Design & Development

Developing Design Candidates Select the Best Design (Solution) Construct a Prototype

Design Process

	Design Step		Action	Outcome
Initial Problem	Problem Definition			
	Requirement Definition		Surveys, Case Studies, Action Research	Quantitative & Qualitative Requirements
	Design & Development	Development Design Candidates	Creative Methods, Innovation	Mockups / Rapid Prototyping
		Select the Best Design (Solution)	Optimization	Primary / Secondary Design
		Construct a Prototype	Machining / Rapid Prototyping	Artifact / Fully functional System
	Demonstration		Experiments, Case Studies / Action Research	Demonstrated Prototype (Basic Functionality)
	Evaluate			
	Reporting			
	Redesign			

Design & Development Artifact - Definition

Create an artifact that addresses the explicated problem and fulfill the defined requirements.

Design & Development Artifact – Definition

Design Methods – Goals

Design Methods – Creative Methods

Brainstorming Creative Methods - Design Methods

• Aim

- · Generating a large number of ideas,
- Most of the ideas will subsequently be discarded,
- Few novel ideas being identified as worth following up.

Protocol

- **Duration:** 20-30 min
- Group Leader Role
 - Formulate the problem statement used as a starting point
 - Ensure that the format of the method is followed,
 - Ensure that it does not degenerate into a round-table discussion
- Step 1:
 - Spend a few minutes, in silence, writing down the first ideas that come into your head
- Step 2:
 - Each group member, in turn, read out one idea from his or her set.
 - The most important rule here is that no criticism is allowed from any other member of the group.
- Step 3:
 - In response to every other person's idea is to try to build on it, to take it a stage further, to use it as a stimulus for other ideas, or to combine it with his
 or her own ideas.
 - Make a short pause after each idea is read out, to allow a moment for reflection and for writing down further new ideas.
- Step 4:
 - · Classify the ideas into related groups

Design Methods – Creative Methods

Synectics Creative Methods - Design Methods

- Synectics Creative thinking often draws on analogical thinking, on the ability to see parallels or connections between apparently dissimilar topics.
- Analogical Thinking (Definition) Analogical thinking is what we do when we use information from one domain (the source or analogy) to help solve a problem in another domain (the target).
- **Bisociation** A blending of elements drawn from two previously unrelated patterns of thought into a new pattern.
- Blend of **bi- + association**; coined by Hungarian-British author Arthur Koestler in his 1964 book The Act of Creation.

Synectics - Bisociation Creative Methods - Design Methods

Arthur Koestler The Act of Creation 1964 ARTHUR KOESTLER THE ACT OF A study of the conscious and unconscious processes in humor cientific discovery and art.

Synectics -Creative Methods - Design Methods

Synectics versus Brainstorming

Method	Brainstorming	Synectics
Number of Solutions	Large	Single
Length of the session	Short	Long

Direct Analogy - Synectics – Types of Analogies Creative Methods - Design Methods

- **Direct Analogy** Seeking Biological solution to similar problem
 - Example Velcro

Personal Analogy - Synectics – Types of Analogies Creative Methods - Design Methods

 Personal Analogy – The team members imagine what it would be like to use oneself as the system or component that is being designed.

Symbolic Analogy - Synectics – Types of Analogies Creative Methods - Design Methods

• Symbolic Analogy - Symbolic Analogy bases around examinations of objects' properties in an abstract fashion.

Fantasy Analogies - Synectics – Types of Analogies Creative Methods - Design Methods

• Fantasy Analogies - 'Impossible' wishes for things to be achieved in some 'magical' way.

Session Protocol - Synectics Creative Methods - Design Methods

Session Protocol

- Starts with the 'problem as given' the problem statement as presented by the client or company management.
- Seek Analogies (Understand the Problem) help to 'make the strange familiar', i.e. expressing the problem in terms of some more familiar (but perhaps rather distant) analogy.
- Conceptualization of the 'problem as understood' Understand the key factor or elements of the problem that need to be resolved, or perhaps a complete reformulation of the problem.
- Seek Unusual & Creative Analogies (Create Solutions) May lead to novel solution concepts. The analogies are used to open up lines of development which are pursued as hard and as imaginatively as possible by the group.

Synectics – Analogies – Example Fork Lift / Bendi Truck Creative Methods - Design Methods

Synectics – Analogies – Example Fork Lift / Bendi Truck Creative Methods - Design Methods

Synectics – Analogies – Example ForkLift / Benditruck Creative Methods - Design Methods

Synectics – Analogies – Example Fork Lift / Bendi Truck Creative Methods - Design Methods

Design Methods – Creative Methods

Enlarge the Search Space Creative Methods - Design Methods

• Aim: A common form of mental block to creative thinking is to assume rather narrow boundaries within which a solution is sought. Many creativity techniques are aids to enlarging the 'search space'.

Transformation - Enlarge the Search Space Creative Methods - Design Methods

 Transformation - 'transform' the search for a solution from one area to another. This often involves applying verbs that will transform the problem in some way, such as

magnify, minify, modify, unify, subdue, subtract, add, divide, multiply, repeat, replace, relax, dissolve, thicken, soften, harden, roughen, flatten, rotate, rearrange, reverse, combine, separate, substitute, eliminate.

Transformation – Example Enlarge the Search Space Creative Methods - Design Methods

MAE 162 D/E – Mechanical Engineering Design I / II Instructor – Jacob Rosen PhD.

YouTube <u>https://youtu.be/dlxJ65WRy0E</u>

From the Moon to Mars

YouTube <u>https://youtu.be/4LOOTyuLjLU</u>

NASA Reinvented The Wheel - Shape Memory Alloy Tires

YouTube <u>https://youtu.be/pvKIzIdni68</u>

Field Trials Utah: Robot team simulates Mars mission in Utah

Random Input - Enlarge the Search Space Creative Methods - Design Methods

- Random Input Creativity can be triggered by random inputs from whatever source.
 - Opening a dictionary or other book and choosing a word at random and using that to stimulate thought on the problem in hand.
 - Switch on a television set and use the first visual image as the random input stimulus.

