Boyce/DiPrima/Meade 11" ed, Ch 2.1: Linear Equations;
Method of Integrating Factors

Elementary Differential Equations and Boundary Value Problems, 11t edition, by William E. Boyce and Richard C. DiPrima, ©2017 by John Wiley & Sons, Inc.

* A linear first order ODE has the general form

dy
= _f(,
m (t,y)

where f is linear iny. Examples include equations with
constant coefficients, such as those in Chapter 1,

y'=—ay+b

or equations with variable coefficients:

dy -
i pt)y =g(t)



Constant Coefficient Case

* Forafirst o&c;l/er linear equation with constant coefficients,

_t — —a.y + b,
recall that we can use methods of calculus to solve:
dy/dt
y—b/a
[~ fadt
y—b/a

Inly—b/a|=-at+C

y=b/a+ke", k==e"



Variable Coefficient Case:
Method of Integrating Factors

* \We next consider linear first order ODEs with variable
coefficients:

dy _
o pt)y =g(t)

« The method of integrating factors involves multiplying this
equation by a function /7¢¢), chosen so that the resulting
equation is easily integrated.



Example 2: Integrating Factor (1 of2)

Consider the following equation:

dy 2y 1 al/3

Multiplying both S|des by /7(t) we obtain
Jgay 4 _ = t/3
,U(t) it Y 2ﬂ(t)y 2u(t)e

We will choose /7{t)so that left side is derivative of known
quantity. Consider the following, and recall product rule:

d . dy dnf)
E(mif)y)—ﬂ(f)dt+ )

Choose /7{t) so that
1 t
HO=—ut) = ut)=e '




Example 2: General Solution (2 of2)

e With /7{¢)= e2, we solve the original equation as follows:

—T—-y=—e

a2 2

et/z Q + 1 et/zy = 1 851/6 . 3 t/3 —t/2

dt 2 2 Sample Solutions : y = ge +Ce

d t2 1 5¢/6 & \\\\ ey i

—le “y|=—e \ \\\\:/ /7

)= S

e’/2y2365ﬂ6+c . %///
5 i

general solution: / /

3 t/3
=_ e +ce!
Y 5




Method of Integrating Factors:
Variable Right Side

 In general, for variable right side g(t), the solution can be
found by choosing 1§t) = e

dy

dt

n(t)—y +an(t)y = nft)g(t)

dy a
e’ = + ge* e A
i 'y=e"g(t)

—(e"y) = e"g(t)

+ay = g(1)

d
dt

ey =0 g(t)dt +c
=e “p“g(t)dt+ce ™



Example 3: General Solution (10f?2)

* \We can solve the following equation

dy

= _2y=4-t

dt J
by multiplying by the integrating factor nf)=¢*:
giving us i(e-%y) =4¢% - te>Which we can integrate on
both sides. ¢

* Integrating by parts, e*y=cpe ™ - te* dt

[ 1
 Thus y=-4+2t+ceZt



dy
oy =4-t
a7

Example 3: Graphs of Solutions (2 of 2)

* The graph shows the direction field along with several integral
curves. If we set ¢ = 0, the exponential term drops out and you
should notice how the solution in that case, through the point
(0, -7/4), separates the solutions into those that grow
exponentially in the positive direction from those that grow
exponentially in the negative direction..
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Method of Integrating Factors for
General First Order Linear Equation

Next, we consider the general first order linear equation

dy _
e pt)y=g(t)

Multiplying both sides by 7{¢), we obtain
d
u(t)d—{ + p(t) )y = u(®)g(t)

Next, we want /7{¢)such that ) _ p(¢) nge), from which
it will follow that dt

< (m0y) = m) 2+ p()te)y



Integrating Factor for
General First Order Linear Equation

« Assuming /7{¢)> 0, it follows that

[ %: [pdt = Inu®=[ p)ydt+k

« Choosing k = 0, we then have
u(t) = gl p()dt

and note /7{t) > 0 as desired.



Solution for
General First Order Linear Equation

e Thus we have the following:

oy _
" POY=90)

1+ PO A0y = 4T, where () = e/
 Then

< (mtoy) = mg(o)

mt)y = Qrie)g(t)de +c

—i‘tsssc
= Qe +

where t, is some convenient lower limit of integration.

y



Example 4. General Solution (10f?2)

« To solve the initial value problem
ty'+2y =4t?, y(1)=2,
first put into standard form:

y+%y:4tfmt¢0

 Then [ot

Edt 2
u(t)=e ejt o2l _ ghnlt?) _ ¢2

and hence

'y +2ty=(t"y) =4’ b t*y=t'+cb y=1¢’ +t£2

. _ X
Giving us the solution y =t¢° +t—2



e+ 2y =41°, y(1)=2,

Example 4: Particular Solution (2 of 2)

Using the initial condition y(1) = 2 and general solution

c
y=t2+—2, 2=1+cbh c=1
it follows that 4

The graphs below show salutiop curves for the differential equation, including a particular solution
who egPraph contams\%emltlappomt (Sl,2). f gap

. . . 2 . .
Notice that when c=0, we g[et the parabalic solution Y =1° and that solution separates the solutions
Into those that are asymptatic to the positive versus

negative y-axis.




Example 5: A Solution In Integral Form (1 of 2)

* To solve the initial value problem
2y +ty =2, y(0)=1,
first put into standard form:
, b
i =
* Then

t t’
EIGLL ~dt

ut)=e —eg'2 —g4

and hence
y=e 214 ((\jeszmds +C) = t2/4(ées2/4ds) £ 214



2y’ +ty =2, y(0)=1

Example 5: A Solution In Integral Form (2 of 2)

Notice that this solution must be left in the form of an
Integral, since there is no closed form for the integral.

y=e 214 (O’eszm dS) + oo 1

Using software such as Mathematica or Maple, we can
approximate the solution for the given initial conditions as
well as for other initial
conditions.

Several solution curves
are shown.
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Boyce/DiPrima/Meade 11" ed, Ch 2.2: Separable
Equations

Elementary Differential Equations and Boundary Value Problems, 11t edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley & Sons, Inc.

 In this section we examine a subclass of linear and nonlinear
first order equations. Consider the first order equation

dy
— = f (X,
i (X,Y)
 \We can rewrite this in the form
M (X, y) + N (X, y)ﬂ=0
dx

« For example, let M(x,y) = —f(x,y) and N(x,y) = 1. There may
be other ways as well. In differential form,

M (X, y)dx+ N(x, y)dy =0

« |If M is a function of x only and N is a function of y only, then
M (xX)dx+ N(y)dy =0

 In this case, the equation is called separable.



Example 1. Solving a Separable Equation

Solve the following first order nonlinear equation:

2

dy X
dx 1-y°

Separating variables, and using calculus, we obtain

(1- %) dy = (x?)

dl- yz)dy = dxz)dx
T
3 3

3y- y’=x’+c

N
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The equation above defines the solution y implicitly. A graph

showing the direction field and implicit plots of several
solution curves for the differential equation is given above.



Example 2:
Implicit and Explicit Solutions (1 of 4)

Solve the following first order nonlinear equation:
dy 3x*+4x+2
dx  2(y-1)
Separating variables and using calculus, we obtain
2(y- 1)dy =(3x" +4x +2)dx

Zdy- 1)dy = dez +4x +2)dx

Y- 2y=x"+2x"+2x+c
The equation above defines the solution y implicitly. An
explicit expression for the solution can be found in this case:

yz_ 2 - (X3+2x2+2x+c):0 b yZZi\/4+4(x3+2x2 +2x+c)

2

p=1tJx®+2x2 +2x+C



dy  3x*+4x+2
dx  2(y-1)

Example 2: Initial Value Problem (2 of 4)

Suppose we seek a solution satisfying y(0) = -1. Using the
Implicit expression of y, we obtain

Yo =2y =X +2x° +2x+C
(-)*-2(-)=C = C=3
Thus the implicit equation defining y is

Yo =2y =X +2X° +2X+3
Using an explicit expression of vy,
y=14x3 +2x% +2x+C
~1=1+JC = C=4
It follows that
y=1—x%+2x% +2x +4




dy  3x*+4x+2
dx  2(y-1)

Example 2: Initial Condition y(0) =3 (3of 4)

* Note that if initial condition is y(0) = 3, then we choose the
positive sign, instead of negative sign, on the square root
term:

y=1++%% +2X% +2x+4

L e —— e e e /f ::;:.-'
I I :;.f.:_r{
.

« This is indicated on the graph o et
in green. =




Example 2: Domain (4 of 4)

Thus the solutions to the initial value problem
dy 3x°+4x+2
- . y(0)=-1
dx  2(y-1)
are given by

y? =2y = x>+ 2x*+2x+3 (implicit)

y=1-vVx*+2x2+2x+4 (explicit)

From explicit representation of y, it follows that

y =1—x2(x+2)+2(x+2) =1—/(x+2)(x* +2)
and hence the domain of y is (-2, ¥ ). Note x = -2 yields y = 1, which
makes the denominator of dy/dx zero (vertical tangent).

Conversely, the domain of y can be estimated by locating vertical tangents
on the graph (useful for implicitly defined solutions).




