution required that 1 < ρ < 3. there is an 

exchange of stability from one equilibrium solution to the 

other at ρ = 1. This is demonstrated in the chart below: 
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Solutions of the Difference Equation That Do 

Not Approach an Equilibrium  (1 of 4) 

  
n un Below is an example of a 2-cycle. Notice how as n 

increases, the value of un alternates between two 
values (0513 and 0.799). 
 

ρ = 3.2 and y0 = 0.3 
 
 
 

 

0 0.3 

1 0.672 

2 0.705331 

3 0.665085 

4 0.71279 

5 0.655105 

6 0.723016 

7 0.640845 

8 0.736521 

9 0.620986 

10 0.75316 

11 0.594912 

12 0.771173 

13 0.564688 

14 0.78661 

15 0.537136 

16 0.795587 

17 0.520411 

18 0.798667 

19 0.514554 

20 0.799322 

21 0.5133 

22 0.799434 

23 0.513086 

24 0.799452 
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Solutions of the Difference Equation That Do 

Not Approach an Equilibrium  (2 of 4) 

  
n un Below is an example of a 4-cycle. Notice how as n 

increases, the value of un alternates between four 
values (0.3828, 0.5009, 0.8269, 0.8750). 
 

ρ = 3.5 and y0 = 0.3 
 
 

 

n u(n) 

0 0.3 

1 0.735 

2 0.681713 

3 0.759432 

4 0.639433 

⋯ ⋯ 

12 0.392152 

13 0.834291 

14 0.483873 

15 0.87409 

16 0.385199 

17 0.828873 

18 0.49645 

19 0.874956 

20 0.382928 

21 0.82703 

22 0.50068 

23 0.874998 

24 0.382817 

25 0.826938 

26 0.50089 

27 0.874997 

28 0.38282 
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Solutions of the Difference Equation That Do 

Not Approach an Equilibrium  (3 of 4) 

• Notice from the preceding graphs how the behavior of the solution 

to the difference equation                             behaves rather 

unpredictably when ρ > 3. First, at ρ = 3.2, we saw the sequence 

oscillate between two values, creating a period of two. Then, at ρ = 

3.5, the terms in the sequence were oscillating among four values, 

creating a period of 4. It is actually around ρ = 3.449 that this 

doubling of the period occurs and this is called a point of 

bifurcation. As ρ increases slightly further, periodic solutions of 

period 8, 16, … occur. 

• By the time we reach ρ > 3.57, the solutions possess some regularity, 

but no discernible detailed pattern is present for most values of ρ. 

The term chaotic is used to describe this situation. One of the 

features of chaotic solutions is extreme sensitivity to the initial 

conditions. This is demonstrated on the following slide. 

un+1 = run (1- un )



Chaotic Solutions (4 of 4) 

• Below are two solutions to  

• The gray solution corresponds to the initial state 

• The brown solution corresponds to the initial state   
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What Chaotic Solutions May Suggest 

• On the basis of Robert May’s analysis of the nonlinear 

equation we have considered  

 

 as a model for the population of certain insect species, we 

might conclude that if the growth rate ρ is too large, it will be 

impossible to make effective long-range predictions about 

these insect populations. 

• It is increasingly clear that chaotic solutions are much more 

common than was suspected at first, and that they may be part 

of the investigation of a wide range of phenomena. 

un+1 = run (1- un )  and similarly  y' = ry(1- y)