Why? Why? Why? - Enlarge the Search Space Creative Methods - Design Methods

• Why? Why? Why? - .

- Ask a string of questions ':why?' about the problem:
 - 'Why is this device necessary?' '
 - Why can't it be eliminated?'
- Each answer is followed up, with another 'Why?' until a dead end is reached or an unexpected answer prompts an idea for a solution.
- There may be several answers to any particular 'Why?', and these can be charted as a network of question-and-answer chains.

Counter Planning - Enlarge the Search Space Creative Methods - Design Methods

Counter Planning

- Thesis Antithesis Synthesis The concept of the dialectic, i.e. pitting an idea (the thesis) against its opposite (the antithesis) in order to generate a new idea (the synthesis).
- Conventional Opposite Compromise Challenge a conventional solution to a problem by proposing its deliberate opposite, and seeking a compromise.
- **Synthesis** Two completely different solutions can be deliberately generated, with the intention of combining the best features of each into a new synthesis.

Generalized Creative Methods Creative Methods - Design Methods

- 'Ah-ha!' moment Generalized Creative Methods
- This general pattern is the following sequence
 - Recognition is the first realization or acknowledgement that 'a problem' exists.
 - Preparation is the application of deliberate effort to understand the problem.
 - Incubation is a period of leaving it to 'mull over' in the mind, allowing one's subconscious to go to work.
 - *Illumination* is the (often quite sudden) perception or formulation of the key idea.
 - Verification is the hard work of developing and testing the idea.

Generalized Creative Methods Creative Methods - Design Methods

YouTube <u>https://youtu.be/QEoqBjRZr1q</u>

Albert Einstein: How did he come up with ideas? | Understanding Einstein's Mind

YouTube <u>https://youtu.be/ijj58xD5fD</u>

Version 1: How taking a bath led to Archimedes' principle - Mark Salata

YouTube <u>https://youtu.be/0v86Yk14rf8</u>

Version 2: The real story behind Archimedes' Eureka! - Armand D'Angour

YouTube <u>https://youtu.be/91XI7M9I3no</u>

Einstein's miracle year – TED Ed - Larry Lagerstrom

Generalized Creative Methods Creative Methods - Design Methods

 Work – Relaxation – Work - The process is essentially work – relaxation – work, with the creative insight occurring in a period.

NEURON ACTION POTENTIAL

Design Methods – Rational Methods

UCLA

Rational Methods - Design Methods

General Aim	Method	Specific Aim
Identify Opportunities	User Scenarios	Identify and define an opportunity for a new or improved product.
Clarify Objectives	Objective Tree	Clarify design objectives and sub objectives, and the relationships between them.
Establishing Function	Function Analysis	Establish the functions required, and the system boundary, of a new design.
Setting Requirements	Performance Specification	Make an accurate specification of the performance required of a design solution.
Determining Characteristics	Quality Function Deployments (QFD)	Set targets to be achieved for the engineering characteristics of a product, such that they satisfy customer requirements.
Generating Alternatives	Morphological Chart	Generate the complete range of alternative design solutions for a product.
Evaluating Alternatives	Weighted Objectives	Compare the utility values of alternative design proposals, on the basis of performance against differentially weighted objectives.
Improving Details	Value Engineering	Increase or maintain the value of a product to its purchaser whilst reducing its cost to its producer.

Rational Methods - Design Methods

Generating Alternatives

Morphological Chart Method

Generating Alternatives – Introduction Rational Methods - Design Methods

- Solution Generation The generation of solutions is, of course, the essential, central aspect of designing
- Variation / Modification to an Existing Artifact most designing is actually a variation from or modification to an already existing product or machine. Clients and customers usually want improvements rather than novelties.

Variation

- In a display there are 3 students and 3 chairs standing in a row.
- In how many different orders can the students sit on these chairs?

Variation

• *3!=1x2x3=6*

Variations (Factorial)

Number of Objects	Factorial	Number of orders
1	1!	1
2	2!	2
3	3!	6
4	4!	24
5	5!	120
6	6!	720
7	7!	5040
8	8!	40,320
9	9!	362,880
10	10!	3,628,800
20	20!	2,432,902,000,000,000,000e=2.4e+18
26	26!	403,291,460,000,000,000,000,000,000=4.0329146e+26

AUTOMOBILE	RfillCfiR	TELEPHONE	CLOCK	CHAIR	STEMWARE	DRESS & FIGURE	BATHING SUIT
PUNJ	¹⁴⁰¹ 395	1875	1700	1600	300	1630	***
-505 E	1612	1878	1750	1650	H00	1790	100
010		1886	1790	1700	1500	1950	Nos
19/4		1876	***	170	1600	7840	190
	···	1900	1820	1799 🛱	1700	1890	1915
1925	1641 DICIDICIDICIDI	1920	1440	1800	1800	1900	1910
1928		···· 62	1860	1620	1830	1910	
121		1934	890 IOI	1880	1860	1925	M50
1974			1920	1910	1900	1934	***
			1930	1730	1930	ł	_ !
		_					

Raymond Loewy, this chart from 1934

The Evolution of 8 Objects Americans Use Every Day

MAE 162 D/E – Mechanical Engineering Design I / II Instructor – Jacob Rosen PhD.

Phones evolved to be smaller and lighter, until going fully mobile with the creation of cell phones.