Example 3: Implicit Solution of an Initial
Value Problem (1 of 2)

« Consider the following initial value problem:

dy A4x- x°

>~ ==, y(0)=1

dc 4+y
 Separating variables and using calculus, we obtain

(4+ y*)dy = (4x — x*)dx
j(4+ yé dy = _[(4x— x*)dx

1 1
4dy+=y*=2x"-=x*+c
y 4y p
y* +16y+x* —8x* =C where C = 4c

 Using the initial condition, y(0)=1, it follows that C = 17.

y* +16y + x* —8x* =17



. 4Ax—=x3
T4yt =

Example 3: Graph of Solutions (2 of 2)

Thus the general solutionis y* +16y +x* —8x*=C
and thesolution through (0,2) is y* +16y + x* —8x* =17

The graph of this particular solution through (0, 2) is shown in red
along with the graphs of the direction field and several other
solution curves for this differential equation, are shown:

The points identified with blue

dots correspond to the points on

the red curve where the tangent

line is verticaly = 3-4 »—1.5874

X ~ £3.3488 on thered curve, but at all
points where the line connecting the
blue points intersects solution curves
the tangent line is vertical.




Parametric Equations

dy F(x)
dx G(x,Y)

« The differential equation:

IS sometimes easier to solve If x and y are thought of as
dependent variables of the independent variable t and rewriting
the single differential equation as the system of differential
equations:

dy dx
— =F(x,y) and —=G(X,
4~ F%Y) 5~ G Y)

Chapter 9 Is devoted to the solution of systems such as these.



Boyce/DiPrima/Meade 11 ed, Ch 2.3:
Modeling with First Order Equations
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« Mathematical models characterize physical systems, often
using differential equations.

« Model Construction: Translating physical situation into
mathematical terms. Clearly state physical principles
believed to govern process. Differential equation is a
mathematical model of process, typically an approximation.

« Analysis of Model: Solving equations or obtaining
qualitative understanding of solution. May simplify
model, as long as physical essentials are preserved.

« Comparison with Experiment or Observation: \erifies
solution or suggests refinement of model.



Example 1: Salt Solution (1 0f7)

« Attimet=0, atank contains Q, Ib of salt dissolved in 100 gal
of water. Assume that water containing ¥4 lb of salt/gal is
entering tank at rate of r gal/min, and leaves at same rate.

(a) Set up IVP that describes this salt solution flow process.

(b) Find amount of salt Q(t) in tank at any given time t.

(c) Find limiting amount Q, of salt Q(t) in tank after a very long time.
(d) Ifr=3& Q,=2Q,, find time T after which salt is within 2% of Q, .
(e) Find flow rate r required if T is not to exceed 45 min.




Example 1: (a) Initial Value Problem (2 of 7)

At time t = 0, a tank contains Q, Ib of salt dissolved in 100
gal of water. Assume water containing ¥4 Ib of salt/gal enters
tank at rate of r gal/min, and leaves at same rate.

Assume salt is neither created or destroyed in tank, and
distribution of salt in tank is uniform (stirred). Then

dQ/dt =ratein - rate out

Rate in: (1/4 Ib salt/gal)(r gal/min) = (r/4) Ib/min

Rate out: If there is Q(t) Ibs salt in tank at time t, then
concentration of salt is Q(t) 1b/100 gal, and it flows out at
rate of [Q(t)r/100] Ib/min.

Thus our IVVP Is



Example 1: (b) Find Solution Q(t) (30f7)

To find amount of salt Q(t) in tank at any given time t, we
need to solve the initial value problem

dQ rQ_L B
dt 1100 4’ RQO=Q,

To solve, we use the method of integrating factors:
n,(t) — eat — ert/lOO

Q(t) — o 1100 D‘

O(1)=25+[0, - 25] & "

/100
re’

dt:| —e rt/100 |:25ert/100 + C:| — 25 +ce rt/100

or
Q(t) _ 25(1_e—rt/100)+ QO e—l‘t/lOO



Example 1:
(c) Find Limiting Amount Q, (4 of 7)

» Next, we find the limiting amount Q, of salt Q(t) in tank
after a very long time:

Q, =limQ(t) = !irpo(25+ [Q, —25]e %)= 251Ib

t—

 This result makes sense, since over time the incoming salt
solution will replace original salt solution in tank. Since
Incoming solution contains 0.25 Ib salt / gal, and tank is 100
gal, eventually tank will contain 25 Ib salt.

» The graph shows integral curves

44

for r = 3 and different values of Q,. Foossaeasee
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3and Q, =2Q, . To find time T after which

Q(t) 1s within 2% of Q, , first note Q, = 2Q, = 50 Ib, hence
25+(Q,- 25)¢e 00 — 95 4 25 003
Next, 2% of 25 Ib i1s 0.5 Ib, and thus we solve

o)

Example 1l: (d) FiInd Time T

e Supposer

Qi)

e—Qom'
In(0.02) _130.4 min

—0.03

In(0.02) = —0.03T

25.5=25+25e %

0.02
T



Example 1: (e) Find Flow Rate (6of7)

« To find flow rate r required if T is not to exceed 45 minutes,

50 Ib, with

recall from part (d) that Q, = 2Q,

25 + 25 "/100
and solution curves decrease from 50 to 25.5.

Q(t) =
Thus we solve
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Example 1: Discussion (7 of 7)

 Since this situation is hypothetical, the model is valid.

» As long as flow rates are accurate, and concentration of salt
In tank Is uniform, then differential equation iIs accurate
description of the flow process.

« Models of this kind are often used for pollution in lake, drug
concentration in organ, etc. Flow rates may be harder to
determine, or may be variable, and concentration may not be
uniform. Also, rates of inflow and outflow may not be same,
so variation in amount of liquid must be taken into account.



Example 2: Compound Interest (1 of 3)

If a sum of money is deposited in a bank that pays interest
at an annual rate, r, compounded continuously, the
amount of money (S) at any time in the fund will satisty
the differential equation:

oS =rS, S(0) =S, where S, representsthe initial investment.

dt
The solution to this differential equation, found by
separating the variables and solving for S, becomes:

S(t) =S,e", wheret is measured in years

Thus, with continuous compounding, the amount in the
account grows exponentially over time.



S(t)=S,e"

Example 2: Compound Interest (2 of 3)

* In general, Iif interest in an account is to be compounded m
times a year, rather than continuously, the equation
describing the amount in the account for any time t,

measured In years, becomes:

S(t) = Sy(L+—)"

 The relationship between these two results i Clarified if
we recall from calculus that

Growth of Capital at a Return Rate of r = 8%
For Several Modes of Compounding: S(t)/S(0)

t m=4 m = 365 exp(rt)
Years | Compounded | Compounded | Compounded
Quarterly Daily Continuously
1 1.082432 1.083278 1.083287
2 1.171659 1.17349 1.173511
5 1.485947 1.491759 1.491825
10 2.20804 2.225346 2.225541
20 4.875439 4952164 4.953032
30 10.76516 11.02028 11.02318
40 23.76991 24.52393 24.53253

i v
’!/ll_rDOSO(l_l_%)mt — Soert
A comparison of the
accumulation of funds for
quarterly, daily, and
continuous compounding is
shown for short-term and
long-term periods.



Example 2: Deposits and Withdrawals (3 of 3)

« Returning now to the case of continuous compounding, let us
suppose that there may be deposits or withdrawals in addition to
the accrual of interest, dividends, or capital gains. If we assume
that the deposits or withdrawals take place at a constant rate k,
this is described by the differential equation:

Ocll—? =rS+Kk orin standard form (2]—“:’ —rS =k and S(0) =S,

where K is positive for deposits and negative for withdrawals.

« \We can solve this as a general linear equation to arrive at the
solution: S(t)=S.e" +(k/r)(e" -1

« To apply this equation, suppose that one opens an IRA at age 25
and makes annual investments of $2000 thereafter with r = 8%.

« Atage 65, S(40)=0%e"**" +(2000/0.08)(e**"*° —1) ~ $588,313



Example 3: Pond Pollution (1 0f7)

« Consider a pond that initially contains 10 million gallons of
fresh water. Water containing toxic waste flows into the
pond at the rate of 5 million gal/year, and exits at same rate.
The concentration c(t) of toxic waste in the incoming water
varies periodically with time:

c(t) = 2 + sin(2t) g/gal
(a) Construct a mathematical model of this flow process and
determine amount Q(t) of toxic waste in pond at time t.

(b) Plot solution and describe in words the effect of the
variation in the incoming concentration.



Example 3: (a) Initial Value Problem (2 of 7)

Pond initially contains 10 million gallons of fresh water.
Water containing toxic waste flows into pond at rate of 5
million gal/year, and exits pond at same rate. Concentration
IS c(t) = 2 + sin 2t g/gal of toxic waste In incoming watetr.

Assume toxic waste Is neither created or destroyed in pond,
and distribution of toxic waste in pond is uniform (stirred).

Then dQ/dt =ratein -rate out

Rate in: (2 + sin(2t))g/gal(5~ 10°)gal/year

If there 1s Q(t) g of toxic waste In pond at time t, then
concentration of salt is Q(t) 1b/107 gal, thus

Rate out: (5° 10°)gallyear(O(¢) /10" )g/gal = O(¢) / 2 glyr



Example 3:
(a) Initial Value Problem, Scaling (3 of 7)

» Recall from previous slide that

— Rate in: (2 + sin 2t g/gal)(5 x 10° gal/year)

— Rate out: (Q(t) g/107 gal)(5 x 108 gal/year) = Q(t)/2 glyr.
« Then initial value problem is

‘2? (2+sin 2t)5x10° ) Q(t) . Q(0)=0

 Change of variable (scaling): Let q(t) = Q(t)/10°. Then

dqg q :
—+==10+5sIn2¢ ¢g(0)=0
5 q(0)



Example 3:
(a) Solve Initial Value Problem (4 of 7)

« To solve the initial value problem
q'+q/2=10+5sin2t, q(0)=0
we use the method of integrating factors:
u(t) = pdt _ gl/2
q(t) = e‘”zje”z(10+55in 2t )dt

 Using integration by parts (see next slide for details) and the
Initial condition, we obtain after simplifying,

g(t)=e " [206”2 - %eﬂz cos(2¢) + %eﬂz sin(2¢) + c}

_ 40 10 300
q(t)=20- —cos(2t) +=—=sin(2t)- —e *
N 17 (@) 17 (@) 17



Example 3: (a) Integration by Parts (5of 7)

jet’z sin(2¢)dt = { %et’z cos(2¢) + %(jet’z COS(2t)dt”

1 t2 1(1 t2 A 1 t2 j
=| - =e" cos(21)+=| —e"*sin(2t)- = sin(2¢)dt
e cos(2r) + | e"sin(2r)- [ sin(2r)

1 t2 1 t2 .= 1 t2 .- il
= - —¢e"“cos(2t)+—e"“sIn(2¢)- — sIN(2¢)dt
e cos(2r) + e sin(2r) - = [ ¢"sin(2r)

20 [ sin(2¢)dt =- E cos(2t)+£e”zsin(2t)+c
16 2 8

. i 8 2 .
2sin(20)dt =- —é€'"* cos(2¢) + —e'? sin(2¢) +
el 17 ¢ cosen)rmersin2)*c

5[ e’ sin(2t)dt =- %et’z cos(2¢) +%eﬂ28in(21) +c



(6 of 7)

-t12

300
- ——e

17

0

—sin(2t)

10
17

1 g =10 +5sin(2¢), ¢(0)
%cos(Zt) +
« A graph of solution along with direction field for differential

+ =
2

dr
q(t)=20-

« Thus our initial value problem and solution is
dq

Example 3: (b) Analysis of solution

equation is given below.
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Example 3:
(b) Analysis of Assumptions (7 of 7)

« Amount of water in pond controlled entirely by rates of flow,
and none Is lost by evaporation or seepage into ground, or
gained by rainfall, etc.

« Amount of pollution in pond controlled entirely by rates of
flow, and none is lost by evaporation, seepage into ground,
diluted by rainfall, absorbed by fish, plants or other
organisms, etc.

 Distribution of pollution throughout pond is uniform.



Example 4: Escape Velocity (1 of 2)

« ADbody of mass m is projected away from the earth in a
direction perpendicular to the earth’ s surface with initial
velocity vo and no air resistance. Taking into account the
variation of the earth’ s gravitational field with distance,
the gravitational force acting on the mass is

mgR*
(R+x)°
R is the radius of the earth and g is the acceleration due to

gravity at the earth’ s surface. Using Newton’ s law F = ma,
dv _ mgR _
m— =- =, v(0) = v,
. dv dvdx dv dt (.R *x) , . .
* SINCe & " at o’ and cancelling the m" s, the differential
equation becomes v _ gk’
dc (R+x)

where x IS the distance above the earth's surface

W()C) = -

~,sincex=0 whent = 0, w(0)=v,



SV _ gR?
dx (R+X)°

Example 4: Escape Velocity (2 of 2)

, V(0) =V,

We can solve the differential equation by separating the
variables and integrating to arrive at:

2 2 2 2

v _ gR N gR Vo

2 R+x R+x 2

The maximum height (altitude) will be reached when the

_gR

velocity is zero. Calling that maximum height A,..,, we have
_ VOZR
" 2gR- v,
We can now find the initial velocity required to lift a body to a
height Ay vy —\/ZgR—RfA

and, taking the limit as A ,,—, we get V, =/20R
the escape velocity.
Notice that this does not depend on the mass of the body.
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* Recall that a first order ODE has the form y' =f (t,y), and is
linear iIf f is linear in'y, and nonlinear if f is nonlinear in y.

« Examples: y'=ty-et, y' =ty
* |n this section, we will see that first order linear and

nonlinear equations differ in a number of ways, including:

— The theory describing existence and uniqueness of solutions, and
corresponding domains, are different.

— Solutions to linear equations can be expressed in terms of a general
solution, which is not usually the case for nonlinear equations.

— Linear equations have explicitly defined solutions while nonlinear
equations typically do not, and nonlinear equations may or may not
have implicitly defined solutions.

 For both types of equations, numerical and graphical
construction of solutions are important.



Theorem 2.4.1

» Consider the linear first order initial value problem:
y+p(t)y=9(t), y(0)=y,

If the functions p and g are continuous on an open interval

[ :a <t < b containing the point t = t,, then there exists a
unique function y =7 (¢) that satisfies the I\VP for each t in I.

* Proof outline: Use Ch 2.1 discussion and results:

t
[ u®a®dt+y, PO
y== ,  Where u(t) =e™
p(t)




Theorem 2.4.2

Consider the nonlinear first order initial value problem:
y'=1(y), y(0)=y,

Let the functions fand 1/ /y be continuous in some

rectangle g <¢ < b, g<y<dcontaining the point (t,, Y,).

Then in some interval t,— h <t <t, + h in the rectangle there
IS a unique solution y =7(¢) of the initial value problem.

Proof discussion: Since there is no general formula for the
solution of arbitrary nonlinear first order 1\VVPs, this proof is
difficult, and is beyond the scope of this course.

It turns out that conditions stated in Thm 2.4.2 are sufficient
but not necessary to guarantee existence of a solution, and
continuity of f ensures existence but not unigueness of

y=1()



Example 1. Linear IVP

Recall the initial value problem from Chapter 2.1 slides:
ty' +2y =4t?, y(1)=2 = y=t’ +t£2
The solution to this initial value problem is defined for

t > 0, the interval on which p(t) = 2/t is continuous.

If the Initial condition is y(—1) = 2, then the solution is
given by same expression as above, but is defined on t < 0.

In either case, Theorem 2.4.1

guarantees that solution is unique x// V/
-1,2 1,2
on corresponding interval. Nl Ny

/4



Example 2: Nonlinear IVP (1 0f?2)

Consider nonlinear initial value problem from Ch 2.2:

dy 3x°+4x+2
y = , ¥y(0)=-1 2255:::*;_
dx  2(y-1) =

T e e e e 4

A T e
P -

_ _ e 4
The functions f and /' /y are given by ’ ’] Z” j
32 +4x+2 oOf 3x2 +4X+2
f (X1 y) — ) — 2
2(y-1) "oy 2(y-1)
and are continuous except on liney = 1.

Thus we can draw an open rectangle about (0, —1) in which f
and 1/ /9y are continuous, as long as it doesn’t cover y = 1.

How wide is the rectangle? Recall solution defined for x > -2,
with

(X, y)=

y=1-/x*+2x% +2x + 4



Example 2: Change Initial Condition (2 of 2)

» Our nonlinear initial value problem is
dy 3x°+4x+2 e
= . y(O) =-1 NV~ =7
dx - 2(y-1)
with
f(x,y)= 3X° +4x+2 of (X.¥) __3X2 +4xX+2
| Ay-1) "oy 2(y-1f

which are continuous except on line y = 1.

 |f we change initial condition to y(0) = 1, then Theorem 2.4.2
IS not satisfied. Solving this new I\VVP, we obtain

yzli\/x3+2x2+2x, x>0

« Thus a solution exists but is not unique.




Example 3: Nonlinear IVP

Consider nonlinear initial value problem

y'=y" »0)=0 (¢20)
The functions f and /9y are given by

of 1
f t, — 1/3’ . t, — —2/3
t,y)=y 5 (t,y) 3y

SOV

NN
AR
SOV
SOV,

Lr o
7 e T T T T T T o T T T T T o T
L=

N
A
e

i

MMMMMMMMMMMMMM
\\\\\\\\\\\\\\\\\

LSS
SLLLSE
SIS
SIS
ISV IIY

Thus f continuous everywhere, but £ /9y doesn’t exist at

y = 0, and hence Theorem 2.4.2 does not apply. Solutions exist
but are not unique. Separating variables and solving, we obtain

3 s 2.\"
y Cdy=dt = Ey =t{+C = y== 5t , t>0

If initial condition is not on t-axis, then Theorem 2.4.2 does

guarantee existence and uniqueness.



Example 4: Nonlinear IVP

 Consider nonlinear initial value problem
y'=y, y(0)=1
 The functions f and £ /9y are given by

T T T T T T T T T T T

it-n,

i \‘6:'_
™ \'i I
ey
-—“-f-a.c\*\‘

of
f(t,y)=vy%, —(t,y)=2
(t.y)=y ay( y) =2y

« Thusfand §7/qyare continuous at t = 0, so Theorem 2.4.2
guarantees that solutions exist and are unique.

« Separating variables and solving, we obtain
1 1
2d=dt b -vi=ft+e P yv=-—Pp p=—"
ydy Y e = D,
* The solution y(t) is defined on (- ¥, 1). Note that the

singularity at t = 1 is not obvious from original I\VP statement.



Interval of Existence: Linear Equations

By Theorem 2.4.1, the solution of a linear initial value

problem
y'+pt)y=9(t), y(0)=y,

exists throughout any interval about t = t, on which p and g

are continuous.

Vertical asymptotes or other discontinuities of solution can
only occur at points of discontinuity of p or g.

However, solution may be differentiable at points of
discontinuity of p or g. See Chapter 2.1: Example 3 of text.