YouTube <u>https://youtu.be/10ADXNGnJok</u>

Dial a rotary phone

* SIGNIFICANTLY SHORTER KEYING TIME TSIGNIFICANTLY † SIGNIFICANTLY LOWER ERROR RATE

Phone Buttons - Numberphile

TV

Through the decades, TVs grew both larger and slimmer.

FAN

Fans transitioned from heavy-duty metal to lightweight plastic models, before going completely bladeless.

VACUUM CLEANER

Since their inception, vacuum cleaners have evolved to be smaller and more portable, with the goal of making cleaning easier.

SavingSpot

HEADPHONES

Headphones evolved from bulky over-ear speakers to nearly invisible buds, as the technology focused on music.

CAR

Cars grew larger through the decades until the 1980s, when design became more economical.

Once used almost exclusively for sports and leisure activities, sneakers evolved into fashion statements.

SavingSpot

2010s

Nike VaporMax

HOME AUDIO SYSTEM

Home audio systems transitioned from ornate wooden designs to compact, unobtrusive designs.

MERCEDES BENZ SL EVOLUTION

GENERATION W113 (1963 - 1971)

GENERATION R107 (1971 - 1989)

GENERATION R129 (1989 - 2001)

GENERATION R230 (2001 - 2011)

This image is licensed under the Creative Commons Attribution-Share Able 40 International License - www.creativecommons.org/licenses/by-sa/40

Budget Direct

Generating Alternatives – Morphological Chart Rational Methods - Design Methods

Aim - **Generate the complete range of alternative design solutions** - The aim of the morphological chart method is to generate the complete range of alternative design solutions for a product, and hence to widen the search for potential new solutions.

1. List the features / functions / design blocks - List the features or functions that are essential to the product. Whilst not being too long, the list must comprehensively cover the functions, at an appropriate level of generalization.

2. List the means by which features/functions might be achieved - For each feature or function list the means by which it might be achieved. These lists might include new ideas as well as known existing components or sub solutions (3-8).

3. Draw up a chart containing all the possible sub solutions (Morph Chart). This morphological chart represents the total solution space for the product, made up of the combinations of sub solutions.

4. **Construction a Solution - Identify feasible combinations of sub solutions -** The total number of possible combinations may be very large, and so search strategies may have to be guided by constraints or criteria.

- **Method 1** choose only a restricted set of sub solutions from each row say, those that are known to be efficient or practical, or look promising
- **Method 2** identify the infeasible sub solutions, or incompatible pairs of sub solutions, and so rule out those combinations that would include them

Generating Alternatives – Morphological Chart Rational Methods - Design Methods

- When to stop generating solutions
 - Generate broad range of the design space
 - Representative
 - Diverse
 - Creative
 - 20 solutions
 - Method 1 choose only a restricted set of sub solutions from each row say, those that are known to be
 efficient or practical, or look promising
 - **Method 2** identify the infeasible sub solutions, or incompatible pairs of sub solutions, and so rule out those combinations that would include them

 1. List the features / functions / design blocks - List the features or functions that are essential to the product. Whilst not being too long, the list must comprehensively cover the functions, at an appropriate level of generalization.

Design Block		
Mouth Piece		
Container		
Handle		
Geometry D:H Ratio		
Shape		

2. List the means by which features/functions might be achieved - For each feature or function list the means by which it might be achieved. These lists might include new ideas as well as known existing components or sub solutions.

3. Draw up a chart containing all the possible sub solutions (Morph Chart). This morphological chart represents the total solution space for the product, made up of the combinations of sub solutions.

Design Block	Option 1	Option 2	Option 3	Option 4	Number of solutions
Mouth Piece	Twist Top	Faucet	Rubber Nipple	Pull Top	4x4x3x3x4=576
Container	Plastic	Disposal	Metal	Glass	
Handle	Тор	Body	Attached (pouch)		
Geometry D:H Ratio	<1:2	1:2 – 1:3	> 1:3		
Shape	Ergonomic	Pouch	Straight	Ribbed	

4. **Identify feasible combinations of sub solutions** - The total number of possible combinations may be very large, and so search strategies may have to be guided by constraints or criteria.

Design Block	Option 1	Option 2	Option 3	Option 4
Mouth Piece	Twist Top	Faucet	Rubber Nipple	Pull Top
Container	Plastic	Disposal	Metal	Glass
Handle	Тор	Body	Attached (pouch)	
Geometry D:H Ratio	<1:2	1:2 – 1:3	> 1:3	
Shape	Ergonomic	Pouch	Constant Diameter	Ribbed

Metal Water Bottle

Note: Skip a line (design block)

4. **Identify feasible combinations of sub solutions** - The total number of possible combinations may be very large, and so search strategies may have to be guided by constraints or criteria.

Design Block	Option 1	Option 2	Option 3	Option 4
Mouth Piece	Twist Top	Faucet / Spigot	Rubber Nipple	Pull Top
Container	Plastic	Disposal	Metal	Glass
Handle	Тор	Body	Attached (pouch)	
Geometry D:H Ratio	<1:2	1:2 – 1:3	> 1:3	
Shape	Ergonomic	Pouch	Constant Diameter	Ribbed

Water Pouch Backpack

Note: Skip a line (design block)

4. **Identify feasible combinations of sub solutions** - The total number of possible combinations may be very large, and so search strategies may have to be guided by constraints or criteria.

Design Block	Option 1	Option 2	Option 3	Option 4		
Mouth Piece	Twist Top	Faucet / Spigot	Rubber Nipple	Pull Top		
Container	Plastic	Disposal	Metal	Glass		
Handle	Тор	Body	Attached (pouch)			
Geometry D:H Ratio	<1:2	1:2 – 1:3	> 1:3			
Shape	Ergonomic	Pouch	Constant Diameter	Ribbed		

Water bottle Disposable

Note: Multiple options of the same design block

4. **Identify feasible combinations of sub solutions** - The total number of possible combinations may be very large, and so search strategies may have to be guided by constraints or criteria.