Compare these comments with Example 1 and with previous
linear equations in Chapter 1 and Chapter 2.



Interval of Existence: Nonlinear Equations

In the nonlinear case, the interval on which a solution exists
may be difficult to determine.

The solution y =7(¢)exists as long as [#, 7(#)] remains within a
rectangular region indicated in Theorem 2.4.2. This is what
determines the value of h in that theorem. Since 7(¢)is usually
not known, it may be impossible to determine this region.

In any case, the interval on which a solution exists may have
no simple relationship to the function f in the differential
equation y' = f (t, y), In contrast with linear equations.

Furthermore, any singularities in the solution may depend on
the initial condition as well as the equation.

Compare these comments to the preceding examples.



General Solutions

 For a first order linear equation, it is possible to obtain a
solution containing one arbitrary constant, from which all
solutions follow by specifying values for this constant.

 For nonlinear equations, such general solutions may not
exist. That is, even though a solution containing an arbitrary
constant may be found, there may be other solutions that
cannot be obtained by specifying values for this constant.

« Consider Example 4: The function y = 0 is a solution of the
differential equation, but it cannot be obtained by specifying
a value for c in solution found using separation of variables:

dy 1
— = ID e e
dt % % t+c



Explicit Solutions: Linear Equations

By Theorem 2.4.1, a solution of a linear initial value
problem
y'+p®)y=9(t). y(0)=y,
exists throughout any interval about t = t, on which p and g
are continuous, and this solution is unique.

« The solution has an explicit representation,
t
J, #OIOd+y, [ pisyis

Y = ,  Where u(t)=e
()

and can be evaluated at any appropriate value of t, as long
as the necessary integrals can be computed.




Explicit Solution Approximation

 For linear first order equations, an explicit representation
for the solution can be found, as long as necessary
Integrals can be solved.

« If integrals can’ t be solved, then numerical methods are
often used to approximate the integrals.

J, “®a®dt+C
(t)

[ et =Y. ut )t

t p(s)ds
where u(t) = eL0

y:



Implicit Solutions: Nonlinear Equations

For nonlinear equations, explicit representations of solutions
may not exist.

As we have seen, it may be possible to obtain an equation
which implicitly defines the solution. If equation is simple
enough, an explicit representation can sometimes be found.

Otherwise, numerical calculations are necessary in order to
determine values of y for given values of t. These values can
then be plotted in a sketch of the integral curve.

Recall the examples from earlier in the
chapter and consider the following example Y/~
, COS X
y = )y 3

1+ 3y

y(0)=1 = Iny+y’=sinx+1




Direction Fields

 |In addition to using numerical methods to sketch the
Integral curve, the nonlinear equation itself can provide
enough information to sketch a direction field.

« The direction field can often show the qualitative form of

solutions, and can help identify regions in the ty-plane
where solutions exhibit interesting features that merit more

detailed analytical or numerical investigations.
« Chapter 2.7 and Chapter 8 focus on numerical methods.
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In this section we examine equations of the form dy/dt = f (y),
called autonomous equations, where the independent
variable t does not appear explicitly.

« The main purpose of this section is to learn how geometric
methods can be used to obtain qualitative information
directly from a differential equation without solving it.

« Example (Exponential Growth):

%:ry, r>0
« Solution: !

7
r7
I .7~
"7
r.7
¥ o7
i
i
o
o
-

Ty M e e
b M e T e

y= yoert




Logistic Growth

An exponential model y' = ry, with solution y = e, predicts
unlimited growth, with rate r > 0 independent of population.

Assuming instead that growth rate dependsdon population
size, replace r by a function h(y) to obtain £ = x(y)y.

We want to choose growth rate h(y) so that
— h(y) @r >0 wheny issmall,
— h(y) decreases as y grows larger, and
— h(y) <0 wheny is sufficiently large.

The simplest such function is h(y) = r — ay, where a > 0.

Our diffedrential equation then becomes
d—i/:(r—ay)y, r,a>0
This equation is known as the Verhulst, or logistic, equation.



Logistic Equation

* The logistic equation from the previous slide Is

ﬂ:(r—ay)y, r,a>0

: dat . L :
 This equation is often rewritten in the equivalent form

dy y
—=r{1-=1y,
Y 1Ly

where K = r/a. The constant r is called the intrinsic growth
rate, and as we will see, K represents the carrying capacity

of the pOpUIatlon' Huur\:llfzxmuuuu
L _— LT Y
« Adirection field for the logistic B R AR RARRRRRRRR
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Logistic Equation: Equilibrium Solutions

* Our logistic equation is
ﬂ = r(l—y)y, rK>0
K

* Two equilibrium solutions are clearly present:

y:¢1(t)201 y:¢2(t): K

* Indirection field below, with r = 1, K = 10, note behavior of

solutions near equilibrium solutions:
y = 0 Is unstable,
y = 10 is asymptotically stable.

159

e e i




Autonomous Equations: Equilibrium Solns

 Equilibrium solutions of a general first order autonomous
equation y' = f (y) can be found by locating roots of f (y) = 0.

« These roots of f (y) are called critical points.
« For example, the critical points of the logistic equation

dy y
— = -7
dt ( ij

« arey=0andy=K.
WA —— AL

[ J
Thus critical points are constant FAAIVAIIAIJIIIANIILY
i _ _ _ i 1 D_-r—-.‘--r—-r—-.‘-—-c—-r—-.“—-.‘-—-c—-c—-.‘-—-e. e T
:/’///’/’/////////’/////
functions (equilibrium solutions) 0 PSS
il e
L : Y,
In this setting. R AP s
o
ey My g Ty oy Moy ey e e e e e
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Logistic Equation: Qualitative Analysis and
Curve Sketching (1 of 7)

* To better understand the nature of solutions to autonomous
equations, we start by graphing f (y) vs. .

 In the case of logistic growth, that means graphing the
following function and analyzing its graph using calculus.

()}
f(y)= r(l—%jy A% (/2. rK/4)
K4




Logistic Equation: Critical Points (2 of 7)

* The intercepts of f occur at y = 0 and y = K, corresponding
to the critical points of logistic equation.

« The vertex of the parabola is (K/2, rK/4), as shown below.

J)=r|1- %)y FoN (K2, rK/4)
o= Hel-2)]

)l 28




Logistic Solution: Increasing, Decreasing (3 of 7)

* Note dy/dt >0 for 0 <y < K, so Y Is an increasing function of t
there (indicate with right arrows along y-axis on 0 <y < K).

« Similarly, y is a decreasing function of t for y > K (indicate
with left arrows along y-axis on 'y > K).

 In this context the y-axis is often called the phase line.

y
K

j% r>0

£(y) A

rK/4

(K/2, rK/4)




Logistic Solution: Steepness, Flatness (4 of 7)

 Notedy/dt=z0wheny=0ory=K,soy is relatively flat there,
and y gets steep as y moves away from 0 or K.

dy y
—~ =7 —_
dt ( ij

Fn
rK/4

(K/2, rK/4)




Logistic Solution: Concavity (5of7)

Next, to examine concavity of y(t), we find y":
2

dy _ dy _coonady o
5 1) = =T =TMTY)
Thus the graph of y is concave up when f and f' have same

sign, which occurs when 0 <y < K/2 and y > K.

The graph of y is concave down when f and ' have opposite
signs, which occurs when K/2 <y < K.

Inflection point occurs at intersection of y and line y = K/2.

fly)
(K/2, rK/4)
rK/4 | \ N 0,(1) = K

B i o e e e e

— | — e — // e $:(1) =0

K/2 K y r \




Logistic Solution: Curve Sketching (6 of 7)

« Combining the information on the previous slides, we have:
— Graph of y increasing when 0 <y < K.
— Graph of y decreasing when y > K.
— Slope of y approximately zero wheny @0 ory QK.
— Graph of y concave up when 0 <y <K/2 andy > K.
— Graph of y concave down when K/2 <y < K.
— Inflection point when y = K/2.

 Using this information, we can

sketch solution curves y for KQ\\X\\_ N
. - .. P
different initial conditions. /?/// _____________
// ¢:(1) =0




Logistic Solution: Discussion (7 of 7)

Using only the information present in the differential equation
and without solving it, we obtained qualitative information
about the solution y.

For example, we know where the graph of y is the steepest,
and hence where y changes most rapidly. Also, y tends
asymptotically to the line y = K, for large t.

The value of K is known as the environmental carrying
capacity, or saturation level, for the species.

Note how solution behavior differs
from that of exponential equation, -
and thus the decisive effect of ______________
nonlinear term in logistic equation. =

=
\




Solving the Logistic Equation (1 of 3)

Provided y # 0 and y # K, we can rewrite the logistic ODE:

ay = rdt
L-y/K)y
Expanding the left side using partial fractions,

1 AL B 1= Ay+B(l-y/K)=B=1 A=y/K

l-y/K)y 1-y/K vy
Thus the logistic equation can be rewritten as

1+ L/K dy = rdt
y 1-y/K

Integrating the above result, we obtain

In|y|—In

1—l‘=rt+C
K



Solving the Logistic Equation (2 of 3)

=1, K =10, y0 variable

y(t) forr

We have:
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10, y0 variable

1, K

y(t) far r

K.

f the Logistic Equation (3 of 3)
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Logistic Solution: Asymptotic Behavior

The solution to logistic ODE is

o YK ——
Yo+ (K - Y )e_rt o

We use limits to confirm asymptotic behavior of solution:

lim y = lim YK _jim ¥R g

t—o0 t—o0 yo _|_(K — yo)e rt t—o0 yo
Thus we can conclude that the equilibrium solution y(t) = K
Is asymptotically stable, while equilibrium solution y(t) = 0
IS unstable.

The only way to guarantee that the solution remains near
zero Is to make y, = 0.




YoK
yo + (K o yo )e_rt

Pacific Halibut (1 of 2)

)/ =

Example 1

« Lety be biomass (in kg) of halibut population at time t, with

80.5 x 10° kg. Ify, =0.25K, find

(a) biomass 2 years later

r =0.71/year and K
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(b) the time £ such that y( )
Then

(a) For convenience, scale equation:
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y(2) ~0.5797K =~ 46.7 x10° kg




Example 1: Pacific Halibut, Part (b) (2 of 2)

(b) Find time ¢ for which y(¢) = 0.75K.
y — yO/ K x_}m
K YO/ K+ (1_ yo/ K)e_rt _\
_ /K o —

0.75 = o
J’O/K'l'(l' yO/K)e'ﬂ '

0.75 Yo +(1 yoje :& :____;__ 2 3|;ﬁ ) 5 6 1
K K K r=3005

0.75y,/K +0.75(1- y,/K)e ™ =y, /K
_ 0.25y,/K _ v,/ K
0. 75(1- %/K) 3(1- »/K)

( 0.25 | ~ 3.095 years
071 3 J

-t




Critical Threshold Equation (1 of 2)

« Consider the following modification of the logistic ODE:

dt T

dy = —r(l—ljy, r>0

» The graph of the right hand side f (y) is given below.

f( y) A

-rT/4

(T/2, -rT/4)



Critical Threshold Equation: Qualitative
Analysis and Solution (2 of 2)

Performing an analysis similar to that of the logistic case, we
obtain a graph of solution curves shown below.

T is a threshold level for y,, in that population dies off or
grows unbounded, depending on which side of T the initial
value y, Is.

See also laminar flow discussion in text.
It can be shown that the solution to the threshold equation

0y = —r(l—yjy, r>0
dt T




Logistic Growth with a Threshold (1 of 2)

 |n order to avoid unbounded growth fory > T as in previous
setting, consider the following modification of the logistic

equation:

@:-r[l- Z)(l- Ljy, r>0 and 0<7T <K
dt T K

« The graph of the right hand side f (y) is given below.
f(y) A

R




Logistic Growth with a Threshold (2 of 2)

Performing an analysis similar to that of the logistic case, we
obtain a graph of solution curves shown below right.

T is threshold value for y,, in that population dies off or
grows towards K, depending on which side of T y, Is.

K is the carrying capacity level.
Note: y = 0 and y = K are stable equilibrium solutions,
and y = T iIs an unstable equilibrium solution.
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Consider a first order ODE of the form
M(x,y)+N(x,y)y =0
Suppose there is a function j (x,ypuch that
v, (X, y) =M y), v, (%y)=N(xYy)
and such that y (x,»)= c defines y = 7(x) implicitly. Then
W WYa_d
M = f
(x, )+ N(x,y)y' = o 0 d = (x, 7 (x))
and hence the original ODE becomes

d _
Y (5 f() =0

Thus y (x,y) = c defines a solution implicitly.

In this case, the ODE s said to be an exact differential
equation.




Example 1. Exact Equation

Consider the equation:
2X+ Yy +2xyy' =0
It is neither linear nor separable, but there iIs a function ¢ such

that
2x +9° _ and 2xy:M

% flx
The function that works is  y/ (x, ) = x* +x)°
Thinking of y as a function of x and calling upon the chain
rule, the differential equation and its solution become

i’); - CZC(XZ +x°)=0P y(x,y)=x"+x0"=c




Theorem 2.6.1

« Suppose an ODE can be written in the form

M y)+N(Xxy)y'=0 (1)
where the functions M, N, M, and N, are all continuous in the
rectangular region R: a <x<b, g<y<d.Then Eq. (1) is
an exact differential equation if and only if
M, (% y) =N, (xy), V(x,y)eR (2)
« That is, there exists a function )V satisfying the conditions
v, (%, y)=M(Xy), v, (X,y)=N(y) (3
If and only if M and N satisfy Equation (2).



Example 2: Exact Equation (1 0f3)

Consider the following differential equation.
(ycos x+2xe”) + (sin x+x%e’ —1)y' =0
Then
M (X, y) = ycos x+2xe”, N(x, y) =sin x+ x°e¥ -1
and hence
M, (x,y) =cosx+2xe’ =N, (X,y) = ODEIis exact
From Theorem 2.6.1,
v, (X,y)=M =ycosx+2xe’, v, (x y)=N =sinx+x’e’ -1
Thus

Y ()= . (xy)de = dyCOSx + 2xey)dx = ysinx +x°e’ +h(y)



Example 2: Solution (2 of 3)

We have
v, (X y) =M =ycosx+2xe’, w, (X, y)=N =sin X+ x°e’ -1
and
Y ()= . (x,»)dx = dyCOSx + 2xey)dx = ysinx +x°e’ +h(y)
It follows that
yy(x,y):Sinx+xzey- 1=sinx+x° +h'(y)
P A'(y)=-1b h(y)=-y+k
Thus
w(X,y) =ysinx+x%e’ —y+k
By Theorem 2.6.1, the solution is given implicitly by
ysin X+ X%’ —y=c



Example 2:
Direction Field and Solution Curves (3 of 3)

« Our differential equation and solutions are given by
(ycos x+2xe”) + (sin x + x°e? —=1)y' =0,
ysinx+x%e’ —y=c
« A graph of the direction field for this differential equation,
along with several solution curves, is given below.
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Example 3: Non-Exact Equation (1 of 2)

Consider the following differential equation.
(Bxy +y*) +(x* +xy)y' =0
Then
M (X, y) =3xy +y*, N(X, y) = X" +Xy
and hence
M, (X, y)=3x+2y = 2Xx+y=N,(X,y) = ODEIs not exact
To show that our differential equation cannot be solved by
this method, let us seek a function Y such that
v (% Y) =M =3xy+y*, v, (%y)=N=x"+xy
Thus

Y (x,)= ¢y, (x,y)dx = (3xy+y* )dx = §x2y+xy2 +h(y)



Example 3: Non-Exact Equation (2 of 2)

We seek y such that

v, (X, Y) =M =3xy+y*, y, (X, y) =N =x*+xy
and

w(x,Y) = [, (% y)dx = [ (@xy + y? Jdx =3x%y / 2+ xy? + C(y)
Then 3
Y, (x,y)=x* +xy= Exz +2xy+h'(y)

b h(y);- % x* - xy
Because h'(y) depends on x as well as y, there is no such
function ¥ (X, y) such that

d .
d—£=(~’3xy+y2)+(x2 +x)y



Integrating Factors

It Is sometimes possible to convert a differential equation that
IS not exact into an exact equation by multiplying the equation
by a suitable integrating factor (x,y): 77
M(x,y)+N(xy)y =0
H(% YIM (X, y) + p(X, Y)N(X, y)y'=0
For this equation to be exact, we need
(mv) =(mV) < Mm- Nm+(M,- N,)m=0

y X

This partial differential equation may be difficult to solve. If 77
IS a function of x alone, then 7, =0 and hence we solve

dﬂ_My—NX
dx N

provided right side is a function of x only. Similarly if 7is a
function of y alone. See text for more details.

1,



Example 4: Non-Exact Equation

Consider the following non-exact differential equation.
(Bxy +Y*) + (X" +xy)y' =0
Seeking an integrating factor, we solve the linear equation
d/u M y Nx d/u H
dx N S dx X = H)

Multiplying our differential equation by 7, we obtain the
exact equation

B2y +xy*) + (x> +x°y)y =0,
which has its solutions given implicitly by

X‘°’y+%x2y2 =C



Boyce/DiPrima/Meade 11* ed, Ch 2.7: Numerical
Approximations: Euler’s Method
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« Recall that a first order initial value problem has the form

d
d—{= f(t,y), yit,) =Y,

« Iffand /9y are continuous, then this IVP has a unique
solution y =7(¢)in some interval about t,.

* When the differential equation is linear, separable or exact,
we can find the solution by symbolic manipulations.

« However, the solutions for most differential equations of
this form cannot be found by analytical means.

« Therefore it Is Important to be able to approach the problem
In other ways.
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we can sketch a direction field and visualize the behavior of

solutions. This has the advantage of being a relatively
simple process, even for complicated equations. However,

direction fields do not lend themselves to quantitative

 For the first order initial value problem
computations or comparisons.




Numerical Methods

For our first order initial value problem
y'=T(ty), y(t) =Y

an alternative Is to compute approximate values of the
solution y =7 (¢) at a selected set of t-values.

Ideally, the approximate solution values will be accompanied
by error bounds that ensure the level of accuracy.

There are many numerical methods that produce numerical
approximations to solutions of differential equations, some of
which are discussed in Chapter 8.

In this section, we examine the tangent line method, which is
also called Euler’s Method.