Design Block	Option 1	Option 2	Option 3	Option 4
Mouth Piece	Twist Top	Faucet / Spigot	Rubber Nipple	Pull Top
Container	Plastic	Disposal	Metal	Glass
Handle	Тор	Body	Attached (pouch)	
Geometry D:H Ratio	<1:2	1:2 – 1:3	> 1:3	
Shape	Ergonomic	Pouch	Constant Diameter	Ribbed

Note: Non Reasonable solutions

Feature	Means				
Support	Wheels	Track	Air cushion	Slides	Pedipulators
Propulsion	Driven wheels	Air thrust	Moving cable	Linear induction	
Power	Electric	Petrol	Diesel	Bottled gas	Steam
Transmission	Gears and shafts	Belts	Chains	Hydraulic	Flexible cable
Steering	Turning wheels	Air thrust	Rails		
Stopping	Brakes	Reverse thrust	Ratchet		
Lifting	Hydraulic ram	Rack and pinion	Screw	Chain or rope hoist	
Operator	Seated at front	Seated at rear	Standing	Walking	Remote control

Feature	Means				
Support	Wheels	Track	Air cushion	Slides	Pedipulators
Propulsion	Driven wheels	Air thrust	Moving cable	Linear induction	
Power	Electric	Petrol	Diesel	Bottled gas	Steam
Transmission	Gears and shafts	Belts	Chains	Hydraulic	Flexible cable
Steering	Turning wheels	Air thrust	Rails		
Stopping	Brakes	Reverse thrust	Ratchet		
Lifting	Hydraulic ram	Rack and pinion	Screw	Chain or rope hoist	
Operator	Seated at front	Seated at rear	Standing	Walking	Remote

MAE 162 D/E – Mechanical Engineering Design I / II Instructor – Jacob Rosen PhD.

Aliens - Power Loader

Evaluating Alternatives

Weighted Objectives Method

Weighted Objectives Method Rational Methods - Design Methods

• Aim - Compare the utility values of alternative design proposals - The aim of the weighted objectives method is to compare the utility values of alternative design proposals, on the basis of performance against differentially weighted objectives.

1. List the design objectives - These may need modification from an initial listi an objectives tree can also be a *useful* feature of this method.

2. Rank-order the list of objectives - Pair-wise comparisons may help to establish the rank order.

3. Assign relative weightings to the objectives - These numerical values should be on an interval scale an alternative is to assign relative weights at different levels of an objectives tree, so that all weights sum to 1.0.

4. Tabulate the objectives parameters for each design candidate

5. Establish performance parameters or utility scores for each of the objectives - Both quantitative and qualitative objectives should be reduced to performance on simple points scales.

6. **Calculate and compare the relative utility values of the alternative designs** - Multiply each parameter score by its weighted value: the 'best' alternative has the highest sum value. Comparison and discussion of utility value profiles may be a better design aid than simply choosing the 'best'.

Example: Shaft Hub – Dynamics Test Rig

List the design objectives - These may need modification from an initial list of an objectives tree can also be a *useful* feature of this method.

 Quantitative assessment performance - An objective should be stated in such a way that a quantitative assessment can be made of the performance achieved by a design on that objective.

Example: Test Rig

Objectives

- (A) Reliable Operation
- (B) High Safety
- (C) Simple Production
- (D) Good Operational Characteristics

Rank-order the list of objectives -

Pair-wise comparisons help to establish the rank order.

Step 2.1 - Each objective is considered in turn against each of the others. A figure 1 or 0 is entered into the relevant matrix cell in the chart, depending on whether the first objective is considered more or less important than the second, and so on.

For example, start with objective A and work along the chart row, asking 'Is A more important than B?' ... 'than C?' ... 'than D?', etc. If it is considered more important, a 1 is entered in the matrix cell; if it is considered less important, a 0 is entered.

Verification Note: The upper right triangle matrix is inverted to the bottom lower triangle matric (inverse symmetry along the diagonal)

Step 2.2 – Sum up the rows and order the objective according to their ranks

Objectives	Α	В	С	D	Ε	Row totals
A	_	0	0	0	1	1
В	1	_	1	1	1	4
С	1	0	_	1	1	3
D	1	0	0	—	1	2
E	0	0	0	0	_	0

Ranked Order of Objectives B C

A

E

Assign relative weightings to the objectives –

3.1 Version 1 - Assign a numerical value to each objective, representing its weight relative to the other objectives.

B 10 9 8 C 6 5 D 4 A 3 E

В	10	10/28	0.35
С	7	7/28	0.25
D	5	5/28	0.18
Α	4	4/28	0.15
E	2	2/28	0.07

Assign relative weightings to the objectives –

3.1 Version 2 - Decide to share a certain number of 'points' - say, 100 - amongst all the objectives, awarding points on relative value and making tradeoffs and adjustments between the points awarded to different objectives until acceptable relative allocations are achieved.

B 35
C 25
D 18
A 15
E 7

В	0.35
С	0.25
D	0.18
Α	0.15
Е	0.07

Level 0.1 2 3 0123 0.33 0.08 0.33 0.08 0.34 0.09 0.67 0.04 + 0.08 + 0.25 = 1.00.09 0.04 + 0.25 + 0.160.09 +

3.2 Repeat the weight assignment to each level of the objective tree (Bottom left corner of each triangle)

Note: the sum of all the branches are equal to 1

Level 1: 1

Level 2: 0.5+0.25+0.25=1

Level 3: 0.67+0.34=1 ; 0.34+0.33+0.33=1

Level 4: 0.25+0.75=1; 0.5+0.5=1

3.3 Calculate the TRUE value of the weight of each objective using the value of the weight of the objective of the above value (bottom right of each triangle)

Level 2:

- 1x0.5=0.5
- 1x0.25=0.25
- 1x0.25=0.25

Level 3:

- 0.5x0.67=0.34
- 0.5x0.33=0.16

Level 4:

- 0.67x0.25=0.09
- 0.67x0.75=0.25

3.4 Drop down all the TRUE weights of all the objectives

Note: The sum of all the weights mare equal to zero

MAE 162 D/E – Mechanical Engineering Design I / II Instructor – Jacob Rosen PhD.