Euler’s Method: Tangent Line Approximation

For the initial value problem
y'=T(ty) yt) =Y
we begin by approximating solution y = 7(¢)at initial point t,.
The solution passes through initial point (t,, y,) with slope
f(ty,Yo)- The line tangent to the solution at this initial point is
Y= Yo+ f o Yo Nt —1o)
The tangent line is a good approximation to solution curve on

an interval short enough. y
Thus if t; Is close enough to t,, )

| Solution
([1 ________ ~

we can approximate y = 7(z,)by wfy” | =00
Y1:yo+f(to’yo)(t1_to) i i

Tangent line
Y= ) +f(tor yo) (Z = to)




Euler’s Formula

 Forapointt, close to t;, we approximate y = f(¢,)using the
line passing through (t;, y,) with slope f(t,,y,):
Yo=Y+ f(t1’ yl)(tZ _tl)
 Thus we create a sequence Y, of approximations y = 7 (¢, ):
Yi=Yo Tt fo '(tl _to)
Y, =Y, + f; '(tz _tl)

You=Yn t fn | (tn+1 _tn)
where f = f(t.,y,)-

» For a uniform step size t ,,= -t + h, Euler’s formula

bECOmES yn+1 — yn + fnh, n= O,l, 2, cee



Euler Approximation

« To graph an Euler approximation, we plot the points
(ty, Vo), (T, Yp)s---» (L., ¥,,), @and then connect these points
with line segments.

Yoo = Yo + T, - (t0 —t, ) where f, = f(t,, y,)

Euler Approximation

0.5
0.6
0.4

0.2

0 0.2 0.4 , 08 08



Example 1: Euler’s Method (10f3)

For the initial value problem

% =3-2t-0.5y, y(0)=1
we can use Euler’s method with h = 0.2 to approximate the

solution att=0.2, 0.4, 0.6, 0.8, and 1.0 as shown below.
Y, =Y, + fo-h=1+(3-0-0.5)(0.2) =1+2.5(0.2) =1.5

y, =Y, + f,-h=15+(3-2(0.2)-0.5(1.5))(0.2) ~1.87

y, =Yy, + f,-h=1.87+(3-2(0.4)-0.5(1.87))(0.2) ~ 2.123

Y, =Y, + f,-h=2.123+(3-2(0.6)-0.5(2.123))(0.2) = 2.2707

ye =Y, + f,-h=2.2707 +(3-2(0.8)-0.5(2.2707))(0.2) ~ 2.32363



Example 1. Exact Solution

(2 of 3)

« \We can find the exact solution to our IVP, as in Chapter 2.1

y'=3-2t-0.5y, y(0)=1
y'+0.5y=3-2t

e05ty’ + 0.5e05ty = 305t — De05t
eo.5ty — 14e%5t — 4105t 4 k

y =14 — 4t + ke~ 0
y(0)=1= k=-13
—y=14—-4t-13e —

y 14 4t 13 ' 05t

:
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Example 1: Error Analysis (3 of 3)

From table below, we see that the errors start small, but

get larger. This is most likely due to the fact that the exact

solution is not linear on [0, 1]. Note:

Percent Relative Error =

Yexact — yapprox %100

yexact

t Exacty | Approxy Error | % Rel Error
0 1 1 0 0

0.2 1.43711 1.5 -0.06 -4.38
0.4 1.7565 1.87 -0.11 -6.46
0..6 1.96936 2.123 -0.15 -7.8
0.8 2.08584 | 2.2707 -0.18 -8.86

1 2.1151 2.32363 ] -0.2085 | -9.8591083

Exacty inred

Approximate y in blue




Example 2: Euler’s Method (1 of 3)

 For the Initial value problem

3—¥:3—2t—0.5y, y(0) =1

we can use Euler’s method with various
step sizes to approximate the solution at t =

1.0, 2.0, 3.0, 4.0, and 5.0 and compare our
results to the exact solution

y =14 — 4t —13e — %~
at those values of t.



Example 2: Euler’s Method (2 of 3)

* Comparison of exact solution with Euler’s Method

forh=0.1, 0.05, 0.25, 0.01

t h=0.1 h =0.05 h =0.025 h =0.01 EXACT
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 2.2164 2.1651 2.1399 2.1250 2.1151
2.0 1.3397 1.2780 1.2476 1.2295 1.2176
3.0 —0.7903 | -0.8459 —0.8734 —0.8898 —0.9007
4.0 -3.6707 | -3.7152 -3.7373 —3.7506 —3.7594
5.0 —7.0003 | -7.0337 —7.0504 —7.0604 —7.0671




Percentage Error

xample 2: Euler’s Method (30f3)

Percentage Error Decreases
as Step Size Decreases
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Example 3: Euler’s Method (1 of 3)

 For the initial value problem

dy
—=4—-t+2y, 0)=1
" y, y(0)

we can use Euler’s method with h = 0.1 to approximate the
solutionatt=1, 2, 3, and 4, as shown below.

Y, =Y, + f,-h=1+(4—0+(2)(1))(0.1) =1.6

Y, =Y, + f,-h=1.6+(4-0.1+(2)(1.6))(0.1) = 2.31

Y, =Y, + f,-h=231+(4-0.2+(2)(2.31))(0.1) ~ 3.15
Y, =Y, + f,-h=3.15+(4-0.3+(2)(3.15))(0.1) ~ 4.15

« Exact solution (see Chapter 2.1):



Example 3: Error Analysis (2 of 3)

« The first ten Euler approximationss are given in table below
on left. Atable of approximations fort=20, 1, 2, 3 is given
on right for h = 0.1. See text for numerical results with h =
0.05, 0.025, 0.01.

« The errors are small initially, but quickly reach an
unacceptable level. This suggests a nonlinear solution.

t | Exacty |Approx y| Error |% Rel Error t Exacty [Approx y| Error |% Rel Error
0.00f 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
0.10f 1.66 1.60 0.06 3.55 1.00 19.07 15.78 3.29 17.27
0.20| 2.45 2.31 0.14 5.81 2.00 149.39 104.68 | 44.72 29.93
0.30 3.41 3.15 0.26 7.59 3.00 1109.18 | 652.53 | 456.64 41.17
0.40| 4.57 4.15 0.42 9.14 4.00 8197.88 | 4042.12 (4155.76 50.69
0.50| 5.98 534 0.63 10.58 :
0.60|] 768 | 676 | 092 | 1196 Exact Solution :
0.70f 9.75 8.45 1.30 13.31 7 1 11
0.80| 12.27 10.47 1.80 14.64 y = 4+ —t+— e2t
0.90| 15.34 12.89 2.45 15.96 4 2
1.00| 19.07 15.78 3.29 17.27




Example 3: Error Analysis & Graphs (3 of 3)

« Given below are graphs showing the exact solution (red)
plotted together with the Euler approximation (blue).

t Exacty [Approx y| Error |%Rel Error
0.00 1.00 1.00 0.00 0.00
1.00 19.07 15.78 3.29 17.27
2.00 149.39 104.68 44,72 29.93
3.00 1109.18 | 652.53 | 456.64 41.17
4.00 8197.88 | 4042.12 |4155.76 50.69
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Exact Solution :




General Error Analysis Discussion (1 of 2)

 Recall that if fand §// 9]y are continuous, then our first

order igitial value problem
= ey, )=,
has a soﬁution y=1(t)in some interval about t,.

* In fact, the equation has infinitely many solutions, each one
Indexed by a constant ¢ determined by the initial condition.

e Thus 7(z)is the member of an infinite family of solutions
that satisfies 7(¢,) = y;.
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General Error Analysis Discussion (2 of 2)

The first step of Euler’s method uses the tangent line to f
at the point (t,, yo) in order to estimate 7(z#)with y;.

The point (t,, y,) Is typically not on the graph of 7 , because
y; IS an approximation of 7(z,).

Thus the next iteration of Euler’s method does not use a
tangent line approximation to 7, but rather to a nearby
solution 7, that passes through the point (t,, y,).

Thus Euler’s method uses a
succession of tangent lines

to a sequence of different
solutions 7(¢), £,(¢z), 7,(¢),... of

the differential equation.



Error Bounds and Numerical Methods

In using a numerical procedure, keep in mind the question of
whether the results are accurate enough to be useful.

In our examples, we compared approximations with exact
solutions. However, numerical procedures are usually used
when an exact solution is not available. What is needed are
bounds for (or estimates of) errors, which do not require
knowledge of exact solution. More discussion on these issues
and other numerical methods is given in Chapter 8.

Since numerical approximations ideally reflect behavior of
solution, a member of a diverging family of solutions is harder
to approximate than a member of a converging family.

Also, direction fields are often a relatively easy first step in
understanding behavior of solutions.
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« The purpose of this section is to prove Theorem 2.4.2, the
fundamental existence and unigueness theorem for first
order initial value problems. This theorem states that under
certain conditions on f(t, y), the initial value problem

yl: f (t1 y)’ y(to) — yO
has a unique solution in some interval containing t; .

 First, we note that it is sufficient to consider the problem in
which the point (t,, Y,) is the origin. If some other initial
point is given, we can always make a preliminary change of
variables, corresponding to a translation of the coordinate
axes, that will take the given point into the origin.



Theorem 2.8.1

« Iffand 1//9yare continuous in a rectangle R: [t| <a, |y| <D,
then there Is some interval [t| < h <a In which there exists a
unique solution y =¢(t) of the initial value problem

y'=1f(y), y0)=0

« \We will begin the proof by transforming the differential
eguation into an integral equation. If we suppose that there
IS a differentiable function y = ¢(t) that satisfies the initial
value problem, then f[t,¢(t)] is a continuous function of t
only. Hence we can integrate y'= f(t,y) = f(t,4(t)) from
the initial value t = 0 to an arbitrary value t, obtaining

t

p(t) = [ t[s, 4(s)]ds

0



Proving the Theorem for the Integral
Equation

It Is more convenient to show that there is a unigue solution
to the integral equation in a certain interval |t| <h than to
show that there Is a unique solution to the corresponding
differential equation. The integral equation also satisfies the
Initial condition.