Г	Evaluation criteria		Parameters	-		Variant V.			Variant V2			Variant V			Variant V.	
		184			Magn.	Value	value	Magn.	Value	value	Magn.	Value	weighted	Magn.	Value	value
NO		WI.		Unit	<i>m</i> ,1	V,t	WV _{i1}	<i>m</i> _{/2}	V.2	WV,2	<i>m</i> ,3	V.3	WV,3	m _{r4}	V.4	WV,4
1	Low wear of moving parts	0.056	Amount of wear		high	3	0.168	low	6	0.336	average	4	0.224	low	6	0.336
2	Low susceptibility to vibrations	0.14	Natural frequency	s-1	410	3	0.420	2370	7	0.980	2370	7	0.980	<410	2	0.280
3	Few disturbing factors	0.084	Disturbing factors	•	high	2	0.168	low	7	0.588	low	6	0.504	(average)	4	0.336
4	Tolerance of overloading	0.12	Overload reserve	96	5	5	0.600	10	7	0.840	10	7	0.840	20	8	0.960
5	High mechanical safety	0.21	Expected mechan. salety	-	average	4	0.840	high	7	1.470	high	7	1.470	very high	8	1.680
6	Few possible operator errors	0.09	Possibilities of operator errors	-	high	3	0.270	low	7	0.630	low	6	0.540	average	4	0.360
7	Small number of components	0.03	No. of components	-	average	5	0.150	average	4	0.120	average	4	0.120	low	6	0:180
8	Low complexity of components	0.012	Complexity of components	-	low	6	0.072	low	7	0.084	average	5	0.060	high	3	0.036
9	Many standard and bought-out parts	0.018	Proportion of standard and bought-out components		low	2	0.036	average	6	0.108	average	6	0.108	high	8	0.144
10	Simple assembly	0.04	Simplicity of assembly		low	3	0.120	average	5	0.200	average	5	0.200	high	7	0.280
11	Easy maintenance	0.06	Time and cost or maintenance		average	4	0.240	low	8	0.480	low	7	0.420	high	3	0.180
12	Quick exchange of test connections	0.084	Estimated time needed to exchange test connections	min	180	4	0.336	120	7	0.588	120	7	0.588	180	4	0.336
13	Good accessibility of measuring systems	0.056	Accessibility of measuring systems		good	7	0.392	good	7	0.392	good	7	0.392	average	5	0.280
		Σw,= 1.0				<i>OV</i> ₁ = 51 <i>R</i> ₁ = 0.39	OWV, = 3.812 WR, =0.38		$OV_2 = 85$ $R_2 = 0.65$	OWV ₂ = 6.816 WR ₂ =0.68		$OV_3 = 78$ $R_3 = 0.60$	OWV ₃ = 6.446 WR ₃ = 0.64		$OV_4 = 68$ $R_4 = 0.52$	OWV4 = 5.388 WR4 = 0.54

Tabulate the objectives parameters for each design candidate

	Evaluation crite	ria	Objective		Variar	nt V ₁ (e.g. l	ing. ₁)	Varian	nt V ₂ (e.g. l	ing. ₂)		Variant V	/j			Variant V _n	n
No	I	W+	raidmeters	Unit	Magn. ^M i1	Value ^v i1	Weighted value WV:1	Magn. ^m i2	Value ^v i2	Weighted	Magn. ^m ij	Value ^V ij	Weighted value WV::		Magn. ^M im	Value ^v im	Weighted value WV:
1	Low fuel consumption	0.3	Fuel consumption	g kWh	240			300			 ^m 1j		, ,		^m 1m		
2	Light weight construction	0.15	Mass per unit power	<u>kg</u> kW	1.7			2.7			 ^m 2j				^m 2m		
3	Simple production	0.1	Simplicity of components	-	low			average			 ^m 3j				m _{3m}		
4	Long service life	0.2	Service life	km	80 000			150 000			 ^m 4j				^{<i>m</i>4} m		
:	÷	:	:														
i		<i>w</i> _i			m _{i1}			m _{i2}			 m _{ij}				m _{im}		
:	:		:	:	:			:			:				:		
n		<i>w</i> _n			^m n1			m _{n2}			 ^m nj			•	^m nm		
		n ΣW _i =1 i=1															