()=o) (s,f(s))ds P £(0)=0 (s is a dummy variable)
0
The same conclusion will then hold for the initial value
problem
y'=1f(ty), y0)=0

as holds for the integral equation.



The Method of Successive Approximations

One method of showing that the integral equation has a
unique solution is known as the method of successive
approximations or Picard’ s iteration method. We begin by
choosing an initial function that in some way approximates
the solution. The simplest choice utilizes the initial condition

fo()=0

The next approximation ¢ is obtained by substituting £, (s)
for f(s) into the rightside of the integral equation. Thus

f.(t)= Of(s f,(s))ds = Of(s 0)ds
Similarly, 7 (f) of(S f (S))dS
And in general, n+1(t) Of (s, (s))ds



t

$r2(®) = [ f[s.4,(5)1ds
Examining the Sequence’

« As described on the previous slide, we can generate the
sequence {f }=1,,f,,7,,....f ,... with

fo()=0and £ .. (t) = Of (s.7,(s))ds

« Each member of the sequence satisfied the initial condition,
but in general none satisfies the differential equation.
However, if for some n =k, we find ¢,_,(t) =4, (t) , then 4,(t)
IS a solution of the integral equation and hence of the initial
value problem, and the sequence is terminated.

 In general, the sequence does not terminate, so we must
consider the entire infinite sequence. Then to prove the
theorem, we answer four principal questions.



¢n+1(t)=j f[s, ¢,(s)lds
Four Principal Questions about the

Seqguence

Do all members of the sequence {¢,} exist, or may the
process break down at some stage?

Does the sequence converge?

. What are the properties of the limit function? In particular,
does it satisfy the integral equation and hence the
corresponding initial value problem?

Is this the only solution or may there be others?

To gain insight into how these questions can be answered,
we will begin by considering a relatively simple example.



Example 1: An Initial Value Problem (1 of 6)

We will use successive approximations to solve the initial
value problem

y'=2td+y), y(0)=0
Note first that the corresponding integral equation becomes
F(t)=2s@+7(s)Dds
The Initial approximati%n ¢,(t)=0 generates the following:
f.(2)= E‘)Zs(1+ 0)ds = ;‘)Zs ds =t°

t y .
fz(t) — (\)2S(1+S2)ds = dZS +253)d5 — +%
0 0

t y . ]
fs(t) = 625(1+S2 +5/2 )dS — 62S+253 +S5)dS —¢2 +t_+
0 0 2 2>6




#(t) = [ 2s[1+ 4(s)]ds

Example 1: An Inductive Proof (2 of 6)
The evolving sequence suggests that

4 6
f ()=t P
! 21 3l n!
This can be proved true for all n > 1 by mathematical
Induction. It was already established for n =1 and if we

assume It s true for n = k, we can prove it true for n = k+1.
o ()= [ 251+, ()Dds

2n

t S4 S2k
IIZS 1+s>+—+---+— |ds
) 2! k!

4 2k

r t t
=t +——+-+—+
2! k! (k+1)!

Thus, the inductive proof is complete.

2(k+1)




d () =t* +tY2A+ 3+ 404 - 12"l
Example 1: The Limit of the Sequence (3 of 6)

« A plot of the first five iterates suggests eventual
convergence to a limit function:

M0

* Taking the limit as n—o0 and recognizing the Taylor series

and the function to which it converges, we have:
n o t2k

2k
rliﬂl%(t) = E'Dlzt?l - ZF o 1
k=1 M\= k=1 M\=



lim ¢,(t) =" ~1
Example 1. The Solution (4 of 6)

Now that we have an expression for

n t2k o0 t2k 5
st =limg,@=lm> =L _¢f 1
N—»0 N—>o0 4= ki ‘o1 ki

let us examine ¢(t) — ¢k (t) for increasing values of k in order to get a sense of the
interval of convergence:

K
2.0

| , |
| | k=l | f |
“ “ \ \ 15 — 7 “J \ |

The interval of convergence increases as k increases, so the terms of the sequence
provide a good approximation to the solution about an interval containing t = 0.



(1) = [ 21+ g(s)1ds

Example 1: The Solution Is Unigue (5 of 6)

To deal with the question of unigueness, suppose that the IVP
has two solutions#(t) and y(t). Both functions must satisfy the
Integral equation. \We will show that their difference is zero:

B(t) —y (1) = j 2s[1+ ¢(s)]ds — j 2s[1+w(s)]ds

J 2s#(s) —w (s)]ds

< j 25|p(s) —y(s)| ds

< Aflp(s) ~w(s)|ds

For the last inequality, we restrict t to 0 <t < A/2, where A is
arbitrary, then 2t < A.



BO) — (©)] = Af|p(s) — ()| ds
Example 1: The Solution Is Unigue (6 of 6)

|t is now convenient to define a function U such that
U (t) = [|¢(s) -y (s) ds
0
* Notice that U(0) = 0 and U(t) > 0 for t > 0 and U(t) is
differentiable with U'(t) =|¢(t) —w(t) . This gives:
U'(t)- AU(¢) £0 and multiplying by e *
(e "U@))E0Pb e “U()EO0DP U(t)E0fort3 0
* The only way for the function U(t) to be both greater than
and less than zero is for it to be identically zero. A similar

argument applies in the case where t <0. Thus we can
conclude that our solution is unique.



y'=f(ty), y(0)=0

t

¢,a ()= [ T[54, (s)]ds
Theorem 2.8.1: The First Step in the Proof

 Returning to the general problem, do all members of the
sequence exist? In the general case, the continuity of f and
Its partial with respect to y were assumed only in the
rectangle R: |t| < a, |y| < b. Furthermore, the members of
the sequence cannot usually be explicitly determined.

« Atheorem from calculus states that a function continuous
In a closed region is bounded there, so there is some
positive number M such that |f(t,y) [< M for (t, y) In R.

- Since ¢,(0)=0and ¢,"(t) = T (t,4,(1)) <M | the
maximum slope for any function in the sequence is M. The
graphs on page 88 of the text indicate how this may impact
the interval over which the solution is defined.



y'=f(ty), y(0)=0

t

¢,a ()= [ T[54, (s)]ds
Theorem 2.8.1: The Second Step in the

Proof
 The terms in the sequence {@, }can be written in the form

0= 40 +18,0 - 4O+ 8,0 - SO+ 16,0 -4, ()
and im ¢, ()= 40+ Y [~ 0]

« The convergence of this sequence depends on being able to
bound the value of |¢..(t)—4(t)|. This can be established
based on the fact that of /oy is continuous over a closed region
and hence bounded there. Problems 15 through 18 in the text
lead you through this validation.



y'=f(ty), y(0)=0

0= | F15.4,(Ns
Theorem 2.8.1: The Third Step in the Proof

« There are details in this proof that are beyond the scope of
the text. If we assume uniform convergence of our
sequence over some interval |t| <h <a and the continuity
of f and its first partial derivative with respect to y for |t| <
h <a, the following steps can be justified:

F(0) = lim ()= lim jf(s,fn (5))ds

t

jnmf(s f (s))ds= jf(s lim7,(s))ds

= | f(s,7(s))ds

0



y'=f(ty), y(0)=0

t

y=¢(t) = [ f[s,4(s)lds
Theorem 2.8.1: The Fourth Step in the Proof

* The steps outlined establish the fact that the function ¢(t)
IS a solution to the integral equation and hence to the initial
value problem. To establish its unigueness, we would
follow the steps outlined in Example 1.

* \We conjecture that the I\VP has two solutions: ¢(t) and w (t).
Both functions have to satisfy the integral equation and we
show that their difference is zero using the inequality:

t

7(t)- v () EAQF (s)- ¥ (s)ds
» If the assumptions of this tieorem are not satisfied, you

cannot be guaranteed a unique solution to the I\VVP. There
may be no solution or there may be more than one solution.
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 Although a continuous model leading to a differential equation
IS reasonable and attractive for many problems, there are some
cases In which a discrete model may be more appropriate.
Examples of this include accounts where interest is paid or
charged monthly rather than continuously, applications
Involving drug dosages, and certain population growth
problems where the population one year depends on the

population in the previous year. For example,
yn+1: f(n1yn), n:O,l,Z,

 Notice here that the independent variable n is discrete. Such
equations are classified according to order, as linear or
nonlinear, as homogeneous or nonhomogeneous. There Is
frequently an initial condition describing the first term Yo .



Difference Equation and Equilibrium
Solution

« Assume for now that the state at year n +1 depends only on the
state at year n, and not on the value of n itself

) :f(n,yn), n-— 0, 1, 2,
* Then
n=f0uh v =0 = U0 s =1 0,) :fs(yo),...,yn =1"(y,)

 This procedure is referred to as iterating the difference and it is
often of interest to determine the behavior of y_ as n —oo.

« An equilibrium solution exists when
Yo = T(Yn)

and this is often of special interest, just as it is in differential
equations.



Linear Homogeneous Difference Equations

Suppose that the population of a certain species in a region in
year n +1 Is a positive multiple of the population in year n:

You=p.Y,, n=0,1,2, ..

Notice that the reproduction rate may differ from year to year.