Γ	Evaluation criteria		Parameters			Variant V.	-		Variant V2			Variant V3			Vanant V4	Washing
No		Wt.		Unit	Magn. m,1	Value V,t	value WV,	Magn. m _{i2}	Value V _{rz}	value WV,2	Magn. m _{io}	Value V _{is}	value WV,3	Magn. m,4	Value V.4	value WV,4
1	Low wear of moving parts	0.056	Amount of wear		high	3	0.168	low	6	0.336	average	4	0.224	low	6	0.336
2	Low susceptibility to vibrations	0.14	Natural frequency	s-1	410	3	0.420	2370	7	0.980	2370	7	0.980	< 410	2	0.280
3	Few disturbing factors	0.084	Disturbing factors		high	2	0.168	low	7	0.588	low	6	0.504	(average)	4	0.336
4	Tolerance of overloading	0.12	Overload reserve	%	5	5	0.600	10	7	0.840	10	7	0.840	20	8	0.960
5	High mechanical safety	0.21	Expected mechan. salety		average	4	0.840	high	7	1.470	high	7	1.470	very high	8	1.680
6	Few possible operator errors	0.09	Possibilities of operator errors		high	3	0.270	low	7	0.630	low	6	0.540	average	4	0.360
7	Small number of components	0.03	No. of components		average	5	0.150	average	4	0.120	average	4	0.120	low	6	0:180
8	Low complexity of components	0.012	Complexity of components		low	6	0.072	low	7	0.084	average	5	0.060	high	3	0.036
9	Many standard and bought-out parts	0.018	Proportion of standard and bought-out		low	2	0.036	average	6	0.108	average	6	0.108	high	8	0.144
10	Simple assembly	0.04	Simplicity of assembly		low	3	0.120	average	5	0.200	average	5	0.200	high	7	0.280
11	Easy maintenance	0.06	Time and cost or maintenance		average	4	0.240	low	8	0.480	low	7	0.420	high	3	0.180
12	Quick exchange of test connections	0.084	Estimated time needed to exchange test connections	min	180	4	0.336	120	7	0.588	120	7	0.588	180	4	0.336
13	Good accessibility of measuring systems	0.056	Accessibility of measuring systems		good	7	0.392	good	7	0.392	good	7	0.392	average	5	0.280
		Σw,= 1.0				$OV_1 = 51$ $R_1 = 0.39$	OWV, = 3.812 WR, =0.38		$OV_2 = 85$ $R_2 = 0.65$	OWV ₂ = 6.816 WR ₂ =0.68		$OV_3 = 78$ $R_3 = 0.60$	OWV ₃ = 6.446 WR ₃ = 0.64		$OV_4 = 68$ $R_4 = 0.52$	OWV ₄ = 5.388 WR ₄ =0.54

5. Establish performance parameters or utility scores for each of the objectives - Both quantitative and qualitative objectives should be reduced to performance on simple points scales.

11-point scale	Meaning	5-point scale	Meaning	
0	Totally useless solution	0	Ter I er e	
1	Inadequate solution	0	Inadequate	
2	Very poor solution			
3	Poor solution	1	Weak	
4	Tolerable solution			
5	Adequate solution		C (
6	Satisfactory solution	2	Satisfactory	
7	Good solution		6 1	
8	Very good solution	3	Good	
9	Excellent solution	reliat M	E	
10	Perfect or ideal solution		Excellent	

	Value scale					
	Use-value analysis	Guideline VDI 2225				
Pts.	Meaning	Pts.	Meaning			
0	absolutely useless solution	0	unsatisfactory			
1	very inadequate solution					
2	weak solution	1	iust tolorable			
3	tolerable solution		Just tolerable			
4	adequate solution		- de su et s			
5	satisfactory solution	2	adequate			
6	good solution with few drawbacks	3	good			
7	good solution					
8	very good solution					
9	solution exceeding the requirement	4	very good (ideal)			
10	ideal solution					

11-point scale	Meaning	5-point scale	Meaning	
0	Totally useless solution	0	Trans In source of	
1	Inadequate solution	0	madequate	
2	Very poor solution			
3	Poor solution	1	Weak	
4	Tolerable solution			
5	Adequate solution		Call forder	
6	Satisfactory solution	2	Satisfactory	
7	Good solution		Carl	
8	Very good solution	3	Good	
9	Excellent solution	relief of the	E	
10	Perfect or ideal solution	4	Excellent	

Value	Scale	Parameter magnitudes							
Use-value analysis Pts	VDI 2225 Pts	Fuel consumption g/kWh	Mass per unit power kg/kW	Simplicity of components	Service life				
0	0	400	3.5	extremely	20 · 10 ³				
1	Ŭ	380	3.3	complicated	30				
2	1	360	3.1	complicated	40				
3	1	340	2.9	complicated	60				
4		320	2.7	21/072/00	80				
5	2	300	2.5	average	100				
6	2	280	2.3	cimula	120				
7	3	260	2.1	simple	140				
8		240	1.9		200				
9	4	220	1.7	extremely simple	300				
10		200	1.5	Simple	500 · 10 ³				

Π	Evaluation criteria	Evaluation criteria		Parameters		Variant V,			Variant Va	Washind		Variant V	Washind	Variant Va		Workhied
No		Wt.		Unit	Magn.	Value V,t	value WV,	Magn. m _{i2}	Value V _{rz}	value WV,2	Magn. ma	Value V _{ia}	value WV,3	Magn. m.4	Value V.4	value WV,4
1	Low wear of moving parts	0.056	Amount of wear		high	3	0.168	low	6	0.336	average	4	0.224	low	6	0.336
2	Low susceptibility to vibrations	0.14	Natural frequency	s-1	410	3	0.420	2370	7	0.980	2370	7	0.980	< 410	2	0.280
3	Few disturbing factors	0.084	Disturbing factors		high	2	0.168	low	7	0.588	low	6	0.504	(average)	4	0.336
4	Tolerance of overloading	0.12	Overload reserve	%	5	5	0.600	10	7	0.840	10	7	0.840	20	8	0.960
5	High mechanical safety	0.21	Expected mechan. salety		average	4	0.840	high	7	1.470	high	7	1.470	very high	8	1.680
6	Few possible operator errors	0.09	Possibilities of operator errors		high	3	0.270	low	7	0.630	low	6	0.540	average	4	0.360
7	Small number of components	0.03	No. of components		average	5	0.150	average	4	0.120	average	4	0.120	low	6	0:180
8	Low complexity of components	0.012	Complexity of components		low	6	0.072	low	7	0.084	average	5	0.060	high	3	0.036
9	Many standard and bought-out parts	0.018	Proportion of standard and bought-out		low	2	0.036	average	6	0.108	average	6	0.108	high	8	0.144
10	Simple assembly	0.04	Simplicity of assembly		low	3	0.120	average	5	0.200	average	5	0.200	high	7	0.280
11	Easy maintenance	0.06	Time and cost or maintenance		average	4	0.240	low	8	0.480	low	7	0.420	high	3	0.180
12	Quick exchange of test connections	0.084	Estimated time needed to exchange test connections	min	180	4	0.336	120	7	0.588	120	7	0.588	180	4	0.336
13	Good accessibility of measuring systems	0.056	Accessibility of measuring systems		good	7	0.392	good	7	0.392	good	7	0.392	average	5	0.280
		Σw,= 1.0				$OV_1 = 51$ $R_1 = 0.39$	OWV, = 3.812 WR, =0.38		$OV_2 = 85$ $R_2 = 0.65$	OWV ₂ = 6.816 WR ₂ =0.68		<i>OV</i> ₃ = 78 <i>R</i> ₃ = 0.60	OWV ₃ = 6.446 WR ₃ = 0.64		$OV_4 = 68$ $R_4 = 0.52$	OWV ₄ = 5.388 WR ₄ = 0.54