Yi=PoYor Yo = PY1=PPoYor s Yo = Paa PP Yo
If the reproduction rate has the same value p for all n:

Yo =P Yo

If the Initial value Y, Is zero, then the equilibrium solution = 0
Otherwise
0, if | 7| <1, = asymptotically stable
limy =1y, if r =1;

n—»0

kdoes not exist, otherwise. = asymptotically unstable



Adding/Subtracting a Term to the Equation

« Suppose we have a net increase in population each year:
yau=ry +b, n=012 .
« Then iterating this:
V1= Yo +hy,
y,=ry,+b, =r(ry,+b,)=r’y,+rb,+b,
VY, =ry,+b, =r(r’y,+rby+b)+b,=r’y, +r°b, +rb +b,,..

n-1
— 2 n-1 —_ N o n-1-j
Vo= 'yt r byt trb, ,+b  =riy,ta r bj
j=0

« |If the migration is constant (b) each year:
Vo = P"Yo + (0" -+ pD)b
* Andas long as p # 1, we can use the geometric series formula to get:

b :,n( b ), b
kyo 1-r) 1-r

1- r”
1-r

yn:rnyo-l_



Vo = 27 Yo — e |4
np Ol_p 1_p

Conditions for an Equilibrium

Letting n —oo In the equation for Yy, we get:

limy. =him p”](yo— b j+ b
N> o 1-p) 1-p
Recall that p # 1. If it were, the sequence would become:
Y, =Y,+Nb—>0 as n—w

If o] < 1, lim " = 0, 50 yﬁli an equilibrium solution.
n—>o0 o,

If |p| >1orif p =-1, lim p"does not exist, so the limy_

fails to exist unless

Yo = % = thesolution startsat its equilibrium and staysthere.
P



Vo = 27 Yo — e |42
np Ol_p 1_p

Example 1: Extending the Model

If we have a $10,000 car loan at an annual interest rate of 12%, and we
wish to pay it off in four years by making monthly payments (-b), we can
adapt the previous result as follows:

y. = loan balance ($) in the »™ month, y, =10,000

r=1+2222101,1- r=-001, —2— =-1005
12 1-r

b b
=r" - — | +——=1.01"(10,000 +10054) - 1005H
Ve [yo 1- rj 1- r ( )

To pay the loan off in four years, we set Y4 =0 and solve for b:

Y, =1.01%4(10,000 +100b) —100b =0 =

48
b=-100 : 1.0 ~ —263.34

01" -1
The total amount paid on the loan is 48(263.34)=%$12,640.32, so the amount
of interest paid is $2640.32.




Nonlinear Difference Equations

As is the case with differential equations, nonlinear difference
equations are much more complicated and have much more varied
solutions than linear equations.

We will analyze only the logistic equation, which is similar to the
logistic differential equation discussed in 2.5.

Vurs =1y, (1- y?”), n=0,1,2, ..
Letting u,=y,/k ,u,,=ru,(1- u,)
Seeking the equilibrium solution yields:
u, =pu (l-u)=pu —pu’=
o1

u,=0or u, =—-
o,

Are either of these equilibrium solutions asymptotically stable?



u,=0or u, _p-l

yo,

Examining Points Near Equilibrium Solutions

* For the first equilibrium solution of zero, the quadratic term = 0:
Near u, =0, u ., =ru,- ru’»ru b u ,=ru

» \We have already examined this equation and concluded that for |p| <1,
the solution is asymptotically stable.

« \We will now consider solutions near the second equilibrium:

r-1 : :
Let u, =——+v_ where v Iisassumed to be small so quadratic term » O,
r

bv., =Q-r)v,-rv:»2-r)y, (aftersimplifying U . expression)
Pv.=02-r),
* From our previous discussion, we can conclude that v. — 0 provided

|2—p|<1lorl<p<3.So, for these values of p, we can conclude that
the solution Is asymptotically stable.



Solutions for Varying Initial States and
Parameter Values Between 0 and 3 (1 of 2)

Un

n

0 0.3 Un+1=0.8un(1-un)

1 0.168 0.35

2 0111821 03 Y, =0.3, p=0.8

3 0.079454 025 1\

4  0.058513 0.2

5 0.044071 0.15 \\ |,0| <l=u, >0

6  0.033703 0.1

7 0.026054 0.05 \\

8  0.0203 0 x x ; Y

9 0.01591 0 2 4 6 8 10 12

10 0012526

n un

0 0.8 u,,,=1.5u,(1-u,)

1 0.24 1

2 0.2736 =0.8 =15

3 0208115 | °° Yo » P

4 0313863 | 06 \ p-1 05 1
5 032303 | o4 l<p<3=Uu, > ——=—"—"==
6 0328022 | A n Jo, 15 3
7 0.330636 '

8 0.331974 0

9 0.332651 0 2 4 6 8 0

10 0.332991




Solutions for Varying Initial States and
Parameter Values Between 0 and 3 (2 of 2)

n u,
0 03 u,,.,=2.8u.(1-u,)
1 0.588 0.8 = 0.3 = 2.8
2 0678317 Yo ' P
3 0.610969 0.6 -1 1.8
4 0665521 / 1< p<3=u, S PT2 =% 06429
5 0.623288 04 Y Yo, 2.8
6 0.65744 02
7 0.630595
8 0.652246 0
9 0.6351 0 2 4 6 8 10 12
10 0.648895
n u,
0 0.9 u,,,;=2.8u.(1-u)
1 0.252 .
2 0527789 \ ~09 p=28
3 0697838 0.8 \ Yo » P
/\/\M
4 0.590409 0.6 >
5 0677114 04 \ / P = 2.8 as above = u, —> 0.6429
6  0.612166 V
7 0.664773 0.2
8  0.62398 0
9 0.656961 0 2 4 6 8 10 12
10 0.631017




Summary of Asymptotic Stability Intervals

« We found that the difference equation Un.a = AU, (1-u_) has two

A _ i
equilibrium solutions: u, =0 or u, =—

 Considering nonnegative values of the parameter p, the first
equilibrium solution required that 0 < p <1, while the second
equilibrium solution required that 1 < p < 3. there is an
exchange of stability from one equilibrium solution to the
other at p = 1. This is demonstrated in the chart below:

u=0

o2 - exchange of stability at p = 1



Solutions of the Difference Equation That Do
Not Approach an Equilibrium (1 of 4)

g (;‘; Below is an example of a 2-cycle. Notice how as n
1 0672 | increases, the value of u, alternates between two
2 0.705331

3 sees0ss | values (0513 and 0.799).

4 0.71279

5 0655105 | p = 3.2 and yp,=0.3

6 0.723016

7 0.640845

8 0.736521

9 0.620986

10 0.75316 un+1=3,2un(1-un)

11 0.594912

12 0771173 || %°

13 0.564688 0.8

14 0.78661 0.7 -

15 0.537136 || 0.6 i

16 0.795587 || 05

17 0520411 || g4 /

18 0.798667 | | 45

19 0514554 | |

20 0.799322

21 0.5133 0.1

22 0.799434 0

23 0.513086 0 5 10 15 20 25 30
24 0.799452




Solutions of the Difference Equation That Do
Not Approach an Equilibrium (2 of 4)

0 ‘;n) Below is an example of a 4-cycle. Notice how as n
n u(n,
o 03 increases, the value of u, alternates between four
1 0735 | values (0.3828, 0.5009, 0.8269, 0.8750).
2 0.681713
3 0.759432
" 5639433 1P =35 andy,=0.3
12 0.392152
13 0.834291 —
u..;=3.5u_ (1-u

14 0.483873 n+1 (1-Uy)
15 0.87409 1

0.9
16 0.385199 08 4
17 0.828873 0.7 LN AN NN NANNVANAN
18 0.49645 ST AVAVAVAVAVAVAVAVAVAVAYA
19 0.874956 o5 A _.'lVl'l .'l .'l'.'l.
20 0.382928 0.4 t
21 0.82703 0.3
22 0.50068 0.2
23 0.874998 0.1
24 0.382817 0
25 0.826938 0 5 10 15 20 25 30
26 0.50089
27 0.874997

28 0.38282




Solutions of the Difference Equation That Do
Not Approach an Equilibrium (3of4)

* Notice from the preceding graphs how the behavior of the solution
to the difference equation u« ,, = ru (1- u,) behaves rather
unpredictably when p > 3. First, at p = 3.2, we saw the sequence
oscillate between two values, creating a period of two. Then, at p =
3.5, the terms in the sequence were oscillating among four values,
creating a period of 4. It is actually around p = 3.449 that this
doubling of the period occurs and this is called a point of
bifurcation. As p increases slightly further, periodic solutions of
period 8, 16, ... occur.

« By the time we reach p > 3.57, the solutions possess some regularity,
but no discernible detailed pattern is present for most values of p.
The term chaotic is used to describe this situation. One of the
features of chaotic solutions is extreme sensitivity to the initial
conditions. This is demonstrated on the following slide.



Chaotic Solutions (4 of 4)

* Below are two solutionsto y_ . =3.65u, (1-u,)
« The gray solution corresponds to the initial state ¥, =0.300
* The brown solution corresponds to the initial state y, =0.305

1

0.9 -

0.8 -

0.7 H
0.6 v
0.5 '

0.4

0.3

0.2

0.1

0

0 10 20 30 40 50 60



What Chaotic Solutions May Suggest

* On the basis of Robert May’s analysis of the nonlinear
equation we have considered

u.,=ru(1-u ) andsimilarly y'=ry1- y)

as a model for the population of certain insect species, we
might conclude that if the growth rate p Is too large, it will be
Impossible to make effective long-range predictions about
these insect populations.

 Itis increasingly clear that chaotic solutions are much more
common than was suspected at first, and that they may be part
of the investigation of a wide range of phenomena.