Evaluation criteria		Parameters		Variant V ₁ (e.g. <i>Eng</i> . ₁)			Variant V ₂ (e.g. Eng. 2)				v	ariant (/j	 Variant V _m			
No. Wt.		Wt.		Unit	Magn. ^m i1	Value ^V i1	Weighted value <i>WV</i> i1	Magn. ^m i2	Value ^V ij	Weighted value ^{WV} ij		Magn. <i>m</i> ij	Value ^V ij	Weighted value WV. ij	Magn. ^M im	Value ^V im	Weighted value ^{WV} im
1	Low fuel consumption	0.3	Fuel consumption	g kWh	240	8	2.4	300	5	1,5		^m 1j	V _{1j}	wv _{1j}	 ^m 1m	V _{1m}	wv _{1m}
2	Lightweight construction	0.15	Mass per unit power	kg kW	1,7	9	1.35	2.7	4	0,6		^m 2j	v _{2j}	₩V _{2j}	 ^m 2m	V _{2m}	wv _{2m}
3	Simple production	0.1	Simplicity of components	-	compli- cated	2	0.2	average	5	0,5		^m 3j	V _{3j}	wv _{3j}	 ^т 3т	V _{3m}	wv _{3m}
4	Long service life	0.2	Service life	km	80 000	4	0.8	150 000	7	1,4		^m 4j	V _{4j}	wv _{4j}	 ^{<i>m</i>4} m	V _{4m}	wv _{4m}
:	÷	:	÷	:	:	:	:	:	:	÷		:	:	:	:	:	. :
i		w _i			m _{i1}	V _{i1}	wv _{i1}	m _{i2}	V _{i2}	wv _{i2}		m _{ij}	V _{ij}	wv _{ij}	 m _{im}	V _{im}	wv _{im}
:	÷	:	:	:	:	:	. :	;	:	:		:	:	- :	:	:	:
n		w _n			m _{n1}	V _n 1	WV _{n1}	^m n2	V _{n2}	wv _{n2}		m _{nj}	ν _{nj}	wv _{nj}	 m _{nm}	V _{nm}	wv _{nm}
		$in \\ \Sigma W_{i} = 1$				ov ₁ ^R 1	оwv ₁ wя ₁		0V2 R2	OWV ₂ WR ₂			ov _j Rj	OWV _j WR _j		ov _m	owv _m ^{WR} m

5. Calculate and compare the relative utility values of the alternative designs - Multiply each parameter score by its weighted value: the 'best' alternative has the highest sum value. Comparison and discussion of utility value profiles may be a better design aid than simply choosing the 'best'.

Unweighted:
$$OV_j = \sum_{i=1}^n v_{ij}$$

Weighted: $OWV_j = \sum_{i=1}^n w_i \cdot v_{ij} = \sum_{i=1}^n wv_{ij}$
Unweighted: $R_j = \frac{OV_j}{v_{\max} \cdot n} = \frac{\sum_{i=1}^n v_{ij}}{v_{\max} \cdot n}$
Weighted: $WR_j = \frac{OWV_j}{v_{\max} \cdot \sum_{i=1}^n w_i} = \frac{\sum_{i=1}^n w_i \cdot v_{ij}}{v_{\max} \cdot \sum_{i=1}^n w_i}$

UCLA

Wi

Evaluation criteria			Parameters		Variant V ₁ (e.g. <i>Eng</i> . ₁)			Variant V ₂ (e.g. <i>Eng</i> . ₂)					Variant V	nt V _j		١	Variant V _m	
No.		Wt.	Unit		Magn. ^m i1	Value ^V i1	Weighted value <i>WV</i> i1	ighted Magn. alue ^m i2 ^{WV} i1		Weighted value ^{WV} ij		Magn. ^m ij	Value ^V ij	Weighted value WV ij		Magn. ^m im	Value ^V im	Weighted value ^{WV} im
1	Low fuel consumption	0.3	Fuel consumption	g kWh	240	8	2.4	300	5	1,5		^m 1j	V _{1j}	wv _{1j}		^m 1m	V _{1m}	wv _{1m}
2	Lightweight construction	0.15	Mass per unit power	kg kW	1,7	9	1.35	2.7	4	0,6		^m 2j	V _{2j}	wv _{2j}		^m 2m	V _{2m}	WV _{2m}
3	Simple production	0.1	Simplicity of components	-	compli- cated	2	0.2	average	5	0,5		⁷⁷ 3j	V _{3j}	wv _{3j}		^{<i>m</i>} 3m	V _{3m}	^{WV} 3m
4	Long service life	0.2	Service life	km	80 000	4	0.8	150 000	7	1,4		^т 4ј	V _{4j}	₩V _{4j}		^{<i>m</i>4} m	V _{4m}	₩V _{4m}
:	:	:							:	:		:	:	:		÷	:	:
i		w _i	Unweigh	ted	$R_j =$	OV_j	_	^m i2	V _{i2}	wv _{i2}		m _{ij}	V _{ij}	wv _{ij}		m _{im}	Vim	wv.
:	:	:				v_{max} .	n	;	÷	:		:	:	:		:	:	:
n		₩ _n	Weighted	l: W	$R_j = \frac{OWV_j}{n}$			^m n2	V _{n2}	wv _{n2}		m _{nj}	٧ _{nj}	wv _{nj}		m _{nm}	Vnm	WV _{nm}
		$in \\ \Sigma W_{j} = 1$ i = 1			1	max ·	$\sum_{i=1}^{n} w_i$		0V2 R2	owv ₂ ^{WR} 2			OV _i R _i	OWV _i WR _i			ov _m	owv _m ^{WR} m
							Unw	eighte	d: OV	$=\sum^{n}$	ν	" We	eighte	ed: OW	VV _j	$=\sum_{n=1}^{n}$	wi	V _{ij}
	MAE 162 D/E – Instructor – Jaco	Mechar ob Rose	nical Engineering Design n PhD.	/						<i>i</i> =1	1	9	-			<i>i</i> =		-

Evaluation criteria		Parameters	Variant V,				Variant V2	Weighter		Variant V3	Weighted	Variant V4				
No.		Wt.		Unit	Magn. m,1	Value V,t	value WV,	Magn. m _{i2}	Value V _{rz}	value WV,2	Magn. m.s	Value V _{i3}	value WV,3	Magn. m,4	Value V,4	value WV,4
1	Low wear of moving parts	0.056	Amount of wear		high	3	0.168	low	6	0.336	average	4	0.224	low	6	0.336
2	Low susceptibility to vibrations	0.14	Natural frequency	s-1	410	3	0.420	2370	7	0.980	2370	7	0.980	<410	2	0.280
3	Few disturbing factors	0.084	Disturbing factors		high	2	0.168	low	7	0.588	low	6	0.504	(average)	4	0.336
4	Tolerance of overloading	0.12	Overload reserve	96	5	5	0.600	10	7	0.840	10	7	0.840	20	8	0.960
5	High mechanical safety	0.21	Expected mechan. salety	•	average	4	0.840	high	7	1.470	high	7	1.470	very high	8	1.680
6	Few possible operator errors	0.09	Possibilities of operator errors	-	high	3	0.270	low	7	0.630	low	6	0.540	average	4	0.360
7	Small number of components	0.03	No. of components		average	5	0.150	average	4	0.120	average	4	0.120	low	6	0:180
8	Low complexity of components	0.012	Complexity of components	-	low	6	0.072	low	7	0.084	average	5	0.060	high	3	0.036
9	Many standard and bought-out parts	0.018	Proportion of standard and bought-out components		low	2	0.036	average	6	0.108	average	6	0.108	high	8	0.144
10	Simple assembly	0.04	Simplicity of assembly		low	3	0.120	average	5	0.200	average	5	0.200	high	7	0.280
11	Easy maintenance	0.06	Time and cost or maintenance		average	4	0.240	low	8	0.480	low	7	0.420	high	3	0.180
12	Quick exchange of test connections	0.084	Estimated time needed to exchange test connections	min	180	4	0.336	120	7	0.588	120	7	0.588	180	4	0.336
13	Good accessibility of measuring systems.	0.056	Accessibility of measuring systems		good	7	0.392	good	7	0.392	good	7	0.392	average	5	0.280
		Σw,= 1.0				<i>OV</i> ₁ = 51 <i>R</i> ₁ = 0.39	OWV, = 3.812 WR, =0.38		$OV_2 = 85$ $R_2 = 0.65$	OWV ₂ = 6.816 WR ₂ =0.68		$OV_3 = 78$ $R_3 = 0.60$	OWV ₃ = 6.446 WR ₃ = 0.64		$OV_4 = 68$ $R_4 = 0.52$	OWV ₄ = 5.388 WR ₄ = 0.54

Example: Test Rig Weighted Objectives Method – Value Profile

Utility values were calculated for each objective, for each of four alternative designs. The second alternative (variant V2) emerges as the 'best' solution, with an overall utility value of 6.816.

However, variant V3 seems quite comparable, with an overall utility value of 6.446. A comparison of the 'value profiles' of these two alternatives was therefore made. This is shown in the figure , where the thickness of each bar in the chart represents the relative weight of each objective, and its length represents the score for that objective achieved by the particular design.

Weighted Objectives Method – Value Profile

Weak spots can be identified from below average values for individual evaluation criteria. Careful attention must be paid to them, particularly in the case of promising variants with good overall values, and they ought if possible to be eliminated during further development.

The identification of weak spots may be facilitated by graphs of the sub values—by the so-called **value profiles** illustrated in figure.

The lengths of the bars correspond to the values and the thicknesses to the weightings. The areas of the bars then indicate the weighted subvalues, and the cross-hatched area the overall weighted value of a solution variant. It is clear that, in order to improve a solution, it is essential to improve those subvalues that provide a greater contribution to the overall value than the rest.

In the figure, variant 2 is better than variant 1, although both have the same overall weighted value.

References

- Books
 - Chapter 7 Design and Development Artifact, <u>An Introduction to Design</u> <u>Science</u>, Johannesson, Paul, Perjons, Erik
 - Chapters 4,10,11,12, Engineering Design Methods, Nigel Cross, Wiley
 - The Act of Creation, Arthur Koestler

- Websites
 - NASA Reinventing the Wheel
 - The Evolution of 8 Objects Americans Use Every Day
 - Squaring the Circle: 15 Telephone Keypad Layouts that Could Have Been
- Videos

